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The weak Bruhat order, aka the permutohedra P(n)




Multinomial lattices
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From discrete to continuous multinomial lattices?
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The lattice Qy (1)

Let, from now on, I := [0, 1].
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The lattice Qy (1)

Let, from now on, I := [0, 1].

Proposition
The following sets are (equal or) in bijective correspondence:

e { C CI?| C image of a monotone continuous path m : T — I
s.t. 7(0) =0 and m(1) =1},

e { C CI?| C chain, dense, complete},

e { C CTI?| C maximal chain of I? }

o {f:1—1]|f isjoin-continuous },

o {f:1—1|f is meet-continuous} .
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From join-continuous functions to maximal chains
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Few properties of Q. (I)
Let Qv (L) be the set of join-continuous functions from I to I.

The order on Qy(I) is pointwise.

Proposition

e Qu(I) is a distributive complete lattice,

e every f € Qu(l) isa /\ and a'\/ of some step function (with a
finite no. of steps),

o every f € Qu(I) isa \ and a\/ of some step function (with a
finite no. of steps and rational steps).
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More properties of Q. (I)
e It is (canonically) a quantale:

feg:=gof, 1:=id.
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fog:= (o)
we have
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e |t is mix:

ferglfag.
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Qv (H) — Q/\(H)

o Let QA(I) be the set of meet-continuous functions from I to
itself.
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Qv (H) — Q/\(H)

o Let QA(I) be the set of meet-continuous functions from I to
itself.

e Put:

)= Nfly), &'(x)=\g).

x<y z<X
Then Qy(I) and QA(I) are (covariantly) isomorphic posets.
e We have then

f* := (right-adj(f))" = left-adj((f)"),
fog=(g"of")".
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Skew enrichments/metrics on a x-autonomous quantale

A skew metric (enrichement) on a x-autonomous quantale Q is a
pair (X, 0) such that, for each i,j € X with i # j,

o(i, k) < 6(i,j) ® (), k) ,
0(i,j) = 60, )"

If 1 =0, you can also ask

8(i,i)=0.
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Clopens as skew enrichments

Let [d]:={1,...,d}and [d]2 :={(i,)) |1 <i<j<d}.
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Let [d]:={1,...,d}and [d]2 :={(i,)) |1 <i<j<d}.

For f € QU2 we say that f is closed if, for each i, j, k € [d] with
i <j <k,

fij @ fik <fik.
We say that it is open if, for each i,j, k € [d] with i < j < k,
fik < fij®fir.

We say that f is clopen if it is both closed and open.
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Clopens as skew enrichments
Let [d]:={1,...,d}and [d]2 :={(i,)) |1 <i<j<d}.

For f € QU2 we say that f is closed if, for each i, j, k € [d] with
i <j <k,

fij @ fik <fik.
We say that it is open if, for each i,j, k € [d] with i < j < k,
fik < fij®fir.

We say that f is clopen if it is both closed and open.

Lemma
There is a bijection between skew enrichments on the set [d] and clopen
sets of the poset QL.
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Theorem

e fFor each d > 2 and each mix x-autonomous quantale @, the
set Ly(Q) of clopen tuples of Q> is, with the coordinatewise
ordering, a lattice.
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Theorem

e fFor each d > 2 and each mix x-autonomous quantale @, the
set Ly(Q) of clopen tuples of Q> is, with the coordinatewise
ordering, a lattice.

e The construction Q — Ly(Q) is a limit preserving functor
from the category of mix (-bisemigroups to the category of
bounded lattices.

Roughly speaking, an ¢-bisemigroup is the ®,®, L, V, T, A-reduct
of a x-autonomous quantale.

Remark. The proof that Ly(Q) is a lattice relies on the usual
property: the closure of an open is open, the interior of a closed is
closed.
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Examples

e If Q =2, then clopen tuples are in bijection with transitive
cotransitive subsets of [d]2; these are in bijection with
permutations of [d].

L4(2) is the weak Bruhat ordering.
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Examples

e If Q =2, then clopen tuples are in bijection with transitive
cotransitive subsets of [d]2; these are in bijection with
permutations of [d].

L4(2) is the weak Bruhat ordering.

e If @ is the Sugihara monoid on the chain 3, then clopen
tuples and their ordering correspond to pseudo-permutations
[Krob et al. 2000].

o If Q=Quv({0,...,n}), then elements of Ly(Q) are in

bijection with maximal chains in the cube {0,1,...,n}9, ie.
words w € [d]* such that |w|; =n,i=1,...,d.
La(Q) is the multinomial lattice L(n, ..., n).
——
d times
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When Q is Q,(I)

Theorem
Let d > 3. The following sets are equal or in bijection:
e {C C1?| C is a maximal chain}
e { C C 19| C chain, dense, complete}
e { images of continuous monotone paths 7 : I — I
s.t. m(0) =0 and 7(1) =1}
o {f e Q) |f isclopen}
o Ls(Qu(D)).

Corollary

The set of maximal chains of 19 is a lattice, with the ordering
given projection-wise.
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Structural properties of Ly(Qy (1)), d > 3

e |t is not distributive.
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Structural properties of Ly(Qy (1)), d > 3

It is not distributive.

La(Qv(I)) has no completely join-irreducible elements nor compact
elements.

Every f € Lg(Qv(I)) is a \/ and a /\ of join-irreducible elements.
Join-irreducible elements can be identified with points in 19.

Not every f € Ly(Qy(I)) is a \/ and a A of join-irreducible
elements with rational coordinates.

Every f € Lg(Qv(I)) isa AV and a \/ A of some join-irreducible
element with rational coordinates.
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Rephrasing the previous observations

e A bound-preserving embedding {0,...,n} — I firstly yields an
{-bisemigroup embedding

Qv({0,...,n}) — Qu()

and then a lattice embedding

Ld(Qu({0,...,n})) = La(Qu(D)) .
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Rephrasing the previous observations

e A bound-preserving embedding {0,...,n} — I firstly yields an
{-bisemigroup embedding

Qv({0,....,n}) — Qu(I)
and then a lattice embedding

Ld(Qu({0,...,n})) = La(Qu(D)) .

e According to the previous statement, Ly(Qy(I)) is the
Dedekind-MacNeille completion of the colimit of these embeddings.

e If we restrict to the embeddings of the form
ie{0,....ntLel
n

then Ly(Qv (L)) is not anymore the Dedekind-MacNeille completion
of the respective colimit: we need two steps to complete all.
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Perfect chains and functoriality of Q. (—)

e A chain [ is perfect if it is complete and the maps (—)" and (—)"
defined by

)= N\ fl), g'(x) = )\ g2,

x<y z<x

are inverse isomorphisms bewtween Qy (/) and QA(/).
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Perfect chains and functoriality of Q. (—)

A chain [ is perfect if it is complete and the maps (—)" and (—)"
defined by

)= N\ fl), g'(x) = )\ g2,
x<y z<x
are inverse isomorphisms bewtween Qy (/) and QA(/).
If I is perfect, then Qv (/) is a mix x-autonomous quantale.
I is perfect, as well as any finite chain {0,...,n}.

If o : Iy — h is a complete (preserves arbitrary \/ and /\) embedding
bewteen perfect chains, then we can “right-Kan extend” f € Qy(h)

to Q\/(Il)

This correspondence preserves A, \/, ®,®, (—)*. It does not
preserve units.

Qv(—) is then a functor from the category of perfect chains and
complete embeddings to the category of /-bisemigroups.
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Right Kan extending as drawing paths
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Right Kan extending as drawing paths
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Conclusions

Logical challenges:
e Decidability of the equational theory of Qy(I). Yields decidability of the
equational theory of each Ly(Qy(I)) for each d > 3.
e Does a supposed decidability of eq.t. of Lq(Qv (L)) yield decidability of
the eq.t. of the class { Ly(Qv(I)) | d > 3}7?
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work with all the Sugihara monoids.

® Links with discrete geometry: Christoffel words in higher dimension?
e Links with directed homotopy (modelling concurrency)?

e Link between (linear) logic and (enumerative) combinatorics?
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