Normality for approach spaces and contractive realvalued maps

Mark Sioen joint with Eva Colebunders & Wouter Van Den Haute

Workshop on Algebra, Logic and Topology Universidade de Coimbra September 27 –29, 2018

Overview of the talk

- The category App
- Lower and upper regular functions
- Normality and separation by Urysohn maps
- Katětov-Tong's insertion condition
- Tietze's extension condition
- Links to other normality notions in App

The category **App**

Definition (Lowen)

A distance is a function

$$\delta: X \times 2^X \to [0,\infty]$$

that satisfies:

(1)
$$\forall x \in X, \forall A \in 2^X : x \in A \Rightarrow \delta(x, A) = 0$$

(2) $\delta(x, \emptyset) = \infty$
(3) $\forall x \in X, \forall A \in 2^X : \delta(x, A \cup B) = \min\{\delta(x, A), \delta(x, B)\}$
(4) $\forall x \in X, \forall A \in 2^X, \forall \varepsilon \in [0, \infty] : \delta(x, A) \le \delta(x, A^{(\varepsilon)}) + \varepsilon$
with

$$A^{(\varepsilon)} = \{ x \in X \mid \delta(x, A) \le \varepsilon \}.$$

The pair (X, δ) is called an *approach space*.

The category App

Definition (Lowen)

For X, Y approach spaces, a map $f : X \to Y$ is called a *contraction* if

$$\forall x \in X, \forall A \in 2^X : \delta_Y(f(x), f(A)) \le \delta_X(x, A).$$

let **App** be the category of approach spaces and contractions Facts:

- App is a topological category
- ► Top → Ap fully + reflectively + coreflectively via

$$\mathcal{T} \mapsto \delta_{\mathcal{T}}(x, A) = \begin{cases} 0 & \text{if } x \in \mathsf{cl}_{\mathcal{T}}(A) \\ \infty & \text{if } x \notin \mathsf{cl}_{\mathcal{T}}(A) \end{cases}$$

• (q)Met \hookrightarrow Ap fully +coreflectively via

$$d\mapsto \delta_d(x,A)=\inf_{a\in A}d(x,a)$$

Lower and upper regular functions

 \blacktriangleright on $[0,\infty],$ define the distance

$$\delta_{\mathbb{P}}(x,A) = \begin{cases} (x - \sup A) \lor 0 & A \neq \emptyset \\ \infty & A = \emptyset. \end{cases}$$

Then $\mathbb{P} = ([0,\infty], \delta_{\mathbb{P}})$ is initially dense in **App**.

• on $[0,\infty]$, define the quasi-metric

$$d_{\mathsf{P}}(x,y) = (x-y) \lor 0$$

and its dual

$$d_{\mathsf{P}}^{-}(x,y) = (y-x) \lor 0$$

▶ note that $d_{\mathbb{E}} = d_{\mathsf{P}} \lor d_{\mathsf{P}}^-$: the Euclidean metric

Lower and upper regular functions

▶ for an approach space X, put

$$\mathfrak{L}_{b} = \{f : (X, \delta) \to ([0, \infty], \delta_{d_{\mathsf{P}}}) \mid \mathsf{bounded}, \mathsf{ contractive} \}.$$

$$\mathfrak{U} = \{ f : (X, \delta) \to ([0, \infty], \delta_{d_{\mathsf{P}}^{-}}) \mid \text{bounded, contractive} \}.$$

and

 $\mathcal{K}_{b} = \{f : (X, \delta) \to ([0, \infty], \delta_{d_{\mathbb{E}}}) \mid \text{bounded, contractive}\}.$

observe that

$$\mathfrak{U}\cap\mathfrak{L}_b=\mathcal{K}_b$$

Lower and upper regular functions

• we have *lower* and *upper hull operators* $\mathfrak{l}_b : [0,\infty]_b^X \to [0,\infty]_b^X, \text{ resp. } \mathfrak{u} : [0,\infty]_b^X \to [0,\infty]_b^X, \text{ defined}$ by $\mathfrak{l}_b(\mu) := \bigvee \{ \nu \in \mathfrak{L}_b | \nu \leq \mu \},$

$$\mathfrak{u}(\mu) := \bigwedge \{ \nu \in \mathfrak{U} | \mu \leq \nu \}$$

• \mathfrak{L}_b is generated by

$$\{\delta_{A}^{\omega} = \delta(\cdot, A) \wedge \omega \mid A \in 2^{X}, \omega < \infty\}$$

▶ 𝔅 is generated by

$$\{\iota_A^{\omega} = (\omega - \delta(\cdot, A^c)) \lor 0 \mid A \in 2^X, \omega < \infty\}$$

Definition

Let X an approach space and $\gamma > 0$. Two sets $A, B \subseteq X$ are called γ -separated if $A^{(\alpha)} \cap B^{(\beta)} = \emptyset$, whenever $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta < \gamma$.

Definition

Let X be an approach space. Let $F : \mathbb{Q} \to 2^X$ such that $\bigcup_{q \in \mathbb{Q}} F(q) = X, \bigcap_{q \in \mathbb{Q}} F(q) = \emptyset$. Then F is a *contractive scale* if it satisfies

$$orall r, s \in \mathbb{Q} : r < s \Rightarrow F(r)$$
 and $(X \setminus F(s))$ are $(s - r)$ -separated

Definition

An approach space X is said to be *normal* if for all $A, B \subseteq X$, for all $\gamma > 0$ with A and B γ -separated, a contractive scale F exists such that

(i) $\forall q \in \mathbb{Q}^- : F(q) = \emptyset;$ (ii) $A^{(0)} \subseteq \bigcap_{q \in \mathbb{Q}^+_0} F(q);$ (iii) $B^{(0)} \cap \bigcup_{r \in \mathbb{Q}^+_0 \cap [0,\gamma]} F(r) = \emptyset.$

Proposition

Let X be an approach space. If $F : \mathbb{Q} \to 2^X$ be a contractive scale on X, Then

$$f: (X, \delta)
ightarrow (\mathbb{R}, \delta_{d_{\mathbb{E}}}) : x \mapsto \inf\{q \in \mathbb{Q} \mid x \in F(q)\}$$

is a contraction. Conversely, every contraction $f: (X, \delta) \to (\mathbb{R}, \delta_{d_{\mathbb{E}}})$ can be obtained in this way.

Theorem

For an approach space X, t.f.a.e.:

(1) X is normal,

(2) X satisfies separation by Urysohn contractive maps in the following sense:
 for every A, B ∈ 2^X γ-separated (γ > 0), there exists a contraction

 $f: X \to ([0, \gamma], \delta_{d_{\mathbb{E}}}))$

satisfying $f(a) = \gamma$ for $a \in A^{(0)}$ and f(b) = 0 for $b \in B^{(0)}$.

Corollary

For a topological space (X, \mathcal{T}) , t.f.a.e. (1) (X, \mathcal{T}) is normal in the topological sense, (2) $(X, \delta_{\mathcal{T}})$ is normal in our sense.

Some examples:

- The approach space P = ([0,∞], δ_P)) is normal (and not quasi-metric).
- ► The quasi-metric approach spaces $([0, \infty], \delta_{d_P})$ and $([0, \infty], \delta_{d_P})$ are normal.
- The quasi-metric approach space $([0,\infty[,\delta_q)$ defined by

$$q(x,y) = \begin{cases} y-x & x \leq y, \\ \infty & x > y \end{cases}$$

is normal. Note that the underlying topological space is the Sorgenfrey line.

Proof:

• Take $A, B \in 2^X, \gamma$ -separated for δ_q (for some $\gamma > 0$).

• Prove that γ -separated for $\delta_{d_{\mathbb{E}}}$.

- ▶ Since $\delta_{d_{\mathbb{E}}}$ is metric, hence (approach) normal, there exists a contraction $f : ([0, \infty[, \delta_{d_{\mathbb{E}}}) \rightarrow ([0, \gamma], \delta_{d_{\mathbb{E}}})$ with $f(A^{(0)_{\mathbb{E}}}) \subseteq \{0\}$ and $f(B^{(0)_{\mathbb{E}}}) \subseteq \{\gamma\}$.
- Since $\delta_{\mathbb{E}} \leq \delta_q$, also $f : ([0, \infty[, \delta_q) \rightarrow ([0, \gamma], \delta_{d_{\mathbb{E}}})$ with $f(A^{(0)_{\mathbb{E}}}) \subseteq \{0\}$ is a contraction and $A^{(0)_q} \subseteq A^{(0)_{\mathbb{E}}}$ and $B^{(0)_q} \subseteq B^{(0)_{\mathbb{E}}}$.

Katětov-Tong's insertion condition

Definition

An approach space X satisfies Katětov-Tong's intsertion condition if for bounded functions from X to $[0, \infty]$ satisfying $g \le h$ with g upper regular and h lower regular, there exists a contractive map $f: X \to ([0, \infty], \delta_{d_{\mathbb{E}}})$ satisfying $g \le f \le h$.

A special instance of Tong's Lemma

For an approach space X and $\omega < \infty$, put

 $\mathcal{K} = \{f : X \to ([0, \omega], \delta_{d_{\mathbb{E}}})) \mid f \text{ contractive}\}$

and $M = [0, \omega]^X$, let $s \in K_{\delta} = \{ \bigwedge_{n \ge 1} t_n \mid \forall n : t_n \in K \}$ and $t \in K_{\sigma} = \{ \bigvee_n t_n \mid \forall n : t_n \in K \}$ with $s \le t$ then a $u \in K_{\sigma} \cap K_{\delta}$ exists satisfying $s \le u \le t$.

Katětov-Tong's insertion condition

Theorem

For an approach space X, t.f.a.e.

(1) (X, δ) satisfies Katětov-Tong's interpolation condition,

(2) $\forall A, B \in 2^X, \forall \omega < \infty : (\iota_A^{\omega} \le \delta_B^{\omega} \Rightarrow \exists f \in \mathcal{K}_b : \iota_A^{\omega} \le f \le \delta_B^{\omega}),$

(3) X satisfies separation by Urysohn contractive maps,

(4) X is normal.

Corollary

- (1) We recover the classical Katětov-Tong's interpolation characterization of topological normality
- (2) For every metric space (X, d), the corresponding approach space (X, δ_d) is normal.

Tietze's extension condition

Given a set X and a subset A ⊂ X, we define θ_A : X → [0,∞] by

$$heta_{\mathcal{A}}(x) = egin{cases} 0 & x \in \mathcal{A}, \ \infty & x \in X \setminus \mathcal{A}. \end{cases}$$

Given f ∈ [0,∞]^X_b, a family (μ_ε)_{ε>0} of functions taking only a finite number of values, written as

$$\left(\mu_{\varepsilon} := \bigwedge_{i=1}^{n(\varepsilon)} \left(m_i^{\varepsilon} + \theta_{M_i^{\varepsilon}}\right)\right)_{\varepsilon > 0} \text{ with } (M_i^{\varepsilon})_{i=1}^{n(\varepsilon)} \text{ a partitioning of } X$$

and all $m_i^{\varepsilon} \in \mathbb{R}^+$, for $\varepsilon > 0$, is called a *development of f* if for all $\varepsilon > 0$

$$\mu_{\varepsilon} \leq f \leq \mu_{\varepsilon} + \varepsilon.$$

Tietze's extension condition

Definition

We say that an approach space X, satisfies *Tietze's extension* condition if for every $Y \subseteq X$ and $\gamma \in \mathbb{R}^+$, and every contraction

 $f: Y \to ([0,\gamma],\delta_{d_{\mathbb{E}}}))$

which allows a development $\left(\mu_{\varepsilon} := \bigwedge_{i=1}^{n(\varepsilon)} \left(m_i^{\varepsilon} + \theta_{M_i^{\varepsilon}}\right)\right)_{0 < \varepsilon < 1}$ such that

 $\forall x \notin Y, \forall \varepsilon \in]0,1[,\forall 1 \leq l,k \leq n(\varepsilon): m_l^{\varepsilon} - m_k^{\varepsilon} \leq \delta_{M_k^{\varepsilon}}(x) + \delta_{M_l^{\varepsilon}}(x),$

there exists a contraction

$$g: X \to ([0, \gamma], \delta_{d_{\mathbb{E}}}))$$

extending, i.e. $g|_Y = f$.

Tietze's extension condition

Corollary

We recover the classical Tietze extension characterization of topological normality.

Summary

We have shown that for an approach space X t.f.a.e.

- (1) X is normal (via contractive scales),
- (2) X satisfies separation by Urysohn contractive maps,
- (3) X satisfies Katětov-Tong's insertion condition,
- (4) X satisfies Tietze's extension condition.

Links to other normality notions in **App**: approach frame normality

Proposition

Let X be an approach space. Consider the following properties:

- (1) (X, δ) is normal
- (2) For A, B ⊆ X, γ-separated for some γ > 0, there exists C ⊆ X such that A and C are γ/2-separated and X \ C and B are γ/2-separated.
- (3) \mathfrak{L} is approach frame normal: For $A, B \subseteq X, \varepsilon > 0$ such that $A^{(\varepsilon)} \cap B^{(\varepsilon)} = \emptyset$ there exist $\rho > 0, C \subseteq X$ with

$$A^{(
ho)} \cap C^{(
ho)} = \emptyset$$
 and $(X \setminus C)^{(
ho)} \cap B^{(
ho)} = \emptyset$

Then we have $(1) \Rightarrow (2) \Rightarrow (3)$.

Note: we have finite counterexamples to the converse implications.

Links to other normality notions in **App**: (topological) normality of the underlying topology

Neither of the implications is valid:

- Let X = {x, y, z} and put d(a, a) = 0 (all ∈ X), d(x, z) = 1, d(y, z) = 2, d(x, y) = 4 and all other distances equal to ∞. Then the metric approach space (X, δ_d) is not (approach) normal but the **Top**-coreflection (X, T_d) is discrete, hence (topologically) normal.
- Define a quasi-metric q_S on $[0,\infty[\times[0,\infty[$ by

$$q_{S}((a', a''), (b', b'')) = q(a', b') + q(a'', b'').$$

Then ($[0, \infty[\times[0, \infty[, \delta_{q_S})$) can be shown to be (approach normal) but it's underlying topological space is the Sorgenfrey plane which is known to be not normal.

 From the work of Clementino-Hofmann-Tholen et al. on monoidal topology, it follows that App can be isomorphically described as the category (β, P₊)-Cat: an approach space (X, δ) is described via the convergence P₊-relation

$$a: \beta X \longrightarrow X$$

given by

$$a(\mathcal{U}, x) = \sup_{U \in \mathcal{U}} \delta(x, U) \quad (\mathcal{U} \in \beta X, x \in X)$$

Given an approach space X with representing convergence P₊-relation a : βX → X, a P₊-relation â : βX → βX is defined by

$$\hat{a}(\mathcal{U},\mathcal{A}) = \inf\{arepsilon\in [0,\infty] \mid \mathcal{U}^{(arepsilon)} \subseteq \mathcal{A}\},$$

with $\mathcal{U}^{(\varepsilon)}$ the filter generated by $\{U^{(\varepsilon)} \mid U \in \mathcal{U}\}.$

Lemma

$$\hat{a}(\mathcal{U},\mathcal{A}) = \sup_{U \in \mathcal{U}, A \in \mathcal{A}} \inf_{a \in A} \delta(a, U).$$

Definition (Clementino-Hofmann-Tholen et al.)

An approach space X represented as a (β, P_+) -space (X, a) is monoidally normal if for ultrafilters \mathcal{A}, \mathcal{B} and \mathcal{U} on X

$$\hat{a}(\mathcal{U},\mathcal{A}) + \hat{a}(\mathcal{U},\mathcal{B}) \ge \inf_{\mathcal{W}\in\beta X} \hat{a}(\mathcal{A},\mathcal{W}) + \hat{a}(\mathcal{B},\mathcal{W}).$$
 (0.1)

Proposition

Let X be an approach space and (X, a) its representation as a (β, P_+) -space then t.f.a.e.

(1) X is monoidally normal,

(2) For all $\gamma > 0$ and γ -separated $A, B \subseteq X$ and for all $\mathcal{A}, \mathcal{B}, \mathcal{U} \in \beta X$ with $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

 $\hat{a}(\mathcal{U},\mathcal{A}) + \hat{a}(\mathcal{U},\mathcal{B}) \geq \gamma,$

(3) For all γ > 0 and γ-separated A, B ⊆ X and for all α + β < γ, there exists C ⊆ X satisfying A ∩ (X \ C)^(α) = Ø and C^(β) ∩ B = Ø.

Theorem

Given a quasimetric approach space (X, δ_q) and considering the representing (β, P_+) -space (X, a_q) , approach normality of (X, δ_q) is equivalent to monoidal normality of (X, a_q) .

Theorem

For an approach space (X, δ) with representing (β, P_+) -space (X, a) and quasimetric coreflection (X, q), we have the implications $(1) \Rightarrow (2) \Rightarrow (3)$:

- (1) (Approach) normality of (X, δ) .
- (2) Monoidal normality of (X, a).
- (3) (Approach) normality of the quasimetric coreflection (X, δ_q) .
 - (3) does not imply (2): consider the topological Sorgenfrey plane, considered as App-object.
 - ▶ Whether (1) and (2) are equivalent is still an open problem!

References

- E. Colebunders, M. Sioen and W. Van Den Haute, Normality in terms of distances and contractions, *J. Math. Anal. Appl.* 461, (2018), 74-96.
- E. Colebunders, M. Sioen and W. Van Den Haute, Normality, regularity and contractive realvalued maps, *Appl. Categ. Structures*, 26 (Vol. 5), (2018), 909-930.
- D. Hofmann, G. J. Seal, W. Tholen eds, *Monoidal Topology*, A categorical approach to order, metric and topology, Cambridge University Press, (2014).
- M. Katětov, On real-valued functions in topological spaces, Fund. Math., 38, (1951), 85-91.
- M. Katětov, Correction to: On real-valued functions in topological spaces, *Fund. Math.*, 40, (1953), 203-205.

References

- R. Lowen, Index Analysis: Approach Theory at Work, Springer Monographs in Mathematics, Springer Verlag, (2015).
- ▶ H. Tong, Some characterizations of normal and perfectly normal spaces, *Duke Math. J.*, 19, (1952), 289-292.
- C. Van Olmen, A study of the interaction between Frame theory and approach theory, PhD thesis, University of Antwerp, 2005.

Happy birthday Ales!