The meet-semilattice congruence lattice of a frame

John Frith* and Anneliese Schauerte

University of Cape Town

27 September 2018

Basics

Throughout this talk L will denote a frame, the top element is denoted by 1 the bottom element is denoted by 0 .

Definition

A meet-semilattice congruence θ on L is an equivalence relation on L which also satisfies $(x, y),(z, w) \in \theta \Rightarrow(x \wedge z, y \wedge w) \in \theta$.

We present some well-known facts for the sake of completeness:

- The collection of all meet-semilattice congruences on L, $\mathrm{Con}_{\mathrm{Msl}}(L)$, forms a partially ordered set under inclusion.
- The intersection of meet-semilattice congruences remains a meet-semilattice congruence, so meet is given by intersection.
- $\mathrm{Con}_{\mathrm{Msl}}(L)$ is a complete lattice. The top element, which we denote by ∇, is $L \times L$; the bottom element, which we denote by \triangle, is $\{(x, x): x \in L\}$.

An example

An example

An example

$\mathrm{Con}_{\mathrm{Msl}}(L):$

Finite joins

There is an explicit characterization of finite joins, which we need, given as follows:
Suppose that θ, ϕ are meet-semilattice congruences on L.

- We say that elements x and y of L are $\theta-\phi$-linked if there is a sequence of elements $x=s_{0}, s_{1}, s_{2} \ldots, s_{n}=y$ of L such that, for any $i \in\{0,1,2, \ldots, n-1\}$ either $\left(s_{i}, s_{i+1}\right) \in \theta$ or $\left(s_{i}, s_{i+1}\right) \in \phi$.
- We define $\theta * \phi=\{(x, y): x$ and y are $\theta-\phi$-linked $\}$
- For $\theta, \phi \in \operatorname{Con}_{\mathrm{Msl}}(L), \theta \vee \phi=\theta * \phi$. Well known, we think. This extends to any finite join.

$\operatorname{Con}_{\mathrm{Msl}}(L)$

- The join of an updirected family of meet-semilattice congruences is just its union.
- An arbitrary join, $\bigvee \theta_{i}$, is calculated by taking the union of all finite joins, since these form an updirected collection.
- As a result, the lattice $\operatorname{Con}_{\mathrm{Msl}}(L)$ is compact.

For the sake of completeness, we recall the definition of a frame congruence:

Definition

A frame congruence θ on L is an equivalence relation on L which also satisfies

- $(x, y),(z, w) \in \theta$ implies $(x \wedge z, y \wedge w) \in \theta$.
- $\left(x_{i}, y_{i}\right) \in \theta$ for all $i \in I$ implies $\left(\bigvee_{I} x_{i}, \bigvee_{I} y_{i}\right) \in \theta$.
- The collection of all frame congruences on a frame L will be denoted by $\mathrm{Con}_{\mathrm{Frm}}(L)$.
- It is a frame. (But the description of join given above does not apply.)

A structure theorem for $\operatorname{Con}_{\mathrm{Msl}}(L)$.

Definition

For $a, b \in L$ we denote by

- ∇_{a} the meet-semilattice congruence generated by the singleton $\{(0, a)\}$
- Δ_{b} the meet-semilattice congruence generated by the singleton $\{(b, 1)\}$
- $\theta_{a b}$ the meet-semilattice congruence generated by the singleton $\{(a, b)\}$.
- $\nabla_{a}=\{(x, y) \in L \times L: x \vee a=y \vee a\}$.

It is possible to describe ∇_{a} and Δ_{b} explicitly as follows:

Lemma

For $a, b \in L$
(1) $\nabla_{a}=\triangle \cup\{(s, t) \in L \times L: s, t \leq a\}$
(2) $\Delta_{b}=\{(x, y) \in L \times L: x \wedge b=y \wedge b\}$.

Some properties of ∇_{a}, etc.

Some properties of $\boldsymbol{\nabla}_{a}$, etc.

Lemma

Let L be a frame, $a, b \in L,\left\{a_{i}\right\}_{i \in I} \subseteq L$. In $\operatorname{Con}_{\text {Msl }}(L)$ we have:
(a) (a) $\wedge \nabla_{a_{i}}=\nabla_{\wedge a_{i}}$.
(b) ${\underset{\nabla}{a}}_{I}^{\nabla_{a}} \boldsymbol{\nabla}_{b}$ need not coincide with $\nabla_{a \vee b}$.
(c) $\boldsymbol{\nabla}_{0}=\triangle$ and $\boldsymbol{\nabla}_{1}=\nabla$.
(2) (a) $\nabla_{a} \wedge \nabla_{b}=\nabla_{a \wedge b}$.
(b) $\nabla_{a} \vee \nabla_{b}=\nabla_{a \vee b}$; this does not generalize to arbitrary joins.
(c) $\nabla_{0}=\triangle$ and $\nabla_{1}=\nabla$.
(0) (a) $\wedge \Delta_{a_{i}}=\Delta_{\vee_{a_{i}}}$.
(b) $\Delta_{a} \vee \Delta_{b}=\Delta_{a \wedge b}$; this does not generalize to arbitrary joins.
(c) $\Delta_{0}=\nabla$ and $\Delta_{1}=\triangle$.

Towards some structure

Lemma
$\theta_{a b}=\left(\mathbf{\nabla}_{a} \wedge \Delta_{b}\right) *\left(\nabla_{b} \wedge \Delta_{a}\right)$.

Towards some structure

Lemma
$\theta_{a b}=\left(\mathbf{\nabla}_{a} \wedge \Delta_{b}\right) *\left(\nabla_{b} \wedge \Delta_{a}\right)$.
Theorem (Structure Theorem)
For any meet-semilattice congruence θ we have

$$
\theta=\bigvee\left\{\left(\mathbf{\nabla}_{c} \wedge \Delta_{d}\right) *\left(\mathbf{\nabla}_{d} \wedge \Delta_{c}\right):(c, d) \in \theta\right\} .
$$

Examples and counterexamples

Theorem

In the case that L is a linear frame we claim that $\operatorname{Con}_{\text {Msl }}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\mathrm{Msl}}(L) \neq \operatorname{Con}_{\mathrm{Frm}}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.

Theorem

In the case that L is a linear frame we claim that $\operatorname{Con}_{\mathrm{Msl}}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\mathrm{Msl}}(L) \neq \operatorname{Con}_{\mathrm{Frm}}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.
Papert has this result, but it is proved differently.

Theorem

In the case that L is a linear frame we claim that $\operatorname{Con}_{\mathrm{Msl}}(L)$ is indeed a frame but that, in general, $\operatorname{Con}_{\mathrm{Msl}}(L) \neq \operatorname{Con}_{\text {Frm }}(L)$. (See Example below.)

The proof that we found relies on the "Structure Theorem" and follows a similar route to a proof that the congruence lattice of a frame is again a frame.
Papert has this result, but it is proved differently.

Example

As a special case of a linear frame L we take $L=\mathbb{N} \cup\{\top\}$ where \mathbb{N} denotes the positive integers with their usual order and $n \leq \top$ for all $n \in \mathbb{N}$. This is clearly a case where L is a linear frame. One can see that
$\operatorname{Con}_{\text {Msl }}(L) \neq \operatorname{Con}_{\text {Frm }}(L)$.

Lemma

If the frame L has at least two incomparable elements, then $\operatorname{Con}_{\text {Msl }}(L)$ is not a distributive lattice.

Lemma

If the frame L has at least two incomparable elements, then $\operatorname{Con}_{\mathrm{Msl}}(L)$ is not a distributive lattice.

PROOF. The proof is modelled on the case where L is the 4 element Boolean algebra.

Complements in $\operatorname{Con}_{\mathrm{Msl}}(L)$?

We define complements using the usual equations as follows:

Definition

Let M be a bounded lattice; for $a, b \in M$ we say that a is a complement of b if $a \vee b=1$ and $a \wedge b=0$.

We emphasize that we are using this definition in a possibly non-distributive lattice and so no implication of uniqueness is intended.

Lemma

Let L be a frame, $a \in L$. In $\operatorname{Con}_{\mathrm{Msl}}(L)$, the element ∇_{a} has a unique complement, namely, Δ_{a}.

Complements in $\operatorname{Con}_{\mathrm{Ms} 1}(L)$?

We define complements using the usual equations as follows:

Definition

Let M be a bounded lattice; for $a, b \in M$ we say that a is a complement of b if $a \vee b=1$ and $a \wedge b=0$.

We emphasize that we are using this definition in a possibly non-distributive lattice and so no implication of uniqueness is intended.

Lemma
Let L be a frame, $a \in L$. In $\operatorname{Con}_{\mathrm{Msl}}(L)$, the element ∇_{a} has a unique complement, namely, Δ_{a}.

Lemma
Let L be a frame, $a \in L$. In $\operatorname{Con}_{\mathrm{Msl}}(L)$ if θ is a complement of Δ_{a}, then $\nabla_{a} \subseteq \theta \subseteq \nabla_{a}$.

Lemma

Let L be a frame, $a, b \in L$. In $\operatorname{Con}_{\mathrm{Msl}}(L)$, every element of the form $\nabla_{a} \wedge \Delta_{b}$ is complemented.

PROOF. $\quad \nabla_{b} * \Delta_{a}$ is a complement of $\nabla_{a} \wedge \Delta_{b}$

- We now see that all elements of $\mathrm{Con}_{\mathrm{Msi}}(L)$ arise as joins of complemented elements (using the Structure Theorem). In this sense one may think of any such lattice as being "zero-dimensional." We see that every meet-semilattice congruence lattice is compact and zero-dimensional.
- However, not every compact zero-dimensional lattice (in this sense) is a meet-semilattice congruence lattice of some frame.

Lemma

Let L be a frame, $a, b \in L$. In $\operatorname{Con}_{\mathrm{Msl}}(L)$, every element of the form $\nabla_{a} \wedge \Delta_{b}$ is complemented.

PROOF. $\quad \nabla_{b} * \Delta_{a}$ is a complement of $\nabla_{a} \wedge \Delta_{b}$

- We now see that all elements of $\operatorname{Con}_{\mathrm{Msl}}(L)$ arise as joins of complemented elements (using the Structure Theorem). In this sense one may think of any such lattice as being "zero-dimensional." We see that every meet-semilattice congruence lattice is compact and zero-dimensional.
- However, not every compact zero-dimensional lattice (in this sense) is a meet-semilattice congruence lattice of some frame.
- Papert proves that $\mathrm{Con}_{\mathrm{Msl}}(L)$ is always pseudo-complemented.

Functoriality issues

Throughout: $f: L \rightarrow M$ is a frame map between frames.

Definition

$(f \times f)^{-1}: \operatorname{Con}_{\mathrm{Msl}}(M) \rightarrow \operatorname{Con}_{\mathrm{Msl}}(L)$ has a left adjoint from $\operatorname{Con}_{\mathrm{Msl}}(L)$ to $\operatorname{Con}_{\mathrm{Msl}}(M)$ which we denote by $\widetilde{f}: \operatorname{Con}_{\mathrm{Msl}}(L) \rightarrow \operatorname{Con}_{\mathrm{Msl}}(M)$.

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $f(\theta)=\langle(f \times f)[\theta]\rangle$.
- f preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.

Functoriality issues

Throughout: $f: L \rightarrow M$ is a frame map between frames.

Definition

$(f \times f)^{-1}: \operatorname{Con}_{\mathrm{Msl}}(M) \rightarrow \mathrm{Con}_{\mathrm{Msl}}(L)$ has a left adjoint from $\mathrm{Con}_{\mathrm{Msl}}(L)$ to $\operatorname{Con}_{\mathrm{Msl}}(M)$ which we denote by $\widetilde{f}: \operatorname{Con}_{\mathrm{Msl}}(L) \rightarrow \operatorname{Con}_{\mathrm{Msl}}(M)$.

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $\not{f}(\theta)=\langle(f \times f)[\theta]\rangle$.
- f preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.
- It also preserves the top element.

Functoriality issues

Throughout: $f: L \rightarrow M$ is a frame map between frames.

Definition

$(f \times f)^{-1}: \operatorname{Con}_{\mathrm{Msl}}(M) \rightarrow \operatorname{Con}_{\mathrm{Msl}}(L)$ has a left adjoint from $\operatorname{Con}_{\mathrm{Msl}}(L)$ to $\operatorname{Con}_{\mathrm{Msl}}(M)$ which we denote by $\widetilde{f}: \operatorname{Con}_{\mathrm{Msl}}(L) \rightarrow \operatorname{Con}_{\mathrm{Msl}}(M)$.

- For any $\theta \in \operatorname{Con}_{\mathrm{Msl}}(L)$ we have that $\overparen{f}(\theta)=\langle(f \times f)[\theta]\rangle$.
- f preserves arbitrary joins, since it is a left adjoint.
- It therefore preserves the bottom element.
- It also preserves the top element.
- $\mathcal{f}\left(\theta_{a b}\right)=\theta_{f(a) f(b)}, \mathcal{f}\left(\boldsymbol{\nabla}_{a}\right)=\boldsymbol{\nabla}_{f(a)}, \mathcal{f}\left(\Delta_{a}\right)=\Delta_{f(a)}$.

It is now clear that the following diagram commutes:

We note that in the diagram above, the horizontal maps preserve arbitrary meets, whereas the vertical maps preserve arbitrary joins.

$\operatorname{Con}_{\mathrm{Msl}}(L)$ and $\operatorname{Con}_{\mathrm{Frm}}(L)$

The following diagram commutes:

We note that all maps in the diagram above preserve (at least) arbitrary joins, top and bottom elements.

The following diagram commutes:

The following diagram commutes:

Muito obrigado a todos vocês e especialmente a Aleš

