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The metric hedgehog

Let I be a set of cardinality x and consider the disjoint union
Uierl0, 1] X {i} of x copies of the real unit interval.

d(x, y)
X
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Now we identify all the copies (the spines) of the real unit interval at
the origin and obtain the hedgehog J(x). The metric on J(x) is

|t —s|, ifx=t;andy=s;,

d(x,y)={

t+s, ifx=t;andy =s;withj#i.
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The metric hedgehog

The open balls form a base for the metric topology,
and the open balls of the form

{B(0,r)|r€eQ@nN(O,DH}U{B;,r)|reQn(0,1)and i € I}

form a subbase for the metric topology.
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The metric hedgehog

Obviously, we can also perform precisely the same construction
starting with the extended real line instead of the unit interval.
The open balls of the form

(B(=00,7) | 7 € Q} U {B(+c0;,7) | r € Qand i € I}

form a subbase for the metric topology.

B(+00;,7)
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The frame of the metric hedgehog

One of the differences between point-set topology and pointfree
topology is that one may present frames by generators and relations.

The frame of the metric hedgehog with x spines is the frame £(J(x))
presented by generators (7, -); and (—, r) for r € Q and i € I, subject to
the defining relations:

(ho) (r,—)i A(s,—)j = 0 whenever i # j,
(h1) (r,-)i A (-, 5) = 0 whenever r > s
andi€l,

(h2) Ve (ri,—)i V (-, s) = 1 whenever
ri <sforeveryie€l,
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The frame of the metric hedgehog

One of the differences between point-set topology and pointfree
topology is that one may present frames by generators and relations.

The frame of the metric hedgehog with x spines is the frame £(J(x))
presented by generators (7, -); and (—, r) for r € Q and i € I, subject to
the defining relations:

(ho) (r,—)i A(s,—)j = 0 whenever i # j,

(h1) (r,-)i A (-, 5) = 0 whenever r > s
andi€l,

(h2) Ve (ri,—)i V (-, s) = 1 whenever
ri <sforeveryie€l,

(h3) (r,-)i = Vssr (s,-)i, for every
reQandicel, =7 (=s)

(hg) (— 1) = Vs<r(— s), forevery r € Q.




The frame of the metric hedgehog

- 2(J(1) = &(R).

(h1) (r,—)1 A(—,s) = 0wheneverr >s,
(h2) (r,—)1V (-, 5) = 1 whenever r < s,
(h3) (r,9)1 = Vss, (s,-)i, forevery r € Q,
(ha) (-, 1) = Vsp(— 5), forevery r € Q.

» B. Banaschewski, ].G.G. and J. Picado, Extended real functions in
pointfree topology, J. Pure Appl. Algebra 216 (2012) 905-922.



The frame of the metric hedgehog

- L(J(1) = L(R) = £(J(2).

The isomorphism is induced by the following correspondence
(where ¢ denotes any increasing bijection between Q and Q*):

(1’,—)1 L — (QO(T’)/ *)r (1’, *)2 — (*/ —(P(V)),
(*I 1") i — (—90(7’)/ *) A (*I QO(T'))

(r,—)2 () o®)

(=7) (r, = (— =) (=¢(r), ¢(r)) (p(r),—)
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The frame of the metric hedgehog

- 2(J(1) = LR) = L(J(2).
- Forx, k" >2, £(J(x)) = £(J(x")) if and only if x = «’.

- By ={(-, r)}reQ U {(r, —)i}reQ, ier U{(7,8)i}r<s inQ,iel
forms a base for £(J(x)), where (r,s); = (r,—); A (-, S).

— The weight of £(J(x)) is k - Ro.

(1’, _)i
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The frame of the metric hedgehog

Proposition

The spectrum L2(J(x)) is homeomorphic to the classical metric
hedgehog J(x).

Proof: For each h € £L(J(x)) define
ap=\V{reQ] \e/lh((rf—)i) =1} €R.

If aj, # —o0, then there exist a unique i, € I such that h((r,-);) = 0 for
all¥ € Qand j # ij.

Consider an increasing bijection ¢ between Q and Q N [0, 1].
The homeomorphism 7t: X2(J(x)) — J(x) is given by:

((P(Oéh), ih)l if a(h) # —00,
0, otherwise. -

h|—>7z(h):{
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The frame of the metric hedgehog

Proposition
£(J(x)) is a compact frame if and only if « is finite.
Proof: If x is finite, then the compactness of £(J(x)) follows from that
of &(R). If |I| = « is infinite, then

C= {(*I 1)} U {(Or*)i | i€ I}

is an infinite cover of £(J(x)) with no proper subcover. [

(_r 1)
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The frame of the metric hedgehog

Proposition

£(J(x)) is a regular frame.
Proof: Since By = {(—, 7)}req U{(r, -)i}req,ier U{(r,8)i}tr<sing,icr isa
base of £(J(x)), it is enough to prove that b = \/,_, a for all b € By.

(1) (*/ S)’E = \/iel (S/*)ZV Hence (S,—)l'* N (1’,—)1' =lifs <r,
ie. (—,s)< (- r)foralls <rand (-, r) =V, (- 5).

(_/ S)’r

(_/ T)
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Proposition

£(J(x)) is a regular frame.

Proof: Since By = {(—, 7)}req U {(r, 2)i}req,ic1 YU {(7,5)i}r<sinq, iel 1S @
base of £(J(x)), it is enough to prove that b = \/,_, a for all b € By.
(2) (S/*)i* = \/jii (7’, *)] N (*l S)' Hence (S/*)i* \4 (7’, *)i ifs > r,

reQ
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Proposition

£(J(x)) is a regular frame.
Proof: Since By = {(—, 7)}req U{(r, -)i}req,ier U{(r,8)i}tr<sing,icr isa
base of £(J(x)), it is enough to prove that b = \/,_, a for all b € By.

(3) (7”, S/)i* = \/j;éi (t,,)]- v (*/ 1’/) \ (S,/ *)i-
teQ
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The frame of the metric hedgehog

Proposition

£(J(x)) is a regular frame.

Proof: Since By = {(—, )}req U {(r, -)i}req,iet U {(r,8)i}r<sing,icr isa
base of £(J(x)), it is enough to prove that b = \/,_, a for all b € By.
(3) (',8")i" = Vjzi (t,2)j V (-, 7') V(s',-)i. Hence (v, s"); < (r,5);
teQ
whenever r <1’ <s’ <sand (1,5)i = V,cpesrs (1", 5")i.

8"

(+,");
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The frame of the metric hedgehog

Theorem

For each cardinal «, the frame of the metric hedgehog £(J(«x)) is a
metric frame of weight « - No.

Proof: (1) Bx = {(—, 1) }req U {(r, -)i}req,ier YU {(7,5)i}r<sinq, ier is a
base for £(J(x)) of cardinality |B,| = k whenever k > Ny (otherwise,
|B| = No), hence £(J(x)) has weight « - 8.

(2) £(J(x)) is a regular frame.

(3) Foreach n € N, let C, = C}, U C2 U C3 C B, with
Cl={(n|r<-n}y, C:={(r,)i|r>n,iel} and
Cf’,:{(r,s)i|0<s—r<%,iel}.

These C,, determine an admissible countable system of covers of

L(J (k). u
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Corollary

For each cardinal k, the coproduct 6B, .,y ¢(J(x)) is a metric frame of
weight x - No.

Proof: Any countable coproduct of metrizable frames is a metrizable
frame,

» ].R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972) 5-32.
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Corollary

For each cardinal k, the coproduct 6B, .,y ¢(J(x)) is a metric frame of
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Proof: Any countable coproduct of metrizable frames is a metrizable
frame, hence EDneN £(J(x)) is a metric frame, clearly of weight x or
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£(J(x)) is complete in its metric uniformity.

Proof: Let h: M — £(J(x)) be a dense surjection of uniform frames
(where £(J(x)) is equipped with its metric uniformity).



The frame of the metric hedgehog

Corollary

For each cardinal k, the coproduct 6B, .,y ¢(J(x)) is a metric frame of
weight x - No.

Proof: Any countable coproduct of metrizable frames is a metrizable
frame, hence EDneN £(J(x)) is a metric frame, clearly of weight x or
No as the case may be. [ ]

Corollary

£(J(x)) is complete in its metric uniformity.

Proof: Let h: M — £(J(x)) be a dense surjection of uniform frames
(where £(J(x)) is equipped with its metric uniformity).

The right adjoint £. is also a frame homomorphism, hence / is an
isomorphism. ]
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Continuous hedgehog-valued functions

By the familiar (dual) adjunction between the contravariant functors
6: Top — Frm and X: Frm — Top there is a natural isomorphism
Top(X, ZL) ~ Frm(L, 6X).

Combining this for L = £(R) with the homeomorphism Z¢(R) ~ R
one obtains

Top(X,R) = Frm(£(R), 6X)

i.e., there is a one-to-one correspondence between continuous
real-valued functions on a space X and frame homomorphisms
L(R) — 6X.

Hence it is conceptually justified to adopt the following:

A continuous real-valued function on a frame L is a frame
homomorphism £(R) — L.
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Continuous hedgehog-valued functions

Since we also have the homeomorphisms
ZeR)~¢[R) and ZL(J(x)) = J(x)

We can now use precisely the same argumentation to obtain

Top(X,R) ~ Frm(2(R), 6X)

and

Top(X, J(x)) =~ Frm(2(J(x)), 6X)

Hence we define:

An extended continuous real-valued function on a frame L is a frame
homomorphism £(R) — L.

A continuous (metric) hedgehog-valued function on a frame L is a
frame homomorphism £(J(x)) — L.
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Continuous hedgehog-valued functions

For each i € I let 71;: 8(R) — £(J(x)) be given by
T(i(P,—) = (p/*)i and ni(f/ L]) = (q/*)i*

e (P, =i

o T~ ) @)
7; turns the defining relations in ¢(R) into identities in £(J(«)):
(rl)7T (r, ) Ami(—q)=0ifg <p,

(r2) mi(p,—) V mi(— q) =1if g > p,

Hence 7t; is a frame homomorphism, i.e. an extended continuous
real-valued function on £(J(«)), called the i-th projection.
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Continuous hedgehog-valued functions

Furthermore, let 77,.: £(R) — 2(J(x)) be given by
me(p,—) = (- p)" and m(-g) =(-9)

T[K (7/ ‘7)*

) T ) om0
Again 11, turns the defining relations in 2(R) into identities:
(r1) me(p, ) Ami(—,q) =0if g < p,

(r2) m(p,-) V mi(—, q) = 1if g > p,

Hence 7 is a frame homomorphism, i.e. an extended continuous
real-valued function on £(J(«)), called the join projection.
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Continuous hedgehog-valued functions

Let L be a frame and &: £(J(x)) — L be a continuous
hedgehog-valued function on L.

By composing 1 with 7;: £(R) — £(J(k)) and 71, £(R) — £(J(x)) we
obtain the extellded continuous real-valueg functions
hi=homn: &R) = Land hy = h o, &(R) — L given by

hi(p,—) = h((p,-)i) and hi(- q)=((q,-)i")

and
hi(p,—) = h((— p)’) and h(-q)=h(-q)

are extended continuous real-valued functions.

Note also that



Join cozero x-families

Recall that a cozero element of a frame L is an element of the form

cozh = h((~,0) v (0,-)) = \V{h(p,0) V h(0,q) | p < 0 < g inQ}

for some continuous real-valued function #: £(R) — L.



Join cozero x-families

Recall that a cozero element of a frame L is an element of the form
cozh = h((~,0) v (0,-)) = \'{h(p,0) V h(0,q) | p < 0 < qinQ}
for some continuous real-valued function #: £(R) — L.

Proposition

Let L be a frame and a € L. TFAE:
(1) a is a cozero element.

(2) There exists a continuous real-valued function : £([0,1]) — L
such that a = h(0,-).
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Recall that a cozero element of a frame L is an element of the form
cozh = h((~,0) v (0,-)) = \'{h(p,0) V h(0,q) | p < 0 < qinQ}
for some continuous real-valued function #: £(R) — L.

Proposition

Let L be a frame and a € L. TFAE:
(1) a is a cozero element.

(2) There exists a continuous real-valued function : £([0,1]) — L
such that a = h(0,-).

(3) There exists an extended continuous real-valued function
h: £(R) — L such thata = \/,cq h(r, ).



Join cozero x-families

Recall that a cozero element of a frame L is an element of the form

cozh = h((~,0) v (0,-)) = \V{h(p,0) V h(0,q) | p < 0 < g inQ}

for some continuous real-valued function #: £(R) — L.

Proposition

Let L be a frame and a € L. TFAE:

(1) a is a cozero element.

(2) There exists a continuous real-valued function : £([0,1]) — L
such that a = h(0,-).

(3) There exists an extended continuous real-valued function
h: £(R) — L such thata = \/,cq h(r, ).

The equivalence “(2) & (3)” can be easily checked by considering
an increasing bijection ¢ between Q N (0,1) and Q.



Join cozero x-families

Let h: £(J(x)) — L be a continuous hedgehog-valued function and

ai =\ h((r,-)i), iel
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Then:



Join cozero x-families

Let h: £(J(x)) — L be a continuous hedgehog-valued function and

a; =\ h((r,-):), iel.
reQ
Then:

(1) Ifi # jthena; Aaj = h(V,seq(r,—)i A(s,—)j) = h(0) = 0.
Hence {a;}i¢s is a disjoint family.

\/VEQ (r/_)i \/seQ (Sr*)j




Join cozero x-families

Let h: £(J(x)) — L be a continuous hedgehog-valued function and
ai=\ h((r,-)i), i€l
reQ
Then:
(1) Ifi # jthena; Aaj = h(V,seq(r,—)i A(s,—)j) = h(0) = 0.

Hence {a;}i¢s is a disjoint family.

(2) hj = hom;: &R) — L is an extended continuous real-valued
function and hence \/,¢q hi(r, -) = V,eq h((r,-)i) = a; is a cozero
element for each i € I.



Join cozero x-families

Let h: £(J(x)) — L be a continuous hedgehog-valued function and

a; =\ h((r,-):), iel.
reQ
Then:

(1) Ifi # jthena; Aaj = h(V,seq(r,—)i A(s,—)j) = h(0) = 0.
Hence {a;}i¢s is a disjoint family.

(2) hj = hom;: &R) — L is an extended continuous real-valued
function and hence \/,¢q hi(r, -) = V,eq h((r,-)i) = a; is a cozero
element for each i € I.

(3) hye =hom,: 2R) — L is an extended continuous real-valued

function and hence \/,cq h« (7, )= Ve Vier h((r,-)i) = Vier ai is
again a cozero element.



Join cozero x-families

Conversely, let {a;}ie; € L, |I| = «, be a disjoint family of cozero
elements such that \/;¢; 4; is again a cozero element.

Then:



Join cozero x-families

Conversely, let {a;}ie; € L, |I| = «, be a disjoint family of cozero
elements such that \/;¢; 4; is again a cozero element.

Then:

(1) Since 4; is a cozero element for each i € I, there exists
hi: &(R) — L such that \/,¢q hi(r, ) = a;.



Join cozero x-families

Conversely, let {a;}ie; € L, |I| = «, be a disjoint family of cozero
elements such that \/;¢; 4; is again a cozero element.

Then:

(1) Since 4; is a cozero element for each i € I, there exists
hi: &(R) — L such that \/,¢q hi(r, ) = a;.

(2) Since also /¢y a; is a cozero element, there exists hy: 2R) > L
such that \/,cq ho(r, -) = Ver ai-



Join cozero x-families

Conversely, let {a;}ie; € L, |I| = «, be a disjoint family of cozero
elements such that \/;¢; 4; is again a cozero element.

Then:

(1) Since 4; is a cozero element for each i € I, there exists
hi: &(R) — L such that \/,¢q hi(r, ) = a;.

(2) Since also /¢y a; is a cozero element, there exists hy: 2R) > L
such that \/,¢q ho(r, —) = Ve ai.
(3) The formulas
h((r,-)i) = ho(r,-) A hi(r,—) and
h(-,7) = ho(—, 1)V (z\e/l hi(—, 1))

determine a continuous hedgehog-valued function
h: £(J(x)) — L such thata; =\, h((r,-);) foreach i € I.



Join cozero x-families

Proposition

Let L be a frame and {a;}ic; C L, |I| = x. TFAE:

(1) {ai}ier is a disjoint family of cozero elements such that \/;¢; a; is
again a cozero element.

(2) There exists a continuous hedgehog-valued function
h: 2(J(x)) — L such thata; =\, h((r,-);) foreach i € I.



Join cozero x-families

Let « be a cardinal. We say that a disjoint collection {a;}er, |I| = %, of
cozero elements of a frame L is a join cozero k-family if \/;¢; a; is
again a cozero element.

Proposition

Let L be a frame and {a;}ie; C L, |I| = x. TFAE:
(1) {ai}ier is ajoin cozero k-family.

(2) There exists a continuous hedgehog-valued function
h: £(J(x)) — L such thata; = \/,cq h((r,-);) foreach i € I.



Join cozero x-families

Let « be a cardinal. We say that a disjoint collection {a;}er, |I| = %, of
cozero elements of a frame L is a join cozero k-family if \/;¢; a; is
again a cozero element.

Proposition
Let L be a frame and a € L. TFAE:

(1) a is a cozero element.

(2) There exists an extended continuous real-valued function
h: £(R) — L such thata = \/,cq h(r, -).

(1) If x = 1, ajoin cozero k-family is precisely a cozero element.
Since £(J(1)) = £(R) it follows that this result generalizes the previous
one for arbitrary cardinals.



Join cozero x-families

Let « be a cardinal. We say that a disjoint collection {a;}er, |I| = %, of
cozero elements of a frame L is a join cozero k-family if \/;¢; a; is
again a cozero element.

Proposition

Let L be a frame and {a;}ie; C L, |I| = k < Ng. TFAE:
(1) {ai}ier is a a disjoint collection of cozero elements.

(2) There exists a continuous hedgehog-valued function
h: £(J(x)) — L such thata; = \/,cq h((r,-);) foreachi € I.

(2) Since any finite or countable suprema of cozero elements is a
cozero element, it follows that in the case k¥ < Ny, a join cozero
x-family is precisely a disjoint collection of cozero elements.



Join cozero x-families

Let « be a cardinal. We say that a disjoint collection {a;}er, |I| = %, of
cozero elements of a frame L is a join cozero k-family if \/;¢; a; is
again a cozero element.

Proposition

Let L be a frame and {a;}ie; C L, |I| = x. TFAE:
(1) {ai}ier is ajoin cozero k-family.

(2) There exists a continuous hedgehog-valued function
h: £(J(x)) — L such thata; = \/,cq h((r,-);) foreach i € I.

(3) Perfectly normal frames are precisely those frames in which every
element is cozero.



Join cozero x-families

Let « be a cardinal. We say that a disjoint collection {a;}er, |I| = %, of
cozero elements of a frame L is a join cozero k-family if \/;¢; a; is
again a cozero element.

Proposition

Let L be a perfectly normal frame and {a;};c; € L, |I| = x. TFAE:
(1) {ai}ier is a disjoint family.

(2) There exists a continuous hedgehog-valued function
h: £(J(x)) — L such thata; = \/,cq h((r,-);) foreachi € I.

(3) Perfectly normal frames are precisely those frames in which every
element is cozero.

Therefore, in any perfectly normal frame a join cozero k-family is
precisely a disjoint collection of elements.



Universality: Kowalsky’s Hedgehog Theorem

A family of frame homomorphisms {h;: M; — L}¢j is said to be
separating in case

a< \E/I hi((hi)«(a))

for everya € L.

» L. Espafiol, ].G.G. and T. Kubiak, Separating families of locale
maps and localic embeddings, Algebra Univ. 67 (2012) 105-112.



Universality: Kowalsky’s Hedgehog Theorem

A family of frame homomorphisms {/;: M; — L};¢j is said to be
separating in case
a< \/1 hi((hi)«(a))
€
for everya € L. l

A family of standard continuous functions { f;: X — Y;}ier separates
points from closed sets if for every closed set K C X and every
x € X \ K, there is an 7 such that f;(x) ¢ f;[K].

» L. Espafiol, ].G.G. and T. Kubiak, Separating families of locale
maps and localic embeddings, Algebra Univ. 67 (2012) 105-112.



Universality: Kowalsky’s Hedgehog Theorem

A family of frame homomorphisms {h;: M; — L}¢j is said to be
separating in case

a5V hi((hi).(a))
for every a € L. a

A family of standard continuous functions { f;: X — Y;}ier separates
points from closed sets if for every closed set K C X and every
x € X \ K, there is an 7 such that f;(x) ¢ f;[K].

Proposition

The family {f;: X — Y;}ic; separates points from closed sets if and
only if the corresponding family of frame homomorphisms
{Ofi: OY; — OX}ier is separating.

» L. Espafiol, ].G.G. and T. Kubiak, Separating families of locale
maps and localic embeddings, Algebra Univ. 67 (2012) 105-112.



Universality: Kowalsky’s Hedgehog Theorem

Let {h;: M; — L};cr be a family of frame homomorphisms and let
qi: Mi = ., M; be the i injection map.

M, — P M;

i€l
N\

L



Universality: Kowalsky’s Hedgehog Theorem

Let {h;: M; — L};cr be a family of frame homomorphisms and let
qi: Mi = ., M; be the i injection map.
Then there is a frame homomorphism e: EDI- ¢; Mi — L such that, for
each i, the diagram commutes
M, qi @ M;

iel

>\ »".3

L




Universality: Kowalsky’s Hedgehog Theorem

Let {h;: M; — L};cr be a family of frame homomorphisms and let
qi: Mi = ., M; be the i injection map.
Then there is a frame homomorphism e: ED:’ ¢; Mi — L such that, for
each i, the diagram commutes
M, qi @ M;

iel

>\ »".3

L

The map e need not be a quotient map, but one has the following;:



Universality: Kowalsky’s Hedgehog Theorem

Let {h;: M; — L};cr be a family of frame homomorphisms and let
qi: Mi = ., M; be the i injection map.

Then there is a frame homomorphism e: EB M; — L such that, for

each i, the diagram commutes
M; qi EB M;

iel

>\ »".3

L

i€l

The map e need not be a quotient map, but one has the following;:

Theorem

If {hi: M; — L} is separating then e is a quotient map.

» L. Espafiol, ].G.G. and T. Kubiak, Separating families of locale
maps and localic embeddings, Algebra Univ. 67 (2012) 105-112.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

» T. Dube, S. Iliadis, J. van Mill, I. Naidoo, Universal frames, Topol.
Appl. 160 (2013) 2454—2464.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 5, .,y £(J(x)) is universal in the
class of metric frames of weight « - Ro.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 5, .,y £(J(x)) is universal in the
class of metric frames of weight « - Ro.

Proof: (1) @n o £(J(x)) is a metric frame of weight « - No.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 6P, e ¥(J(x)) is universal in the
class of metric frames of weight « - Ro.

Proof: (2) Let L be a metric frame of weight .

Then L has a o-discrete base, i.e. there exists a base B C L such that
B = U, en By, where B, = {afl}ieln is a discrete family.

We can assume with no loss of generality that the cardinality of
Unen I is precisely «.

» J. Picado, A. Pultr, Frames and Locales Springer Basel AG, 2012.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 6P, e ¥(J(x)) is universal in the
class of metric frames of weight « - Ro.

Proof: (3) Any metric frame is perfectly normal.
Hence, for each n € N there exists a continuous hedgehog-valued
function h,: £(J(x)) — L such that

al = \/ T ((r,-):)
reQ

for every i € I.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 5, .,y £(J(x)) is universal in the
class of metric frames of weight « - Ro.

Proof: (4) The family {h,: £(J(x)) — L},en is separating.



Universality: Kowalsky’s Hedgehog Theorem

For a class L of frames, a frame T in L is said to be universal in L if for
every L € L there exists a quotient map from T onto L.

Theorem

For each cardinal «, the coproduct 6P, e ¥(J(x)) is universal in the
class of metric frames of weight « - Ro.

Proof: (5) The frame homomorphism e: €,y £(J(x)) — L such
that, for each n € N, the diagram

2(J(x)) — D ¢(J(x))

neN

N

L
commutes, is a quotient map. u




Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.
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F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e Question: What about countable families of pairwise disjoint
closed subsets?



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e Question: What about countable families of pairwise disjoint
closed subsets?

It is not true. Just consider the family {{q}}
in R.

of all rational atoms
7€Q



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U, },en such that F,, € U, for all n.

(A family {A;}ier of subsets of X is discrete if for all x € X there exists
a neighborhood Uy such that Uy N A; = @ for all i with possibly one
exception, or, equivalently,

if there exists an open cover 6 of X such that for each U € €6,

UNA; =@ for all i, with possibly one exception.)



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U, },en such that F,, € U, for all n.

e Question: What about arbitrary discrete families closed subsets?



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U, },en such that F,, € U, for all n.

e Question: What about arbitrary discrete families closed subsets?
It fails again. The Bing space is an example of a normal space in
which there exist discrete families of closed subsets which cannot
be separated by disjoint open subsets.



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
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family of closed subsets {F;};e; with |I| < «k there exists a discrete
family of open subsets {U;};c such that F; € U; for all i.



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U, },en such that F,, € U, for all n.

e For x > 2, a space is k-collectionwise normal if for any discrete

family of closed subsets {F;};c; with |I| < « there exists a discrete
family of open subsets {U;}ic such that F; € U; for all i.

— For2 < x <Ny, «x-collectionwise normality <= normality.



Collectionwise normality: a cardinal extension of normality

A space is normal if for any pair of disjoint closed subsets Fi, F>
there exist disjoint open subsets V1, V> such that F; € U; and

F, C U,.

A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U,, } ;e such that F,, € U, for all n.

For x > 2, a space is x-collectionwise normal if for any discrete
family of closed subsets {F;};c; with |I| < « there exists a discrete
family of open subsets {U;}ic such that F; € U; for all i.

— For2 < x <Ny, «x-collectionwise normality <= normality.

— For x > Ry, «-collectionwise normality = normality.



Collectionwise normality: a cardinal extension of normality

e A space is normal if for any pair of disjoint closed subsets F1, F»
there exist disjoint open subsets V1, V> such that F; € U; and
F, C U,.

e A space X is normal if and only if for any finite family of pairwise
disjoint closed subsets {F;}! , there exists a family of pairwise
disjoint open subsets {U;}!_, such that F; C U; for all i.

e A space is normal if and only if for any countable discrete family of
closed subsets {F, },en there exists a discrete family of open
subsets {U, },en such that F,, € U, for all n.

e For x > 2, a space is k-collectionwise normal if for any discrete
family of closed subsets {F;};e; with |I| < «k there exists a discrete
family of open subsets {U;};c such that F; € U; for all i.

e A space is collectionwise normal if for any discrete family of closed
subsets {F;}ies there exists a discrete family of open subsets {U; }ier
such that F; C U; for all i.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};e; C L is said to be

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};e; C L is said to be
- disjoint if x; A x; = 0 for every i # j.

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};e; C L is said to be
- disjoint if x; A x; = 0 for every i # j.
— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};e; C L is said to be
- disjoint if x; A x; = 0 for every i # j.
— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.
— co-discrete if there is a cover C of L such that foreachc € C, ¢ < x;
for all i with possibly one exception.

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};e; C L is said to be
- disjoint if x; A x; = 0 for every i # j.
— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.
— co-discrete if there is a cover C of L such that foreachc € C, ¢ < x;
for all i with possibly one exception.
e A frame is x-collectionwise normal if for any co-discrete family
{xi}ier, |I| £ x, there is a discrete family {u;};er such that
x; Vu; =1forall i.

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};c; C L is said to be

- disjoint if x; A x; = 0 for every i # j.

— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.

— co-discrete if there is a cover C of L such that foreachc € C, ¢ < x;
for all i with possibly one exception.

e A frame is x-collectionwise normal if for any co-discrete family

>

{xi}ier, |I| £ x, there is a discrete family {u;};er such that
x; Vu; =1foralli. A frame is collectionwise normal if it is
x-collectionwise normal for all .

A. Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};c; C L is said to be
- disjoint if x; A x; = 0 for every i # j.
— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.
— co-discrete if there is a cover C of L such that foreachc € C, ¢ < x;
for all i with possibly one exception.
e A frame is x-collectionwise normal if for any co-discrete family
{xi}ier, |I| £ x, there is a discrete family {u;};er such that
x; Vu; =1foralli. A frame is collectionwise normal if it is
x-collectionwise normal for all .

e Fach metric frame is collectionwise normal.

» A, Pultr, Remarks on metrizable locales, Proc. of the 12th Winter
School on Abstract Analysis (1984) 247—258.



Localic collectionwise normality: a cardinal extension of normality

e Given a frame L a family {x;};c; C L is said to be
- disjoint if x; A x; = 0 for every i # j.
— discrete if there is a cover C of L such that foreachc e C,c Ax; =0
for all i with possibly one exception.
— co-discrete if there is a cover C of L such that foreachc € C, ¢ < x;
for all i with possibly one exception.

A frame is x-collectionwise normal if for any co-discrete family
{xi}ier, |I| £ x, there is a discrete family {u;};er such that

x; Vu; =1foralli. A frame is collectionwise normal if it is
x-collectionwise normal for all .

Each metric frame is collectionwise normal.

Each regular and paracompact frame is collectionwise normal.

v

S.-H. Sun, On paracompact locales and metric locales, Comment.
Math. Univ. Carolinae 30 (1989) 101-107.
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andd = \/ D. Then, d vV A 1 xi = 1 and since L is normal, there are
u,v€Lsuchthatu v \jg;xi=1=vvdandu Av=0.



Localic collectionwise normality

Lemma

A frame is x-collectionwise normal if and only if for any co-discrete
family {x;}ier, |I| < x, there is a disjoint family {u;};c; such that

x;i Vu; =1 forall i.

Proof: The implication ‘=" is obvious since any discrete family is
disjoint.

Conversely, let {x;};c1 be a co-discrete family and {u;}c; disjoint such
that x; V u; = 1 for every i. Now let

D={xeL|xAu;+#0 foratmostonei}

andd = \/ D. Then, d vV A 1 xi = 1 and since L is normal, there are
u,v € Lsuchthatu v A\jc;x; =1=vVdand u Av =0. The system

{yi = ui Nu}ier

is a discrete system such that x; vV y; = 1 for all i. ]
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Localic collectionwise normality: Sublocales

An S C Lisasublocale of L if S is closed under arbitrary infima and
moreover x — s € S forevery x € Land s € S.

The set S(L) of all sublocales of L forms a coframe (i.e., the dual of a
frame) under inclusion, in which arbitrary infima coincide with
intersections, {1} is the bottom element and L is the top element.

There are two special classes of sublocales: the closed and the open
ones, defined respectively as

«(a)=Ta and o(@)={a—>b|bel}, ael.

The F,-sublocales are the countable joins of closed subocales in S(L).

Any sublocale S of a frame L is a frame itself with meets (and hence
the partial order) as in L, but joins may differ.
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Localic collectionwise normality

Proposition

Any F;-sublocale of a k-collectionwise normal frame is
k-collectionwise normal.

This is the pointfree counterpart of the classical result of Sediva, that
x-collectionwise normality is hereditary with respect to F,-sets.
(It may be worth emphasizing that the localic proof is much simpler.)

» V. Sedivd, On collectionwise normal and hypocompact spaces,
Czechoslovak Math. |. 9 (84) (1959) 50-62 (in Russian).



Localic collectionwise normality

Proposition

Any F;-sublocale of a k-collectionwise normal frame is
k-collectionwise normal.

This is the pointfree counterpart of the classical result of Sediva, that
x-collectionwise normality is hereditary with respect to F,-sets.
(It may be worth emphasizing that the localic proof is much simpler.)

In particular, it follows that any closed sublocale of a collectionwise
normal locale is collectionwise normal.

» V. Sedivd, On collectionwise normal and hypocompact spaces,
Czechoslovak Math. |. 9 (84) (1959) 50-62 (in Russian).
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Localic collectionwise normality

Proposition

Any F;-sublocale of a k-collectionwise normal frame is
k-collectionwise normal.

Recall that a frame homomorphism h: M — L is closed if
h.(xV h(y)) = h.(x) vV y forevery x € Land y € M, where h,: L - M
is the right adjoint of h.

Proposition

Let h: M — L be a one-to-one closed frame homomorphism and « a
cardinal. If L is k-collectionwise normal, then so is M.

Formulated in terms of locales, this result states that the image of a
collectionwise normal locale under any closed localic map is
collectionwise normal.



Collectionwise normality and the metric hedgehog

Theorem (Urysohns Lemmma)

Let X be a topological space. TFAE:
(1) X is normal.

(2) For every disjoint closed sets F1 and F, there exists a continuous
f: X — Rsuch that F; € f~!((=c0,0]) and F, € f1([1, +0)).



Collectionwise normality and the metric hedgehog

Theorem (Localic Urysohns Lemma)

Let L be a frame. TFAE:
(1) L is normal.

(2) For each pair x1, x € L such that x; V x, =1, there exists a a

frame homomorphism /: €(R) — L such that k((—, 0)*) < x; and
h((1,-)) < x2.

» C.H. Dowker, D. Papert. On Urysohn?s lemma. Proc. Second
Prague Topological Sympos., 1966.

» B. Banaschewski, The real numbers in Pointfree Topology, Textos de
Matematica, Vol. 12, University of Coimbra, 1997.

» R.N. Ball, J. Walters-Wayland, C-and C*-quotients in pointfree
topology, Diss. Math. 412 (2002) 1-62.
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Theorem (Urysohn-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each co-discrete system {x;}icr, |I| < k, there exists a a frame
homomorphism h: £(J(x)) — L such that h((0,-)?) < x; for each
i€l

Proof: (1) = (2): (i) Let {x;}ier € L be a co-discrete system.

By hypothesis there is a disjoint {u;};c; such that u; V x; = 1 for every
iel

By the localic Urysohn’s lemma, there is, for each i € I, a frame homo-
morphism /;: £(R) — L such that

V hi(—r)<x; and V hi(r,-) < u;.
reQ reQ



Collectionwise normality and the metric hedgehog

Theorem (Urysohn-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each co-discrete system {x;}icr, |I| < k, there exists a a frame
homomorphism h: £(J(x)) — L such that h((0,-)?) < x; for each
i€l

Proof: (1) = (2): (ii) The required frame homomorphism
h: £(J(x)) — L is determined on generators by

h(—,v) =\ Ahi(—t) and h((r,-)i) = hi(r,-), reQ,iel

t<riel
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Theorem (Urysohn-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each co-discrete system {x;}icr, |I| < k, there exists a a frame
homomorphism h: £(J(x)) — L such that h((0,-)?) < x; for each
i€l

Proof: (2) = (1): Let {x;}ic; € L be a co-discrete system.
By hypothesis, there exists a frame homomorphism h: £(J(x)) — L
such that 1((0,-);) < x; foralli € I.
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Theorem (Urysohn-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each co-discrete system {x;}icr, |I| < k, there exists a a frame
homomorphism h: £(J(x)) — L such that h((0,-)?) < x; for each
i€l

Proof: (2) = (1): Let {x;}ic; € L be a co-discrete system.
By hypothesis, there exists a frame homomorphism h: £(J(x)) — L
such that 1((0,-);) < x; foralli € I.

Let u; = h((-1,-);) foreach i € I.
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Theorem (Urysohn-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each co-discrete system {x;}icr, |I| < k, there exists a a frame
homomorphism h: £(J(x)) — L such that h((0,-)?) < x; for each
i€l

Proof: (2) = (1): Let {x;}ic; € L be a co-discrete system.

By hypothesis, there exists a frame homomorphism h: £(J(x)) — L
such that 1((0,-);) < x; foralli € I.

Let u; = h((—1,-);) for each i € I. The family {u;};es is disjoint and

wi v xi 2 h((=1,9) V(0,7 = h((=1, i v V (=1, V (1,0)) = 1
J#1
for every i € I. Hence L is k-collectionwise normal. [ ]
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Collectionwise normality and the metric hedgehog

Finally we prove a Tietze-type extension theorem for continuous
hedgehog-valued functions.

To prove it we need first to introduce some terminology and a glueing
result for localic maps defined on closed sublocales (that we
reformulate here in terms of frame homomorphisms).

For each sublocale S of a frame M, we say that a frame
homomorphism i: L — S has an extension to M if there exists a

further frame homomorphism Ii: L — M such that the diagram

h

N

L

S

commutes (where s is the left adjoint of the embedding S — M).
In that case we say that h: L — M extends h.



Collectionwise normality and the metric hedgehog

Finally we prove a Tietze-type extension theorem for continuous
hedgehog-valued functions.

To prove it we need first to introduce some terminology and a glueing
result for localic maps defined on closed sublocales (that we
reformulate here in terms of frame homomorphisms).

Proposition
Let L and M be frames, a1,a; € M, and let h;: L — c(a;) (i = 1,2) be
frame homomorphisms such that /11(x) V ax = ha(x) V ag forall x € L.

Then the map h: L — c(a1) V ¢(az) given by h(x) = h1(x) A ha(x) is a
frame homomorphism that extends both /1 and 5;.

» J.Picado, A. Pultr, Localic maps constructed from open and
closed parts, Categ. Gen. Algebr. Struct. Appl. 6 (2017) 21-35.



Collectionwise normality and the metric hedgehog

Theorem (Tietze)

Let X be a topological space. TFAE:
(1) X is normal.

(2) For each closed subset F of X, each continuous f: F — R has an
extension to X.



Collectionwise normality and the metric hedgehog

Theorem (Localic Tietze)
Let L be a frame. TFAE:

(1) L is normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: £(R) — ¢(a) has an extension to L.

» R.N.Ball, J. Walters-Wayland, C-and C*-quotients in pointfree
topology, Diss. Math. 412 (2002) 1-62.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (i) Leta € L and h: £(J(x)) — c(a). By composing
with 7t 2R) — 2(J (x)) we have a continuous extended real-valued
function h, = h o 1t,c: £(R) — ¢(a) given by

h(r,—) =h((-, 7)) and h(-,7)=h(-,7).
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (i) Leta € L and h: £(J(x)) — c(a). By composing
with 7t 2R) — 2(J (x)) we have a continuous extended real-valued
function h, = h o 1t,c: £(R) — ¢(a) given by

he(r,—) =h((—,r)) and he(—,r)=h(-,71).
By the localic Tietze’s lemma, h, has a continuous extension
he: 2R) — L.



Collectionwise normality and the metric hedgehog

Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (ii) Let

F=V c(he(,7) = V o(he(r,0) = o( V e(r,-)).
reQ reQ reQ

This is an open F;-sublocale of L, hence «-collectionwise normal.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (iii) For each i € I, let
xi = A\ h((r,-);)
reQ

The system {x;}ics is co-discrete in F.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (iii) For each i € I, let
xi = A h((r,-);).
reQ
The system {x;}ics is co-discrete in F.

F
Then there is a disjoint {u;};e; € F such that u; Vx; = 1 foreveryi € I.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (iv) Let g: £([R) — c(a A ;e ;) be the frame
homomorphism given by

8(r,—) = h((=, 1)) A \E/Iui and  g(-,7) = h(-, 7).

Then, by the pointfree Tietze’s extension theorem again, ¢ has a con-
tinuous extension to L, say g: £(R) — L.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (1) = (2): (v) The required extension h: L(J(x)) — L is
determined on generators by

Fﬁ((r, -)i)=g(r,—) Au; and Fﬁ(f, r)=g(-, 7).



Collectionwise normality and the metric hedgehog

Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (2) = (1): (i) Let {xi}ier C L be a co-discrete system. Further,
leta = Njepxi, a;i = /\j;ti xj for each i € I and let h: £(]J(x)) — c(a) be
the frame homomorphism determined on generators by

h(—,r)=a and h((r,-);) = a;



Collectionwise normality and the metric hedgehog

Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (2) = (1): (ii) By hypothesis, there exists an extension
h: £(J(x)) — L such that ¢, o h = h. In particular,

7((0,9) < (e 0 1) ((0,7) = 1((0,)) < x

foreachi e I.
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Theorem (Tietze-type theorem)
Let L be a frame. TFAE:

(1) L is x-collectionwise normal.

(2) For each closed sublocale ¢(a) of L, each frame homomorphism
h: 2(J(x)) — c¢(a) has an extension to L.

Proof: (2) = (1): (ii) By hypothesis, there exists an extension
h: £(J(x)) — L such that ¢, o h = h. In particular,

B0, ) = (e ) ((0,2))) = h(0, ) < x;
foreachi e I.

The conclusion that L is x-collectionwise normal follows now from the
previous Theorem. ]



Thank you!



