Boundedness in frames

David Holgate

University of the Western Cape, South Africa Brno University of Technology, Czech Republic

Workshop on Algebra, Logic and Topology University of Coimbra 27 – 29 September 2018

Boundedness in topology

Boundedness is of course not a topological notion. Classic topological approximations have been via (relative) compactness.

A subspace $A \subseteq X$ of a topological space X has been termed:

- ► Absolutely bounded (Gagola and Gemignani 1968) if A is contained in a member of any directed open cover of X.
- e-relatively compact (Hechler 1975) if any open cover C of A contains a finite subcover of A.
- Bounded (Lambrinos 1973 & 1976) if any open cover C of X contains a finite subcover of A.

Remark

From a topologist's point of view, it would seem desirable to have that A is bounded if and only if \overline{A} is bounded.

Some terminology in frames

A frame is a complete lattice L with top 1, bottom 0 and distributivity

$$a \land \bigvee S = \bigvee_{s \in S} (a \land s).$$

• The **pseudocomplement** of $a \in L$ is a^* defined by

$$x \leq a^* \Leftrightarrow x \wedge a = 0.$$

Additional order relations defined on L:

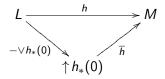
- ▶ **Rather below:** $a \prec b$ iff there exists $c \in L$ with $a \land c = 0$ and $b \lor c = 1$ iff $a^* \lor b = 1$.
- ▶ Completely below: $a \prec d$ iff there exists $\{c_r \mid r \in [0,1] \cap \mathbb{Q}\} \subseteq L$ with $c_0 = a$, $c_1 = b$ and $c_r \prec c_s$ for any r < s.
- Way below: a ≪ b iff whenever b ≤ ∨ S then there exists finite A ⊆ S with a ≤ ∨ A.

A frame L is:

. . .

- **Regular** if $a = \bigvee \{x \mid x \prec a\}$ for all $a \in L$.
- Completely regular if $a = \bigvee \{x \mid x \prec a\}$ for all $a \in L$.
- Continuous if $a = \bigvee \{x \mid x \ll a\}$ for all $a \in L$.

A frame homomorphism $h: L \to M$ preserves \land and \bigvee . The right adjoint is denoted by h_* . Note that any $h: L \to M$ factors through $\uparrow h_*(0)$,



Bounded elements in a frame

Definition

An element $a \in L$ is **bounded** if for any cover C of L, $a^* \in C \Rightarrow C$ contains a finite subcover.

Remarks

- Since $a^* = a^{***}$, *a* is bounded iff a^{**} is bounded.
- The set of all bounded elements Bd(L) forms an ideal in L.
- ▶ 1 is bounded iff *L* is compact.
- If a is bounded then $a \ll 1$.
- If L is regular then a is bounded iff $a \ll 1$.
- If $\bigvee Bd(L) = 1$ then *a* is bounded iff $a \ll 1$.

Bounded sublocales

Definition (Dube 2005)

An onto map $h: L \to M$ is a **bounded sublocale** of L if any cover C of L contains a finite K such that h[K] covers M.

Proposition

- 1. An element $a \in L$ is bounded iff $\lor a^* : L \rightarrow \uparrow a^*$ is a bounded sublocale.
- 2. An element $a \ll 1$ in L iff $\land a : L \rightarrow \downarrow a$ is a bounded sublocale.

Boundedness and filters

We say that a filter F on L clusters if $\bigvee_{x \in F} x^* \neq 1$ and that F is **convergent** if F intersects every cover of L.

Proposition

Consider the following properties of $a \in L$.

- 1. a is bounded.
- 2. $a \ll 1$
- 3. For all filters F on L, $a \in F \rightarrow F$ clusters.
- 4. For all filters F on L, $a^* \notin F \Rightarrow F$ clusters.

5. For all prime filters F on L, $a \in F \Rightarrow F$ is convergent. Then $(1) \Rightarrow (2) \Rightarrow (3) \Leftrightarrow (4)$ and $(2) \Rightarrow (5)$. If L is regular then $(4) \Rightarrow (1)$.

Bounded homomorphisms

Definition

A homomorphism $h: L \to M$ is **bounded** if there exists $a \in Bd(L)$ with h(a) = 1.

Remarks

- An obvious option is to consider h to be bounded if its image is a bounded sublocale. We call such h D-bounded, i.e. h for which any cover C of L contains a finite K such that h[K] covers M.
- In general if h is bounded then it is easily seen to be D-bounded. In the absence of additional assumptions on the frames or on Bd(L) it is not possible to extract a generic bounded element from a D-bounded map.

Bounded homomorphisms...

Proposition If $h: L \to M$ is bounded then $h_*(0)^*$ is bounded.

Lemma If $h: L \to M$ with h(x) = 1 and $x \prec y$ then $h_*(0)^* \leq y$.

Proposition

In regular frames, if $h: L \to M$ is D-bounded then $h_*(0)^*$ is bounded.

Corollary

In regular frames, if $h: L \to M$ is a bounded (hence D-bounded) dense quotient then L is compact.

Proposition

If $\bigvee Bd(L) = 1$ then $h: L \to M$ is bounded iff h is D-bounded.

Pseudocompactness?

Definition

Let *E* be a fixed frame. *L* is *E*-**pseudocompact** if every $h: E \rightarrow M$ is bounded.

Remarks

- If $E = \mathcal{L}(\mathbb{R})$ this is the usual pseudo-compactness.
- ► The case E = P(N) was studied (briefly) by Marcus for completely regular frames.
- Understandably the study of pseudocompactness is restricted to frames with a degree of structure linked to the frame *E*. (Typically completely regular frames, *σ*-frames, *κ*-frames.)
- If $\bigvee Bd(E) = 1$ then L compact $\Rightarrow L$ is E-pseudocompact.

References

- 1. S. Gagola, M. Gemignani, Absolutely bounded sets, *Mathematica Japonica* **13** (1968) 129–132.
- 2. S. Hechler, On a notion of weak compactness in non-regular spaces, *In: Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C.)* (1974) 215–237.
- 3. P. Lambrinos, Some weaker forms of topological boundedness, Ann. Soc. Sci. Bruxelles Sér. / **90** (1976) 109–124.
- T. Dube, Bounded quotients of frames, *Quaest. Math.* 28 (2005) 55–72.