The continuous weak (Bruhat) order and mix ${ }^{*}$-autonomous quantales

Maria João Gouveia ${ }^{1}$ and Luigi Santocanale ${ }^{2}$

ALaT@Coimbra, September 27, 2018
${ }^{1}$ Faculdade de Ciências da Universidade de Lisboa, Portugal ${ }^{2}$ LIS, Aix-Marseille Université, France

Plan

Permutations, words, and paths

The continuous order in dimension 2: the mix \star-autonomous quantale $\mathrm{Q}_{\vee}(\mathbb{I})$

The continuous order, dimension >2

Conclusions

Plan

Permutations, words, and paths

> The continuous order in dimension 2:
> the mix *-autonomous quantale $\mathrm{Q}_{\vee}(\mathbb{I})$

The continuous order, dimension >2

Conclusions

The weak Bruhat order, aka the permutohedra $\mathrm{P}(n)$

Multinomial lattices

From discrete to continuous multinomial lattices?

From discrete to continuous multinomial lattices?

Plan

Permutations, words, and paths

The continuous order in dimension 2: the mix \star-autonomous quantale $\mathrm{Q}_{\mathrm{V}}(\mathbb{I})$

The continuous order, dimension >2

Conclusions

The lattice $\mathrm{Q}_{\vee}(\mathbb{I})$

Let, from now on, $\mathbb{I}:=[0,1]$.

Proposition

The following sets are (equal or) in bijective correspondence:

- $\left\{C \subseteq \mathbb{I}^{2} \mid C\right.$ image of a monotone continuous path $\pi: \mathbb{I} \rightarrow \mathbb{1}^{2}$

$$
\text { s.t. } \pi(0)=\overrightarrow{0} \text { and } \pi(1)=\overrightarrow{1}\} \text {, }
$$

- $\left\{C \subseteq \mathbb{I}^{2} \mid C\right.$ chain, dense, complete $\}$
- $\left\{C \subset \mathbb{\pi}^{2} \mid C\right.$ maximal chain of $\left.\mathbb{\pi}^{2}\right\}$.
- $\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f$ is join-continuous $\}$,
- $\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f$ is meet-continuous $\}$.

The lattice $\mathrm{Q}_{\vee}(\mathbb{I})$

Let, from now on, $\mathbb{I}:=[0,1]$.

Proposition
The following sets are (equal or) in bijective correspondence:

- $\left\{C \subseteq \mathbb{I}^{2} \mid C\right.$ image of a monotone continuous path $\pi: \mathbb{I} \rightarrow \mathbb{I}^{2}$

$$
\text { s.t. } \pi(0)=\overrightarrow{0} \text { and } \pi(1)=\overrightarrow{1}\} \text {, }
$$

- $\left\{C \subseteq \mathbb{I}^{2} \mid C\right.$ chain, dense, complete $\}$,
- $\left\{C \subseteq \mathbb{1}^{2} \mid C\right.$ maximal chain of $\left.\mathbb{I}^{2}\right\}$,
- $\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f$ is join-continuous $\}$,
- $\{f: \mathbb{I} \rightarrow \mathbb{I} \mid f$ is meet-continuous $\}$.

From join-continuous functions to maximal chains

From join-continuous functions to maximal chains

Few properties of $\mathrm{Q}_{\vee}(\mathbb{I})$

Let $Q_{\vee}(\mathbb{I})$ be the set of join-continuous functions from \mathbb{I} to \mathbb{I}.

The order on $\mathrm{Q}_{\vee}(\mathbb{I})$ is pointwise.

Proposition

- $\mathrm{Q}_{\vee}(\mathbb{I})$ is a distributive complete lattice,
- every $f \in \mathrm{Q}_{\vee}(\mathbb{I})$ is a \bigwedge and $a \bigvee$ of some step function (with a finite no. of steps),
- every $f \in \mathrm{Q}_{\vee}(\mathbb{I})$ is a \bigwedge and a \bigvee of some step function (with a finite no. of steps and rational steps).

More properties of $\mathrm{Q}_{\vee}(\mathbb{I})$

- It is (canonically) a quantale:

$$
f \otimes g:=g \circ f, \quad 1:=i d
$$

- It is (non-commutative) \star-autonomous. That is, it comes with an (antitone) involution $(-)^{\star}$ s.t., defining
we have

More properties of $\mathrm{Q}_{\vee}(\mathbb{I})$

- It is (canonically) a quantale:

$$
f \otimes g:=g \circ f, \quad 1:=i d
$$

- It is (non-commutative) \star-autonomous. That is, it comes with an (antitone) involution $(-)^{\star}$ s.t., defining

$$
f \oplus g:=\left(g^{\star} \otimes f^{\star}\right)^{\star}
$$

we have

$$
f \otimes g \leq h \quad \text { iff } \quad f \leq h \oplus g^{\star} \quad \text { iff } \quad g \leq f^{\star} \oplus h .
$$

More properties of $\mathrm{Q}_{\vee}(\mathbb{I})$

- It is (canonically) a quantale:

$$
f \otimes g:=g \circ f, \quad 1:=i d
$$

- It is (non-commutative) \star-autonomous. That is, it comes with an (antitone) involution $(-)^{\star}$ s.t., defining

$$
f \oplus g:=\left(g^{\star} \otimes f^{\star}\right)^{\star}
$$

we have

$$
f \otimes g \leq h \quad \text { iff } \quad f \leq h \oplus g^{\star} \quad \text { iff } \quad g \leq f^{\star} \oplus h .
$$

- It is mix:

$$
f \otimes g \leq f \oplus g
$$

$$
Q_{V}(\mathbb{I})=Q_{\wedge}(\mathbb{I})
$$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

Then $Q_{\vee}(\mathbb{I})$ and $Q_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

- We have then

$$
Q_{V}(\mathbb{I})=Q_{\wedge}(\mathbb{I})
$$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z)
$$

Then $Q_{\vee}(\mathbb{I})$ and $Q_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

- We have then

$$
Q_{V}(\mathbb{I})=Q_{\wedge}(\mathbb{I})
$$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z)
$$

Then $Q_{\vee}(\mathbb{I})$ and $Q_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

- We have then

$$
\begin{aligned}
f^{\star} & :=(\operatorname{right}-\operatorname{adj}(f))^{\vee}=\operatorname{left}-\operatorname{adj}\left((f)^{\wedge}\right), \\
f \oplus g & =\left(g^{\wedge} \circ f^{\wedge}\right)^{\vee}
\end{aligned}
$$

Plan

Permutations, words, and paths
 The continuous order in dimension 2:
 the mix \star-autonomous quantale Qv (II) $^{\text {(I) }}$

The continuous order, dimension >2

Conclusions

Skew enrichments/metrics on a \star-autonomous quantale

A skew metric (enrichement) on a \star-autonomous quantale Q is a pair (X, δ) such that, for each $i, j \in X$ with $i \neq j$,

$$
\begin{aligned}
\delta(i, k) & \leq \delta(i, j) \oplus \delta(j, k) \\
\delta(i, j) & =\delta(j, i)^{\star} .
\end{aligned}
$$

If $1=0$, you can also ask

$$
\delta(i, i)=0 .
$$

Clopens as skew enrichments

Let $[d]:=\{1, \ldots, d\}$ and $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
For $f \in Q^{[d]_{2}}$, we say that f is closed if, for each $i, j, k \in[d]$ with $f_{i, j} \otimes f_{j, k} \leq f_{i, k}$

We say that it is open if, for each $i, j, k \in[d]$ with $i<j<k$,

We say that f is clopen if it is both closed and open.

Lemma
There is a bijection between skew enrichments on the set [d] and clopen sets of the poset $Q[d]_{2}$

Clopens as skew enrichments

Let $[d]:=\{1, \ldots, d\}$ and $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
For $f \in Q^{[d]_{2}}$, we say that f is closed if, for each $i, j, k \in[d]$ with $i<j<k$,

$$
f_{i, j} \otimes f_{j, k} \leq f_{i, k}
$$

We say that it is open if, for each $i, j, k \in[d]$ with $i<j<k$,

$$
f_{i, k} \leq f_{i, j} \oplus f_{j, k}
$$

We say that f is clopen if it is both closed and open.

Clopens as skew enrichments

Let $[d]:=\{1, \ldots, d\}$ and $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
For $f \in Q^{[d]_{2}}$, we say that f is closed if, for each $i, j, k \in[d]$ with $i<j<k$,

$$
f_{i, j} \otimes f_{j, k} \leq f_{i, k} .
$$

We say that it is open if, for each $i, j, k \in[d]$ with $i<j<k$,

$$
f_{i, k} \leq f_{i, j} \oplus f_{j, k} .
$$

We say that f is clopen if it is both closed and open.

Lemma
There is a bijection between skew enrichments on the set [d] and clopen sets of the poset $Q^{[d]_{2}}$.

Theorem

- For each $d \geq 2$ and each mix \star-autonomous quantale Q, the set $L_{d}(Q)$ of clopen tuples of $Q^{[d]_{2}}$ is, with the coordinatewise ordering, a lattice.
- The construction $Q \mapsto L_{d}(Q)$ is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an ℓ-bisemigroup is the $\otimes, \oplus, \perp, \vee, \top, \wedge$-reduct of a \star-autonomous quantale.

Theorem

- For each $d \geq 2$ and each mix \star-autonomous quantale Q, the set $L_{d}(Q)$ of clopen tuples of $Q^{[d]_{2}}$ is, with the coordinatewise ordering, a lattice.
- The construction $Q \mapsto L_{d}(Q)$ is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an ℓ-bisemigroup is the $\otimes, \oplus, \perp, \vee, \top, \wedge$-reduct of a \star-autonomous quantale.

Remark property I he proof that $L_{d}(Q)$ is a lattice relies on the usual closed

Theorem

- For each $d \geq 2$ and each mix \star-autonomous quantale Q, the set $L_{d}(Q)$ of clopen tuples of $Q^{[d]_{2}}$ is, with the coordinatewise ordering, a lattice.
- The construction $Q \mapsto L_{d}(Q)$ is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an ℓ-bisemigroup is the $\otimes, \oplus, \perp, \vee, \top, \wedge$-reduct of a \star-autonomous quantale.

Remark. The proof that $L_{d}(Q)$ is a lattice relies on the usual property: the closure of an open is open, the interior of a closed is closed.

Examples

- If $Q=2$, then clopen tuples are in bijection with transitive cotransitive subsets of $[d]_{2}$; these are in bijection with permutations of [d].
$\mathrm{L}_{d}(2)$ is the weak Bruhat ordering.

- If Q is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000]

d times

Examples

- If $Q=2$, then clopen tuples are in bijection with transitive cotransitive subsets of $[d]_{2}$; these are in bijection with permutations of [d].
$\mathrm{L}_{d}(2)$ is the weak Bruhat ordering.
- If Q is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000].

Examples

- If $Q=2$, then clopen tuples are in bijection with transitive cotransitive subsets of $[d]_{2}$; these are in bijection with permutations of [d].
$\mathrm{L}_{d}(2)$ is the weak Bruhat ordering.
- If Q is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000].
- If $Q=Q_{\vee}(\{0, \ldots, n\})$, then elements of $L_{d}(Q)$ are in bijection with maximal chains in the cube $\{0,1, \ldots, n\}^{d}$, i.e.
words $w \in[d]^{*}$ such that $|w|_{i}=n, i=1, \ldots, d$.
$\mathrm{L}_{d}(Q)$ is the multinomial lattice $\mathrm{L}(\underbrace{n, \ldots, n}_{d \text { times }})$.

When Q is $\mathrm{Q}_{\mathrm{V}}(\mathbb{I})$

Theorem
Let $d \geq 3$. The following sets are equal or in bijection:

- $\left\{C \subseteq \mathbb{I}^{d} \mid C\right.$ is a maximal chain $\}$
- $\left\{C \subseteq \mathbb{I}^{d} \mid C\right.$ chain, dense, complete $\}$
- \{ images of continuous monotone paths $\pi: \mathbb{I} \longrightarrow \mathbb{I}^{d}$

$$
\text { s.t. } \pi(0)=\overrightarrow{0} \text { and } \pi(1)=\overrightarrow{1}\}
$$

- $\left\{f \in \mathrm{Q}_{\vee}(\mathbb{I})^{[d]_{2}} \mid f\right.$ is clopen $\}$
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$.

Corollary

The set of maximal chains of \mathbb{I}^{d} is a lattice, with the ordering given projection-wise.

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in L_{d}\left(Q_{V}(\mathbb{I})\right)$ is a V and a Λ of join-irreducible elements.

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^{d}

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a \bigwedge of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^{d}
- Not every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements with rational coordinates.

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^{d}.
- Not every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements with rational coordinates.

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^{d}.
- Not every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is a \bigvee and a \wedge of join-irreducible elements with rational coordinates.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a $\Lambda \bigvee$ and a $\bigvee \wedge$ of some join-irreducible element with rational coordinates.

Structural properties of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right), d \geq 3$

- It is not distributive.
- $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ has no completely join-irreducible elements nor compact elements.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^{d}.
- Not every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a \bigvee and a Λ of join-irreducible elements with rational coordinates.
- Every $f \in \mathrm{~L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ is a $\bigwedge \bigvee$ and a $\bigvee \wedge$ of some join-irreducible element with rational coordinates.

Rephrasing the previous observations

- A bound-preserving embedding $\{0, \ldots, n\} \rightarrow \mathbb{I}$ firstly yields an ℓ-bisemigroup embedding

$$
\operatorname{Q}_{\vee}(\{0, \ldots, n\}) \rightarrow \mathrm{Q}_{\vee}(\mathbb{I})
$$

and then a lattice embedding

$$
\operatorname{Ld}\left(\mathrm{Q}_{\vee}(\{0, \ldots, n\})\right) \rightarrow \mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) .
$$

- According to the previous statement, $\mathrm{L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

Rephrasing the previous observations

- A bound-preserving embedding $\{0, \ldots, n\} \rightarrow \mathbb{I}$ firstly yields an ℓ-bisemigroup embedding

$$
Q_{\vee}(\{0, \ldots, n\}) \rightarrow Q_{\vee}(\mathbb{I})
$$

and then a lattice embedding

$$
\operatorname{Ld}\left(\mathrm{Q}_{\vee}(\{0, \ldots, n\})\right) \rightarrow \mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) .
$$

- According to the previous statement, $\mathrm{L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

Rephrasing the previous observations

- A bound-preserving embedding $\{0, \ldots, n\} \rightarrow \mathbb{I}$ firstly yields an ℓ-bisemigroup embedding

$$
\operatorname{Q}_{\vee}(\{0, \ldots, n\}) \rightarrow Q_{\vee}(\mathbb{I})
$$

and then a lattice embedding

$$
\operatorname{Ld}\left(Q_{\vee}(\{0, \ldots, n\})\right) \rightarrow \mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)
$$

- According to the previous statement, $\mathrm{L}_{d}\left(\mathrm{Q}_{\mathrm{V}}(\mathbb{I})\right)$ is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

$$
i \in\{0, \ldots, n\} \mapsto \frac{i}{n} \in \mathbb{I}
$$

then $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ is not anymore the Dedekind-MacNeille completion of the respective colimit: we need two steps to complete all.

Perfect chains and functoriality of $\mathrm{Q}_{\vee}(-)$

- A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z),
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $Q_{v}(I)$ is a mix x-autonomous quantale.

Perfect chains and functoriality of $\mathrm{Q}_{\mathrm{V}}(-)$

- A chain $/$ is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z),
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $\mathrm{Q}_{\checkmark}(I)$ is a mix \star-autonomous quantale.
- II is perfect, as well as any finite chain $\{0, \ldots, n\}$

Perfect chains and functoriality of $\mathrm{Q}_{\vee}(-)$

- A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z)
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $\mathrm{Q}_{\checkmark}(I)$ is a mix \star-autonomous quantale.
- II is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If $\iota: I_{0} \rightarrow I_{1}$ is a complete (preserves arbitrary V and \bigwedge) embedding bewteen perfect chains, then we can "right-Kan extend" $f \in Q_{\vee}\left(I_{0}\right)$ to $\mathrm{Q}_{\mathrm{V}}\left(I_{1}\right)$
preserve units.

Perfect chains and functoriality of $\mathrm{Q}_{\vee}(-)$

- A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z),
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $\mathrm{Q}_{\checkmark}(I)$ is a mix \star-autonomous quantale.
- II is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If $\iota: I_{0} \rightarrow I_{1}$ is a complete (preserves arbitrary \bigvee and \bigwedge) embedding bewteen perfect chains, then we can "right-Kan extend" $f \in Q_{\vee}\left(I_{0}\right)$ to $\mathrm{Q}_{\mathrm{V}}\left(I_{1}\right)$.
- This correspondence preserves $\Lambda, \vee, \otimes, \oplus,(-)^{\star}$. It does not preserve units.

Perfect chains and functoriality of $\mathrm{Q}_{\vee}(-)$

- A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z)
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $\mathrm{Q}_{\checkmark}(I)$ is a mix x-autonomous quantale.
- II is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If $\iota: I_{0} \rightarrow I_{1}$ is a complete (preserves arbitrary \bigvee and \bigwedge) embedding bewteen perfect chains, then we can "right-Kan extend" $f \in Q_{\vee}\left(I_{0}\right)$ to $\mathrm{Q}_{\mathrm{V}}\left(I_{1}\right)$.
- This correspondence preserves $\Lambda, \bigvee, \otimes, \oplus,(-)^{\star}$. It does not preserve units.

Perfect chains and functoriality of $\mathrm{Q}_{\vee}(-)$

- A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$
f^{\wedge}(x):=\bigwedge_{x<y} f(y), \quad g^{\vee}(x):=\bigwedge_{z<x} g(z)
$$

are inverse isomorphisms bewtween $\mathrm{Q}_{\vee}(I)$ and $\mathrm{Q}_{\wedge}(I)$.

- If I is perfect, then $\mathrm{Q}_{\checkmark}(I)$ is a mix x-autonomous quantale.
- II is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If $\iota: I_{0} \rightarrow I_{1}$ is a complete (preserves arbitrary \bigvee and \bigwedge) embedding bewteen perfect chains, then we can "right-Kan extend" $f \in Q_{\vee}\left(I_{0}\right)$ to $\mathrm{Q}_{\mathrm{V}}\left(I_{1}\right)$.
- This correspondence preserves $\Lambda, \bigvee, \otimes, \oplus,(-)^{\star}$. It does not preserve units.
- $Q_{\vee}(-)$ is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

Right Kan extending as drawing paths

Right Kan extending as drawing paths

Plan

Permutations, words, and paths
 The continuous order in dimension 2: the mix \star-autonomous quantale $\mathrm{Qv}_{\mathrm{V}}(\mathbb{I})$
 The continuous order, dimension >2

Conclusions

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

- Understand structural properties of $L_{d}(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as $L_{d}(Q)$ for some mix \star-autonomous quantale Q ? Discover new lattices from mix \star-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

- Understand structural properties of $\mathrm{L}_{d}(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as $L_{d}(Q)$ for some mix \star-autonomous quantale Q ? Discover new lattices from mix \star-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

- Understand structural properties of $L_{d}(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as $L_{d}(Q)$ for some mix \star-autonomous quantale Q ? Discover new lattices from mix \star-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

- Understand structural properties of $L_{d}(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as $L_{d}(Q)$ for some mix \star-autonomous quantale Q ? Discover new lattices from mix \star-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

Conclusions

Logical challenges:

- Decidability of the equational theory of $\mathrm{Q}_{\vee}(\mathbb{I})$. Yields decidability of the equational theory of each $L_{d}\left(Q_{\vee}(\mathbb{I})\right)$ for each $d \geq 3$.
- Does a supposed decidability of eq.t. of $\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right)$ yield decidability of the eq.t. of the class $\left\{\mathrm{L}_{d}\left(\mathrm{Q}_{\vee}(\mathbb{I})\right) \mid d \geq 3\right\}$?

Ongoing work/other challenges/future researches:

- Understand structural properties of $L_{d}(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as $L_{d}(Q)$ for some mix \star-autonomous quantale Q ? Discover new lattices from mix \star-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

