The meet-semilattice congruence lattice of a frame

John Frith* and Anneliese Schauerte

University of Cape Town

27 September 2018

(本語)) (本語)

Basics

Throughout this talk L will denote a frame, the top element is denoted by 1 the bottom element is denoted by 0.

Definition

A *meet-semilattice congruence* θ on *L* is an equivalence relation on *L* which also satisfies $(x, y), (z, w) \in \theta \Rightarrow (x \land z, y \land w) \in \theta$.

We present some well-known facts for the sake of completeness:

- The collection of all meet-semilattice congruences on *L*, Con_{Msl}(*L*), forms a partially ordered set under inclusion.
- The intersection of meet-semilattice congruences remains a meet-semilattice congruence, so meet is given by intersection.
- Con_{Msl}(*L*) is a complete lattice. The top element, which we denote by ∇, is *L* × *L*; the bottom element, which we denote by △, is {(*x*, *x*) : *x* ∈ *L*}.

イロト 不得 トイヨト イヨト

An example

Frith & Schauerte (UCT)

2

<ロ> <問> <問> < 同> < 同> < 同> 、

An example

Frith & Schauerte (UCT)

2

イロト イヨト イヨト イヨト

An example

æ

イロト イヨト イヨト イヨト

Finite joins

There is an explicit characterization of finite joins, which we need, given as follows:

Suppose that θ , ϕ are meet-semilattice congruences on *L*.

- We say that elements x and y of L are θ − φ-linked if there is a sequence of elements x = s₀, s₁, s₂..., s_n = y of L such that, for any i ∈ {0, 1, 2, ..., n − 1} either (s_i, s_{i+1}) ∈ θ or (s_i, s_{i+1}) ∈ φ.
- We define $\theta * \phi = \{(x, y) : x \text{ and } y \text{ are } \theta \phi \text{-linked} \}$
- For $\theta, \phi \in \operatorname{Con}_{Msl}(L)$, $\theta \lor \phi = \theta * \phi$. Well known, we think. This extends to any finite join.

(日本) (日本) (日本) 日

$\operatorname{Con}_{\operatorname{Msl}}(L)$

- The join of an updirected family of meet-semilattice congruences is just its union.
- An arbitrary join, $\bigvee_{I} \theta_{i}$, is calculated by taking the union of all finite joins, since these form an updirected collection.
- As a result, the lattice Con_{Msl}(L) is compact.

周 ト イ ヨ ト イ ヨ ト

For the sake of completeness, we recall the definition of a frame congruence:

Definition

A frame congruence θ on L is an equivalence relation on L which also satisfies

I

• $(x, y), (z, w) \in \theta$ implies $(x \land z, y \land w) \in \theta$.

•
$$(x_i, y_i) \in \theta$$
 for all $i \in I$ implies $(\bigvee_I x_i, \bigvee_I y_i) \in \theta$.

- The collection of all frame congruences on a frame L will be denoted by $Con_{Frm}(L)$.
- It is a frame. (But the description of join given above does not apply.)

A (10) × (10)

A structure theorem for $Con_{Msl}(L)$.

Definition

- For $a, b \in L$ we denote by
 - \mathbf{V}_a the meet-semilattice congruence generated by the singleton $\{(0, a)\}$
 - Δ_b the meet-semilattice congruence generated by the singleton $\{(b, 1)\}$
 - θ_{ab} the meet-semilattice congruence generated by the singleton $\{(a, b)\}$.

•
$$\nabla_a = \{(x, y) \in L \times L : x \lor a = y \lor a\}.$$

It is possible to describe \mathbf{V}_a and Δ_b explicitly as follows:

Lemma
For
$$a, b \in L$$

 $\blacksquare \quad \P_a = \triangle \cup \{(s, t) \in L \times L : s, t \le a\}$
 $\supseteq \quad \Delta_b = \{(x, y) \in L \times L : x \land b = y \land b\}.$

Some properties of \mathbf{V}_a , etc.

Frith & Schauerte (UCT)

The meet-semilattice congruence lattice

PWC 9/20

イロト イヨト イヨト イヨト

Some properties of \mathbf{V}_a , etc.

Lemma

Let *L* be a frame, $a, b \in L$, $\{a_i\}_{i \in I} \subseteq L$. In Con_{Msl}(*L*) we have:

Towards some structure

Lemma

 $\theta_{ab} = (\mathbf{\nabla}_a \wedge \Delta_b) * (\mathbf{\nabla}_b \wedge \Delta_a).$

Frith & Schauerte (UCT)

・ロト ・ 四ト ・ ヨト ・ ヨト …

Towards some structure

Lemma

 $\theta_{ab} = (\mathbf{\nabla}_a \wedge \Delta_b) * (\mathbf{\nabla}_b \wedge \Delta_a).$

Theorem (Structure Theorem)

For any meet-semilattice congruence θ we have

$$\theta = \bigvee \{ (\mathbf{\nabla}_c \wedge \Delta_d) * (\mathbf{\nabla}_d \wedge \Delta_c) : (c, d) \in \theta \}.$$

Frith & Schauerte (UCT)

The meet-semilattice congruence lattice of a f

PWC 10/20

不同 トイモトイモ

Examples and counterexamples

PWC 11/20

A (10) A (10)

▶ Ξ つへの PWC 12/20

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

In the case that *L* is a linear frame we claim that $\operatorname{Con}_{\operatorname{Msl}}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\operatorname{Msl}}(L) \neq \operatorname{Con}_{\operatorname{Frm}}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.

Theorem

In the case that *L* is a linear frame we claim that $\operatorname{Con}_{\operatorname{Msl}}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\operatorname{Msl}}(L) \neq \operatorname{Con}_{\operatorname{Frm}}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.

Papert has this result, but it is proved differently.

Theorem

In the case that *L* is a linear frame we claim that $\operatorname{Con}_{\operatorname{Msl}}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\operatorname{Msl}}(L) \neq \operatorname{Con}_{\operatorname{Frm}}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.

Papert has this result, but it is proved differently.

Example

As a special case of a linear frame *L* we take $L = \mathbb{N} \cup \{\top\}$ where \mathbb{N} denotes the positive integers with their usual order and $n \leq \top$ for all $n \in \mathbb{N}$. This is clearly a case where *L* is a linear frame. One can see that $\operatorname{Con}_{Msl}(L) \neq \operatorname{Con}_{Frm}(L)$.

イロト 不得 トイヨト イヨト

Lemma

If the frame L has at least two incomparable elements, then $\text{Con}_{\text{Msl}}(L)$ is not a distributive lattice.

Lemma

If the frame L has at least two incomparable elements, then $\text{Con}_{\text{Msl}}(L)$ is not a distributive lattice.

PROOF. The proof is modelled on the case where *L* is the 4 element Boolean algebra. \Box

< 同 ト < 三 ト < 三 ト

Complements in $Con_{Msl}(L)$?

We define complements using the usual equations as follows:

Definition

Let *M* be a bounded lattice; for $a, b \in M$ we say that *a* is a *complement* of *b* if $a \lor b = 1$ and $a \land b = 0$.

We emphasize that we are using this definition in a possibly non-distributive lattice and so no implication of uniqueness is intended.

Lemma

Let L be a frame, $a \in L$. In $\text{Con}_{Msl}(L)$, the element \mathbf{V}_a has a unique complement, namely, Δ_a .

(人間) とうきょうきょう

Complements in $Con_{Msl}(L)$?

We define complements using the usual equations as follows:

Definition

Let *M* be a bounded lattice; for $a, b \in M$ we say that *a* is a *complement* of *b* if $a \lor b = 1$ and $a \land b = 0$.

We emphasize that we are using this definition in a possibly non-distributive lattice and so no implication of uniqueness is intended.

Lemma

Let L be a frame, $a \in L$. In $\text{Con}_{Msl}(L)$, the element \mathbf{V}_a has a unique complement, namely, Δ_a .

Lemma

Let *L* be a frame, $a \in L$. In Con_{Msl}(*L*) if θ is a complement of Δ_a , then $\nabla_a \subseteq \theta \subseteq \nabla_a$.

Lemma

Let *L* be a frame, $a, b \in L$. In Con_{Msl}(*L*), every element of the form $\mathbf{\nabla}_a \wedge \Delta_b$ is complemented.

PROOF. $\nabla_b * \Delta_a$ is a complement of $\nabla_a \wedge \Delta_b$

- We now see that all elements of Con_{Msl}(L) arise as joins of complemented elements (using the Structure Theorem). In this sense one may think of any such lattice as being "zero-dimensional." We see that every meet-semilattice congruence lattice is compact and zero-dimensional.
- However, not every compact zero-dimensional lattice (in this sense) is a meet-semilattice congruence lattice of some frame.

< 回 > < 回 > < 回 > -

Lemma

Let *L* be a frame, $a, b \in L$. In Con_{Msl}(*L*), every element of the form $\mathbf{\nabla}_a \wedge \Delta_b$ is complemented.

PROOF. $\nabla_b * \Delta_a$ is a complement of $\nabla_a \wedge \Delta_b$

- We now see that all elements of Con_{Msl}(L) arise as joins of complemented elements (using the Structure Theorem). In this sense one may think of any such lattice as being "zero-dimensional." We see that every meet-semilattice congruence lattice is compact and zero-dimensional.
- However, not every compact zero-dimensional lattice (in this sense) is a meet-semilattice congruence lattice of some frame.
- Papert proves that $Con_{Msl}(L)$ is always pseudo-complemented.

Functoriality issues

Throughout: $f : L \rightarrow M$ is a frame map between frames.

Definition

 $(f \times f)^{-1}$: Con_{Msl}(M) \to Con_{Msl}(L) has a left adjoint from Con_{Msl}(L) to Con_{Msl}(M) which we denote by \tilde{f} : Con_{Msl}(L) \to Con_{Msl}(M).

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $f(\theta) = \langle (f \times f)[\theta] \rangle$.
- \mathcal{F} preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.

Functoriality issues

Throughout: $f : L \rightarrow M$ is a frame map between frames.

Definition

 $(f \times f)^{-1}$: Con_{Msl}(M) \to Con_{Msl}(L) has a left adjoint from Con_{Msl}(L) to Con_{Msl}(M) which we denote by \tilde{f} : Con_{Msl}(L) \to Con_{Msl}(M).

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $f(\theta) = \langle (f \times f)[\theta] \rangle$.
- \mathcal{F} preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.
- It also preserves the top element.

イベト イモト イモト

Functoriality issues

Throughout: $f : L \rightarrow M$ is a frame map between frames.

Definition

 $(f \times f)^{-1}$: Con_{Msl}(M) \to Con_{Msl}(L) has a left adjoint from Con_{Msl}(L) to Con_{Msl}(M) which we denote by \tilde{f} : Con_{Msl}(L) \to Con_{Msl}(M).

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $f(\theta) = \langle (f \times f)[\theta] \rangle$.
- \mathcal{F} preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.
- It also preserves the top element.

•
$$\tilde{f}(\theta_{ab}) = \theta_{f(a)f(b)}, \tilde{f}(\mathbf{V}_a) = \mathbf{V}_{f(a)}, \tilde{f}(\Delta_a) = \Delta_{f(a)}.$$

イベト イモト イモト

It is now clear that the following diagram commutes:

We note that in the diagram above, the horizontal maps preserve arbitrary meets, whereas the vertical maps preserve arbitrary joins.

PWC 18/20

 $\operatorname{Con}_{\operatorname{Msl}}(L)$ and $\operatorname{Con}_{\operatorname{Frm}}(L)$

The following diagram commutes:

We note that all maps in the diagram above preserve (at least) arbitrary joins, top and bottom elements.

PWC 19/20

The following diagram commutes:

The meet-semilattice congruence lattice of a

PWC 20/20

The following diagram commutes:

Muito obrigado a todos vocês e especialmente a Aleš