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Definition
An abstract Boolean σ-algebra is a Boolean algebra in which
countable joins exist. A morphism of abstract Boolean
σ-algebras is a Boolean homomorphism preserving
countable joins.

Definition
Let B be the quotient of the free abstract Boolean algebra on
generators [0, t], 0 ≤ t ≤∞, subject to the relations
[0, s] ≤ [0, t] for s ≤ t and

∧

n[0, sn] = [0, t] whenever sn ↘ t.

Definition
Let Σ be an abstract Boolean σ-algebra. A non-negative
measurable function on Σ is a morphism of abstract
σ-algebras f : B→ Σ.



The classical Daniell integral, 1918

Setting
Let X be an index set, and let G be a sub-vector lattice of RX,
the vector lattice of real functions on X.
Daniell’s inspiration is to base the development on an
axiomatization of the integral.

Definition of the integral
An integral on G is a mapping I : G→ R which is
É a linear functional, meaning I(uf + vg) = uIf + vIg for
f , g ∈ G and u,v ∈ R,

É positive, meaning Ig ≥ 0 whenever g ≥ 0,
É continuous, meaning Ifn → 0 whenever fn ↘ 0, i.e.,

Ifn → 0 whenever {fn} is a decreasing sequence which
converges pointwise downwards to 0.

Lebesgue: measure, then integration. Daniell: integration,
then measure.



A (very) brief lesson on the Daniell integral
É Start with a given integral I on a G, a sub-vector lattice

of RX.
É Define G↑ to be is the family of all functions f ∈ RX for

which there exists a sequence {gn} ⊆ G such that gn ↗ f
(pointwise upwards convergence) and {Ign} is bounded.

É Extend I to G↑ by defining If ≡
∨

n Ign. It is easy to show
that If is well defined.

É For an arbitrary h ∈ RX, define I+h ≡
∧�

If : h ≤ f ∈ G↑
	

if
�

f ∈ G↑ : h ≤ f
	

6= ∅, and I+h = ∞ otherwise. Define
I−h ≡ −I+(−h).

É For an arbitrary h ∈ RX such that I+h and I−h are finite
and equal, define Ih ≡ I+h = I−h. This selects the family
of integrable functions, aka measurable functions, X→ R.

É The measure theory can be recovered by defining the
measure of a subset A ⊆ X to be μA ≡ IχA, where χA is
the characteristic function of A.



A (very) brief lesson on the Daniell integral
É The construction is direct and economical.
É For example, if one starts with piecewise continuous

finite-valued step functions on R, the above procedure
constructs the Lebesgue measurable functions, and then
Lebesgue measure.

É The procedure admits considerable generalization. The
first litmus test is the Lebesgue Bounded Convergence
Theorem: integrals commute with pointwise limits of
bounded sequences of integrable functions.

É The second litmus test is to use the integral to define a
measure on X. If all goes well, the measure generates
the integral in the familiar fashion.



An obstacle, resolved by truncation
É Unfortunately, all does not always go well. There are

examples in the literature of an integral on a vector
sublattice G ⊆ RX which corresponds to no measure on X.

É The presence of the constant functions in G prevents this
pathology, but it is far too strong an assumption for most
purposes. The key attribute necessary to make things
work is known as Stone’s axiom: �

∀g ∈ G+ (g∧1 ∈ G).

Notice that the constant function 1 itself is not required
to be present in G.

É The function g 7→ g∧1 thus serves as a unary operation
on G+. It has the following properties for all f , g ∈ G+. �

(T1) f ∧ g ≤ f ≤ f .
(T2) g = 0 implies g = 0.
(T3) ng = ng for all n implies g = 0.



Truncated vector lattices

É Definition of trunc
A truncated vector lattice, or trunc for short, is an
archimedean vector lattice G endowed with a unary
operation G+ → G+ = (g 7→ g) satisfying (T1), (T2), and (T3).
A truncation homomorphism is a vector lattice
homomorphism θ : G→ H such that θ(g) = θ(g) for all g ∈ G.
The category of truncs and their homomorphisms is
designated T.
É T is a modest extension of W, in the sense that W

manifests itself as the (non-full) monoreflective
subcategory comprised of the unital truncs, i.e., the
truncs which contain an element u ∈ G+ such that
g = g∧ u for all g ∈ G+.

É For a trunc G, we let

G ≡
�

g : g ∈ G+
	

.�



Familiar examples of truncs
É A good example of a trunc is C0X, the family of

continuous real-valued functions on a compact Hausdorff
pointed space X which vanish at the designated point.
The truncation operation is

g(x) ≡
¨

g(x) if g(x) ≤ 1
1 if g(x) > 1.

�

Notice that the constant function 1 is not in C0X. Notice
also that C0X separates the points of X.

É Another good example of a trunc is LC0X, the family of
locally constant continuous real-valued functions on a
pointed Boolean space X which vanish at the designated
point. Notice that LC0X separates the points of X.



Unital components

É Definition
For elements 0 ≤ f , g ∈ G in a trunc G, we say that f is a
component of g if f ≤ g and f ∧ (g− f ) = 0. � We say that u is
a unital component of G if u ∈ G and u∧ v is a component of
v for each v ∈ G. We write

UC(G) ≡ {u : u is a unital component of G} .

É Proposition
The following are equivalent for an element u in a trunc G.

1. u is a unital component.
2. u = 2u.
3. If G is a subtrunc of C0X for some compact Hausdorff

pointed space X then u = χC for a clopen subset C ⊆ X not
containing the designated point ∗.



Simple truncs

É Definition
A simple element in a trunc G is a linear combination of unital
components. The set of simple elements forms a subtrunc of
G, called the simple part of G, and written σG. A trunc is
simple if G = σG, i.e., if every element of the trunc is simple.

É Theorem
The following are equivalent for a trunc G.

1. G is isomorphic to LC0X for a Boolean pointed space X.
2. G is isomorphic to a subtrunc of C0X which is bounded

away from 0. That is, for all 0 < g ∈ G there exists a real
number ϵ > 0 such that

∀x ∈ X (g(x) > 0 =⇒ g(x) > ϵ)

3. G is hyperarchimedean, i.e., maxSpecG = minSpecG, and
G has enough unital components, i.e., for all g ∈ G+ there
exists a unital component u such that g ≤ u. �

4. G is simple.



Some categorical equivalences

Theorem
These categories are equivalent.
1. The category gBa of generalized Boolean algebras, i.e.,

distributive lattices closed under relative
complementation, with bottom element, together with
lattice homomorphisms which preserve the bottom
element.

2. The category BSp∗ of Boolean pointed spaces with
continuous functions which preserve the designated
points.

3. The category sT of simple truncs.

If (X,∗) is a Boolean pointed space and G = LC0X is the
corresponding simple trunc, then

UC(G) = {χC : C is a clopen subset of X such that ∗ /∈ C}



Integration on simple truncs is straightforward

É Definition
A charge on a generalized Boolean algebra A is a real-valued
function μ : A→ R+ such that μ(0) = 0 and
μ(u∨ v) = μ(u) + μ(v) whenever u∧ v = ⊥. A measure is a
charge such that

∑

n μ(an) = μ(a0) whenever {an} is a
pairwise disjoint subset of A such that

∨

n an = a0 exists in A.

É Proposition
In a simple trunc G, every integral restricts to a charge on
UC(G), and every charge on UC(G) produces an integral on G
as follows. Each element g ∈ G can be uniquely expressed in
the form g =

∑

U r(u)u for a pairwise disjoint finite subset
U ⊆ UC(G) and function r : U→ Rr {0}. Define

Ig ≡
∑

U

r(u)μ(u).

These are inverse processes. (This is so because of Dini’s
Theorem.)



The trunc R0L
Another good example of a trunc is R0L, the family of frame
maps from OR0 into a pointed frame L which “vanish at the
designated point”. �
The truncation operation is

g(−∞, r) ≡
¨

> if r > 1
g(−∞, r) if r ≤ 1.

�

A unital component u ∈ R0L is of the form

u(R) =















> if 0,1 ∈ R
x if 0 /∈ R 3 1
x∗ if 1 /∈ R 3 0
⊥ if 0,1 /∈ R

R ∈ R

for a complemented element x = cozu in L.



The Madden representation of truncs

Theorem (B, 2014)
For every trunc there is a Lindelöf pointed frame L and a
trunc injection μG : G→ R0L = (g 7→ ĝ) such that
1. L is join-generated by

cozG ∪ conG =
¦

cozg : g ∈ G
©

∪
¦

cong : g ∈ G
©

=
¦

g(0,∞) : g ∈ G
©

∪
¦

g(−∞,1) : g ∈ G
©

2. for any subset G0 ⊆ G, if
∨

G0
cong = > then G0 generates

G as a truncation kernel.
The frame and injection are unique with respect to these
properties, and are referred to as the Madden frame and
Madden representation, respectively.

Bumper sticker
Every trunc has a home.



The Madden representation is functorial
For any trunc homomorphism θ : G→ R0M there is a unique
pointed frame homomorphism k such that R0k ◦ μG = θ, i.e.,
θ(g) = k ◦ ĝ for all g ∈ G.

G R0L L

2 OR0

R0M M

μG

θ
R0k k

bg

θ(g)



Simply generated truncs
A trunc G is simply generated if every element of G+ is the
join of the simple elements below it. In this case the
insertion σG→ G is realized by a compactification k of L.

σG LC0K R0K K

G R0L L

μσG

R0k k

μG

É Because the insertion σG→ G is one-one, k is dense.
É Because σG join-generates G, k is surjective.
É An integral on G restricts to an integral on the simple

trunc σG, which corresponds to a measure on UC(G). And
conversely, any measure on UC(G) provides an integral
on σG, which extends easily to G by the rule

I(g) ≡
∨

{If : g ≥ f ∈ σG} .



Simply generated truncs are nice but rare
É An integral on a simply generated trunc G reduces to an

integral on its simple part σG.
É An integral on σG reduces to a measure on the

generalized Boolean algebra UC(G).
É But, in order to be simply generated, a trunc G must

have lots of simple elements, which means lots of unital
components, each of which comes from a complemented
element in the underlying Madden frame L of the trunc.
That is, L must have a base of complemented elements.



Pointwise convergence in pointfree topology
É The analysis of pointwise convergence reduces to an

analysis of pointwise suprema and infima of sequences
of real-valued functions.

É For sequences of real-valued functions, the term
‘pointwise infimum’ defines itself. It can also be fully
articulated in the Madden representation, as follows.

É Consider a descending sequence f1 ≥ f2 ≥ f3 . . . of
nonnegative real-valued functions on [0,1].



∧

fn = 0 means ¬∃f0 ∀n (0 < f0 ≤ fn)
R



∧• fn = 0 means
⋃

n f
−1
n

(−∞, ϵ) = X for all ϵ > 0
R



Pointwise meets and joins

Definition
We say that a subset K ⊆ R+

0 L has pointwise meet 0, and
write

∧• K = 0, if
∨

K k(−∞, ϵ) = > for all ϵ > 0.
For a general subset K ⊆ G and element k0 in G,

∧• K = k0
means that

∧•
K

(k − k0) = 0. And dually for
∨• K = k0.

Pointwise meets and joins are just those which are “context
free”.

Proposition
For a subset K ⊆ R+

0 L,
∧• K = 0 iff

∧

K θ(k) = 0 for all trunc
homomorphisms θ : G→ H.

Definition of directional pointwise convergence in
R0L
A sequence {gn} ⊆ R+

0 L converges pointwise downwards to
0, and write gn ↘ 0, if it is decreasing and

∧•
n
gn = 0, i.e., if

∨

n gn(−∞, ϵ) = > for all ϵ > 0. Likewise gn ↘ g0 means
(gn − g0)↘ 0. gn ↗ g0 is defined dually.



Nakano-Stone type theorems

Theorem (Banashewski/Hong)
RL has the feature that every bounded (countable) subset of
positive elements has a supremum iff L is extremally
(basically) disconnected.
A space X is called a P-space if CX = LCX, i.e., if every
continuous real-valued function on X is locally constant, i.e.,
if every zero set is clopen. A frame L is called a P-frame if
every cozero element of L is complemented.

Theorem (B., Hager, Walters-Wayland)
RL has the feature that every bounded (countable) subset of
positive elements has a pointwise supremum iff L is a
Boolean algebra (a P-frame).

Theorem (B., Walters-Wayland, Zenk)
Pointed P-frames are monocoreflective in pointed frames. We
write L→ P∗L for the reflector arrow for a pointed frame L.

The reflection P∗L has the same points as L does. Thus if L is
spatial but not a P-frame then P∗L is not spatial.



The epimorphism theory in T mirrors that in W

Theorem
A trunc G is epicomplete, i.e., G has no proper extensions
epic in T, iff G is of the form R0L for a P-frame L.

Theorem
The epicomplete objects form a monoreflective subcategory
of T. A reflector for the trunc G with Madden frame L is the
extension G→ μG(G) ≤ R0L→ R0P∗L.

Notation for the epicompletion
G→ ξG



Pointwise dense extensions are closely related
to epic extensions

Theorem
The epicompletion G→ ξG can be understood as the
pointwise completion of G.
1. Pointwise convergence on G is the restriction of

pointwise convergence on ξG.
2. G is pointwise dense in ξG.
3. ξG is pointwise complete in the sense that it has no

proper extension in which it is pointwise dense.

We shall use ξG to play the role of RX in the construction of
the Daniell integral.



Pointwise convergence in R0L

Definition of pointwise convergence
A sequence {gn} ⊆ R0L converges pointwise to 0, written
gn

•−→ 0, provided that it is bounded and
∨•

n≥m gn ↘ 0 in ξG.

Note that the following are equivalent.
1. {gn} has an upper bound in some supertrunc of G.
2. {gn} has a pointwise join in ξG.
3.

�

gi − gj : i, j ∈ N
	

has a pointwise join in ξG.
We say that the sequence {gn} is bounded somewhere.



Pointwise convergence has nice properties.

Proposition
The trunc operations are pointwise continuous.

Proposition
Trunc homomorphisms are pointwise continuous.

Proposition
A pointwise dense subtrunc is epically embedded.

Conjecture
A subtrunc is epically embedded iff it is pointwise dense.



Pointwise Cauchy sequences

É Definition of pointwise Cauchy sequence
A sequence {gn} ⊆ R0L is said to be pointwise Cauchy if it is
bounded somewhere and

∨•
i,j≥m(gi − gj)↘ 0.

É Proposition
For a sequence {gn} ⊆ G+ which is bounded somewhere, the
following are equivalent.

1. There exists h ∈ ξG such that gn •−→ h.
2. {gn} is pointwise Cauchy.
3.

∨•
m

∧•
n≥m gn =

∧•
m

∨•
n≥m gn.

É Caution
It is not the case that every element of ξG is the pointwise
limit of a sequence from G. The pointwise closure operator
must be iterated transfinitely to get from G to ξG.



Extending a given integral
Let I be an integral on G, i.e., I : G→ R is positive, linear, and
continuous.

Definition
Call a sequence {gn} integrable if it is pointwise Cauchy and
has finite total integral, i.e.,

∨

m I
∨

i,j≤m(gi − gj) <∞.
We denote the family of integrable sequences by IS. Let

G′ ≡
�

h ∈ ξG : ∃{gn} ∈ IS (gn
•−→ h)

	

.

Proposition
É If {gn} is an integrable sequence in a trunc G then {Ign}

is a convergent sequence of real numbers.
É G′ is a subtrunc of ξG containing G.
É The extension of I is an integral on G′ which extends I

on G.



Extending a given integral

Theorem
Let I be an integral on a trunc G. Then there is a subtrunc
G◦ ⊆ ξG containing G with the following properties.
1. Pointwise convergence on G◦ restricts to pointwise

convergence on G, and G is pointwise dense in G◦.
2. G◦ is almost pointwise complete, in the sense that every

integrable sequence on G◦ is convergent to an element
of G◦.

3. I extends to G◦.
4. G◦ is simply generated.
5. Thus I restricts to an integral on σG◦ which comes from

a measure on UC(G◦), and this measure generates I in
the standard fashion.



A few comments
É The Lebesgue Dominated Convergence Theorem takes

the following form. Suppose G = G◦, {gn} ∈ IS, and
g0 ∈ G. Then

gn
•−→ g0 =⇒ Ign → Ig0.

É The construction of the extension G→ G◦ of the integral
is done by a transfinite iteration, using pointwise
convergence at every step, rather than extending the
integral all at once as is done in the classical
construction.

É When I is taken to be the Riemann integral on the trunc
G of continuous functions R→ R of compact support, the
extension G→ G◦ generates the trunc of Baire
measurable functions. We do not get the Lebesgue
measurable functions, because G is not pointwise dense
in them. Nor are the Lebesgue measurable functions an
epic extensions of G in the category T.



Happy birthday, Aleš!


