The continuous weak (Bruhat) order and mix *-autonomous quantales

Maria João Gouveia¹ and Luigi Santocanale²

ALaT@Coimbra, September 27, 2018

¹Faculdade de Ciências da Universidade de Lisboa, Portugal ²LIS, Aix-Marseille Université, France

Conclusions

Permutations, words, and paths

The continuous order in dimension 2: the mix *-autonomous quantale $Q_{\vee}(\mathbb{I})$

The continuous order, dimension > 2

Conclusions

Conclusions

Permutations, words, and paths

The continuous order in dimension 2: the mix *-autonomous quantale $Q_{\vee}(\mathbb{I})$

The continuous order, dimension > 2

Conclusions

The weak Bruhat order, aka the permutohedra P(n)

Multinomial lattices

From discrete to continuous multinomial lattices?

▲□▶ ▲圖▶ ▲≧▶

6/24

→ 글→ 글

From discrete to continuous multinomial lattices?

▲□▶ ▲圖▶ ▲≧▶

< ≣ ► ≣ ৩৭৫ 6/24

Conclusions

Permutations, words, and paths

The continuous order in dimension 2: $\label{eq:linear} \mbox{the mix}\ \mbox{-}\mbox{autonomous quantale } Q_{\vee}(\mathbb{I})$

The continuous order, dimension > 2

Conclusions

Conclusions

The lattice $\mathsf{Q}_{\vee}(\mathbb{I})$

Let, from now on, $\mathbb{I}:=[0,1].$

Proposition

The following sets are (equal or) in bijective correspondence:

• { $C \subseteq \mathbb{I}^2 \mid C$ image of a monotone continuous path $\pi : \mathbb{I} \to \mathbb{I}^2$ s.t. $\pi(0) = \vec{0}$ and $\pi(1) = \vec{1}$ },

- { $C \subseteq \mathbb{I}^2 \mid C$ chain, dense, complete },
- { $C \subseteq \mathbb{I}^2 \mid C$ maximal chain of \mathbb{I}^2 },
- { $f : \mathbb{I} \to \mathbb{I} \mid f$ is join-continuous },
- { $f : \mathbb{I} \to \mathbb{I} \mid f$ is meet-continuous }.

Conclusions

The lattice $\mathsf{Q}_{\vee}(\mathbb{I})$

Let, from now on, $\mathbb{I}:=[0,1].$

Proposition

The following sets are (equal or) in bijective correspondence:

- { $C \subseteq \mathbb{I}^2 \mid C$ image of a monotone continuous path $\pi : \mathbb{I} \to \mathbb{I}^2$ s.t. $\pi(0) = \vec{0}$ and $\pi(1) = \vec{1}$ },
- { $C \subseteq \mathbb{I}^2 \mid C$ chain, dense, complete },
- { $C \subseteq \mathbb{I}^2 \mid C$ maximal chain of \mathbb{I}^2 },
- { $f : \mathbb{I} \to \mathbb{I} \mid f$ is join-continuous },
- { $f : \mathbb{I} \to \mathbb{I} \mid f$ is meet-continuous }.

From join-continuous functions to maximal chains

From join-continuous functions to maximal chains

9/24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Few properties of $Q_{\vee}(\mathbb{I})$

Let $\mathsf{Q}_{\vee}(\mathbb{I})$ be the set of join-continuous functions from \mathbb{I} to $\mathbb{I}.$

The order on $Q_{\vee}(\mathbb{I})$ is pointwise.

Proposition

- $Q_{\vee}(\mathbb{I})$ is a distributive complete lattice,
- every $f \in Q_{\vee}(\mathbb{I})$ is a \bigwedge and a \bigvee of some step function (with a finite no. of steps),
- every f ∈ Q_∨(I) is a ∧ and a ∨ of some step function (with a finite no. of steps and rational steps).

More properties of $Q_{\vee}(\mathbb{I})$

• It is (canonically) a quantale:

$$f\otimes g:=g\circ f$$
, $1:=id$.

 It is (non-commutative) *-autonomous. That is, it comes with an (antitone) involution (-)* s.t., defining

 $f \oplus g := (g^{\star} \otimes f^{\star})^{\star}$

we have

 $f \otimes g \leq h$ iff $f \leq h \oplus g^*$ iff $g \leq f^* \oplus h$.

• It is mix:

$$f\otimes g\leq f\oplus g$$
.

More properties of $\mathsf{Q}_{\vee}(\mathbb{I})$

• It is (canonically) a quantale:

$$f \otimes g := g \circ f$$
, $1 := id$.

 It is (non-commutative) *-autonomous. That is, it comes with an (antitone) involution (-)* s.t., defining

$$f \oplus g := (g^{\star} \otimes f^{\star})^{\star}$$

we have

 $f \otimes g \leq h$ iff $f \leq h \oplus g^*$ iff $g \leq f^* \oplus h$.

• It is mix:

$$f\otimes g\leq f\oplus g$$
.

More properties of $\mathsf{Q}_{ee}(\mathbb{I})$

• It is (canonically) a quantale:

$$f\otimes g:=g\circ f$$
, $1:=id$.

 It is (non-commutative) *-autonomous. That is, it comes with an (antitone) involution (-)* s.t., defining

$$f \oplus g := (g^{\star} \otimes f^{\star})^{\star}$$

we have

 $f \otimes g \leq h$ iff $f \leq h \oplus g^*$ iff $g \leq f^* \oplus h$.

• It is mix:

$$f\otimes g\leq f\oplus g$$
.

 $\mathsf{Q}_{\vee}(\mathbb{I})=\mathsf{Q}_{\wedge}(\mathbb{I})$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z).$$

Then $Q_{\vee}(\mathbb{I})$ and $Q_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

• We have then

$$egin{aligned} &f^{\star} := (\, ext{right-adj}(\,f)\,)^{ee} = ext{left-adj}(\,(f)^{\wedge}\,)\,, \ &f \oplus g = (g^{\wedge} \circ f^{\wedge})^{ee}\,. \end{aligned}$$

 $\mathsf{Q}_{\vee}(\mathbb{I})=\mathsf{Q}_{\wedge}(\mathbb{I})$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z).$$

Then $\mathsf{Q}_{\vee}(\mathbb{I})$ and $\mathsf{Q}_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

• We have then

$$egin{aligned} &f^\star := (\, ext{right-adj}(f)\,)^ee = ext{left-adj}(\,(f)^\wedge\,)\,, \ &f\oplus g = (g^\wedge \circ f^\wedge)^ee\,. \end{aligned}$$

 $\mathsf{Q}_{\vee}(\mathbb{I})=\mathsf{Q}_{\wedge}(\mathbb{I})$

- Let $Q_{\wedge}(\mathbb{I})$ be the set of meet-continuous functions from \mathbb{I} to itself.
- Put:

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z).$$

Then $\mathsf{Q}_{\vee}(\mathbb{I})$ and $\mathsf{Q}_{\wedge}(\mathbb{I})$ are (covariantly) isomorphic posets.

• We have then

$$egin{aligned} &f^{\star} := (\operatorname{\mathtt{right-adj}}(f))^{ee} = \operatorname{\mathtt{left-adj}}((f)^{\wedge})\,, \ &f \oplus g = (g^{\wedge} \circ f^{\wedge})^{ee}\,. \end{aligned}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の

Conclusions

Permutations, words, and paths

The continuous order in dimension 2: the mix *-autonomous quantale $Q_{\vee}(\mathbb{I})$

The continuous order, dimension > 2

Conclusions

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣 □

14/24

Skew enrichments/metrics on a *-autonomous quantale

A skew metric (enrichement) on a \star -autonomous quantale Q is a pair (X, δ) such that, for each $i, j \in X$ with $i \neq j$,

$$\delta(i,k) \leq \delta(i,j) \oplus \delta(j,k),$$

$$\delta(i,j) = \delta(j,i)^*.$$

If 1 = 0, you can also ask

$$\delta(i,i)=0.$$

Clopens as skew enrichments

Let $[d] := \{ 1, \dots, d \}$ and $[d]_2 := \{ (i, j) \mid 1 \le i < j \le d \}.$

For $f \in Q^{[d]_2}$, we say that f is *closed* if, for each $i, j, k \in [d]$ with i < j < k,

 $f_{i,j} \otimes f_{j,k} \leq f_{i,k}$.

We say that it is *open* if, for each $i, j, k \in [d]$ with i < j < k,

 $f_{i,k} \leq f_{i,j} \oplus f_{j,k}$.

We say that f is *clopen* if it is both closed and open.

Lemma

There is a bijection between skew enrichments on the set [d] and clopen sets of the poset $Q^{[d]_2}$.

Clopens as skew enrichments

Let
$$[d] := \{1, \ldots, d\}$$
 and $[d]_2 := \{(i, j) \mid 1 \le i < j \le d\}.$

For $f \in Q^{[d]_2}$, we say that f is *closed* if, for each $i, j, k \in [d]$ with i < j < k,

$$f_{i,j} \otimes f_{j,k} \leq f_{i,k}$$
.

We say that it is open if, for each $i, j, k \in [d]$ with i < j < k,

$$f_{i,k} \leq f_{i,j} \oplus f_{j,k}$$
.

We say that f is *clopen* if it is both closed and open.

Lemma

There is a bijection between skew enrichments on the set [d] and clopen sets of the poset $Q^{[d]_2}$.

Clopens as skew enrichments

Let
$$[d] := \{1, \ldots, d\}$$
 and $[d]_2 := \{(i, j) \mid 1 \le i < j \le d\}.$

For $f \in Q^{[d]_2}$, we say that f is *closed* if, for each $i, j, k \in [d]$ with i < j < k,

$$f_{i,j} \otimes f_{j,k} \leq f_{i,k}$$
.

We say that it is open if, for each $i, j, k \in [d]$ with i < j < k,

$$f_{i,k} \leq f_{i,j} \oplus f_{j,k}$$
.

We say that f is *clopen* if it is both closed and open.

Lemma

There is a bijection between skew enrichments on the set [d] and clopen sets of the poset $Q^{[d]_2}$.

Theorem

- For each d ≥ 2 and each mix *-autonomous quantale Q, the set L_d(Q) of clopen tuples of Q^{[d]₂} is, with the coordinatewise ordering, a lattice.
- The construction Q → L_d(Q) is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an ℓ -bisemigroup is the $\otimes, \oplus, \bot, \lor, \top, \land$ -reduct of a \star -autonomous quantale.

Remark. The proof that $L_d(Q)$ is a lattice relies on the usual property: the closure of an open is open, the interior of a closed is closed.

Theorem

- For each d ≥ 2 and each mix *-autonomous quantale Q, the set L_d(Q) of clopen tuples of Q^{[d]₂} is, with the coordinatewise ordering, a lattice.
- The construction Q → L_d(Q) is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an $\ell\text{-bisemigroup}$ is the $\otimes,\oplus,\bot,\vee,\top,\wedge\text{-reduct}$ of a *-autonomous quantale.

Remark. The proof that $L_d(Q)$ is a lattice relies on the usual property: the closure of an open is open, the interior of a closed is closed.

Theorem

- For each d ≥ 2 and each mix *-autonomous quantale Q, the set L_d(Q) of clopen tuples of Q^{[d]₂} is, with the coordinatewise ordering, a lattice.
- The construction Q → L_d(Q) is a limit preserving functor from the category of mix ℓ-bisemigroups to the category of bounded lattices.

Roughly speaking, an ℓ -bisemigroup is the $\otimes, \oplus, \bot, \lor, \top, \land$ -reduct of a \star -autonomous quantale.

Remark. The proof that $L_d(Q)$ is a lattice relies on the usual property: the closure of an open is open, the interior of a closed is closed.

17/24

Examples

- If Q = 2, then clopen tuples are in bijection with transitive cotransitive subsets of [d]₂; these are in bijection with permutations of [d].
 L_d(2) is the weak Bruhat ordering.
- If *Q* is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000].
- If $Q = Q_{\vee}(\{0, ..., n\})$, then elements of $L_d(Q)$ are in bijection with maximal chains in the cube $\{0, 1, ..., n\}^d$, i.e. words $w \in [d]^*$ such that $|w|_i = n, i = 1, ..., d$. $L_d(Q)$ is the multinomial lattice L(n, ..., n).

d times

<ロ> <同> <同> <同> < 同> < 同> < 同> < 同> < 同

Examples

- If Q = 2, then clopen tuples are in bijection with transitive cotransitive subsets of [d]₂; these are in bijection with permutations of [d].
 L_d(2) is the weak Bruhat ordering.
- If Q is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000].

If Q = Q_∨({0,...,n}), then elements of L_d(Q) are in bijection with maximal chains in the cube {0,1,...,n}^d, i.e. words w ∈ [d]* such that |w|_i = n, i = 1,...,d. L_d(Q) is the multinomial lattice L(n,...,n).

< ロ > < 圖 > < 필 > < 필 > · · 필 ·

Examples

- If Q = 2, then clopen tuples are in bijection with transitive cotransitive subsets of [d]₂; these are in bijection with permutations of [d].
 L_d(2) is the weak Bruhat ordering.
- If Q is the Sugihara monoid on the chain 3, then clopen tuples and their ordering correspond to pseudo-permutations [Krob et al. 2000].
- If Q = Q_∨({0,...,n}), then elements of L_d(Q) are in bijection with maximal chains in the cube {0,1,...,n}^d, i.e. words w ∈ [d]* such that |w|_i = n, i = 1,...,d. L_d(Q) is the multinomial lattice L(n,...,n).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○

When Q is $Q_{\vee}(\mathbb{I})$

Theorem L at d > 3 The following of

Let $d \ge 3$. The following sets are equal or in bijection:

- { $C \subseteq \mathbb{I}^d \mid C$ is a maximal chain }
- { $C \subseteq \mathbb{I}^d \mid C$ chain, dense, complete }
- { images of continuous monotone paths $\pi : \mathbb{I} \longrightarrow \mathbb{I}^d$

s.t.
$$\pi(0) = \vec{0} \text{ and } \pi(1) = \vec{1} \}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ◆つ

18/24

- { $f \in Q_{\vee}(\mathbb{I})^{[d]_2} \mid f \text{ is clopen}$ }
- $L_d(Q_{\vee}(\mathbb{I}))$.

Corollary

The set of maximal chains of \mathbb{I}^d is a lattice, with the ordering given projection-wise.

- It is not distributive.
- $L_d(\mathbb{Q}_{\vee}(\mathbb{I}))$ has no completely join-irreducible elements nor compact elements.
- Every $f \in L_d(Q_{\vee}(\mathbb{I}))$ is a \bigvee and a \bigwedge of join-irreducible elements.
- Join-irreducible elements can be identified with points in I^d.
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

- It is not distributive.
- $L_d(\mathbb{Q}_{\vee}(\mathbb{I}))$ has no completely join-irreducible elements nor compact elements.
- Every $f \in L_d(Q_{\vee}(\mathbb{I}))$ is a \bigvee and a \bigwedge of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^d .
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

- It is not distributive.
- L_d(Q_V(I)) has no completely join-irreducible elements nor compact elements.
- Every $f \in L_d(Q_{\vee}(\mathbb{I}))$ is a \bigvee and a \bigwedge of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^d .
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

- It is not distributive.
- $L_d(\mathbb{Q}_{\vee}(\mathbb{I}))$ has no completely join-irreducible elements nor compact elements.
- Every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^d .
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

- It is not distributive.
- L_d(Q_V(I)) has no completely join-irreducible elements nor compact elements.
- Every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^d .
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

- It is not distributive.
- $L_d(Q_{\vee}(\mathbb{I}))$ has no completely join-irreducible elements nor compact elements.
- Every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements.
- Join-irreducible elements can be identified with points in \mathbb{I}^d .
- Not every f ∈ L_d(Q_∨(I)) is a ∨ and a ∧ of join-irreducible elements with rational coordinates.
- Every f ∈ L_d(Q_∨(I)) is a ∧ ∨ and a ∨ ∧ of some join-irreducible element with rational coordinates.

Rephrasing the previous observations

• A bound-preserving embedding $\{0, \ldots, n\} \to \mathbb{I}$ firstly yields an ℓ -bisemigroup embedding

$$\mathsf{Q}_{\vee}(\{0,\ldots,n\})\to\mathsf{Q}_{\vee}(\mathbb{I})$$

and then a lattice embedding

$$Ld(Q_{\vee}({0,\ldots,n})) \rightarrow L_d(Q_{\vee}(\mathbb{I})).$$

- According to the previous statement, L_d(Q_V(I)) is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

$$i \in \{0, \ldots, n\} \mapsto \frac{i}{n} \in \mathbb{I}$$

then $L_d(Q_{\vee}(\mathbb{I}))$ is not anymore the Dedekind-MacNeille completion of the respective colimit: we need two steps to complete all.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Rephrasing the previous observations

• A bound-preserving embedding $\{0, \ldots, n\} \to \mathbb{I}$ firstly yields an ℓ -bisemigroup embedding

$$\mathsf{Q}_{\vee}(\{0,\ldots,n\})\to\mathsf{Q}_{\vee}(\mathbb{I})$$

and then a lattice embedding

$$Ld(Q_{\vee}({0,\ldots,n})) \rightarrow L_d(Q_{\vee}(\mathbb{I})).$$

- According to the previous statement, L_d(Q_V(I)) is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

$$i \in \{0, \ldots, n\} \mapsto \frac{i}{n} \in \mathbb{I}$$

then $L_d(Q_{\vee}(\mathbb{I}))$ is not anymore the Dedekind-MacNeille completion of the respective colimit: we need two steps to complete all.

Rephrasing the previous observations

• A bound-preserving embedding $\{\,0,\ldots,n\,\}\to\mathbb{I}$ firstly yields an $\ell\text{-bisemigroup}$ embedding

$$\mathsf{Q}_{\vee}(\{0,\ldots,n\})\to\mathsf{Q}_{\vee}(\mathbb{I})$$

and then a lattice embedding

$$Ld(Q_{\vee}({0,\ldots,n})) \rightarrow L_d(Q_{\vee}(\mathbb{I})).$$

- According to the previous statement, L_d(Q_V(I)) is the Dedekind-MacNeille completion of the colimit of these embeddings.
- If we restrict to the embeddings of the form

$$i \in \{0, \ldots, n\} \mapsto \frac{i}{n} \in \mathbb{I}$$

then $L_d(Q_{\vee}(\mathbb{I}))$ is not anymore the Dedekind-MacNeille completion of the respective colimit: we need two steps to complete all.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- Q_∨(−) is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- Q_∨(−) is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- Q_∨(−) is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain {0,...,n}.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- Q_∨(−) is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain $\{0, \ldots, n\}$.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- $Q_{\vee}(-)$ is then a functor from the category of perfect chains and complete embeddings to the category of ℓ -bisemigroups.

• A chain I is perfect if it is complete and the maps $(-)^{\wedge}$ and $(-)^{\vee}$ defined by

$$f^{\wedge}(x) := \bigwedge_{x < y} f(y), \qquad g^{\vee}(x) := \bigwedge_{z < x} g(z),$$

are inverse isomorphisms bewtween $Q_{\vee}(I)$ and $Q_{\wedge}(I)$.

- If I is perfect, then $Q_{\vee}(I)$ is a mix *-autonomous quantale.
- I is perfect, as well as any finite chain {0,...,n}.
- If *ι* : *I*₀ → *I*₁ is a complete (preserves arbitrary ∨ and ∧) embedding bewteen perfect chains, then we can "right-Kan extend" *f* ∈ Q_∨(*I*₀) to Q_∨(*I*₁).
- This correspondence preserves ∧, ∨, ⊗, ⊕, (−)*. It does not preserve units.
- Q_∨(−) is then a functor from the category of perfect chains and complete embeddings to the category of ℓ-bisemigroups.

Right Kan extending as drawing paths

< □ ト < □ ト < ■ ト < ■ ト < ■ ト = の Q () 22/24

22/24

Right Kan extending as drawing paths

 \mapsto

Conclusions

Permutations, words, and paths

The continuous order in dimension 2: the mix *-autonomous quantale $Q_{\vee}(\mathbb{I})$

The continuous order, dimension > 2

Conclusions

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of L_d(Q) in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *k*-autonomous quantale Q? Discover new lattices from mix *k*-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of $L_d(Q)$ in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *-autonomous quantale Q? Discover new lattices from mix *-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of L_d(Q) in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *-autonomous quantale Q? Discover new lattices from mix *-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of L_d(Q) in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *-autonomous quantale Q? Discover new lattices from mix *-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

◆□ → ◆□ → ◆注 → ◆注 → □ □ □

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of L_d(Q) in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *-autonomous quantale Q? Discover new lattices from mix *-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

◆□ → ◆圖 → ◆臣 → ◆臣 → □臣 □

Logical challenges:

- Decidability of the equational theory of Q_∨(I). Yields decidability of the equational theory of each L_d(Q_∨(I)) for each d ≥ 3.
- Does a supposed decidability of eq.t. of L_d(Q_∨(I)) yield decidability of the eq.t. of the class { L_d(Q_∨(I)) | d ≥ 3 }?

Ongoing work/other challenges/future researches:

- Understand structural properties of L_d(Q) in terms of the abstract properties of a quantale Q.
- How many lattices arise as L_d(Q) for some mix *-autonomous quantale Q? Discover new lattices from mix *-autonomous quantales. Ongoing work with all the Sugihara monoids.
- Links with discrete geometry: Christoffel words in higher dimension?
- Links with directed homotopy (modelling concurrency)?
- Link between (linear) logic and (enumerative) combinatorics?

・ロト・4回ト・4回ト・4回ト・4回ト