The pointfree Daniell integral

R. N. Ball and A. Pultr

University of Denver, Charles University

28 September 2018

An important paper

I. Kriz and A. Pultr, *Categorical geometry and integration without points*, Appl. Categor. Struct. **22** (2014), 79–97.

Definition

An abstract Boolean σ -algebra is a Boolean algebra in which countable joins exist. A morphism of abstract Boolean σ -algebras is a Boolean homomorphism preserving countable joins.

Definition

Let \mathcal{B} be the quotient of the free abstract Boolean algebra on generators [0, t], $0 \le t \le \infty$, subject to the relations $[0, s] \le [0, t]$ for $s \le t$ and $\bigwedge_n [0, s_n] = [0, t]$ whenever $s_n \searrow t$.

Definition

Let Σ be an abstract Boolean σ -algebra. A non-negative measurable function on Σ is a morphism of abstract σ -algebras $f: \mathcal{B} \to \Sigma$.

The classical Daniell integral, 1918

Setting

Let X be an index set, and let G be a sub-vector lattice of \mathbb{R}^X , the vector lattice of real functions on X.

Daniell's inspiration is to base the development on an axiomatization of the integral.

Definition of the integral

An *integral on* G is a mapping $\mathcal{I}: G \to \mathbb{R}$ which is

- ▶ a *linear functional*, meaning $\mathcal{I}(uf + vg) = u\mathcal{I}f + v\mathcal{I}g$ for $f, g \in G$ and $u, v \in \mathbb{R}$,
- ▶ *positive*, meaning $\mathcal{I}g \ge 0$ whenever $g \ge 0$,
- ▶ continuous, meaning $\mathcal{I}f_n \rightarrow 0$ whenever $f_n \searrow 0$, i.e., $\mathcal{I}f_n \rightarrow 0$ whenever $\{f_n\}$ is a decreasing sequence which converges pointwise downwards to 0.

Lebesgue: measure, then integration. Daniell: integration, then measure.

A (very) brief lesson on the Daniell integral

- Start with a given integral \mathcal{I} on a G, a sub-vector lattice of \mathbb{R}^{X} .
- Define G[↑] to be is the family of all functions f ∈ ℝ^X for which there exists a sequence {g_n} ⊆ G such that g_n ≯ f (pointwise upwards convergence) and {Ig_n} is bounded.
- ► Extend \mathcal{I} to G^{\uparrow} by defining $\mathcal{I}f \equiv \bigvee_{n} \mathcal{I}g_{n}$. It is easy to show that $\mathcal{I}f$ is well defined.
- ► For an arbitrary $h \in \mathbb{R}^X$, define $\mathcal{I}^+ h \equiv \bigwedge \{ \mathcal{I}f : h \leq f \in G^{\uparrow} \}$ if $\{ f \in G^{\uparrow} : h \leq f \} \neq \emptyset$, and $\mathcal{I}^+ h = \infty$ otherwise. Define $\mathcal{I}^- h \equiv -\mathcal{I}^+(-h)$.
- ▶ For an arbitrary $h \in \mathbb{R}^X$ such that \mathcal{I}^+h and \mathcal{I}^-h are finite and equal, define $\mathcal{I}h \equiv \mathcal{I}^+h = \mathcal{I}^-h$. This selects the family of *integrable functions*, aka *measurable functions*, $X \to \mathbb{R}$.
- ► The measure theory can be recovered by defining the measure of a subset $A \subseteq X$ to be $\mu A \equiv \mathcal{I}\chi_A$, where χ_A is the characteristic function of A.

A (very) brief lesson on the Daniell integral

- The construction is direct and economical.
- For example, if one starts with piecewise continuous finite-valued step functions on ℝ, the above procedure constructs the Lebesgue measurable functions, and then Lebesgue measure.
- The procedure admits considerable generalization. The first litmus test is the Lebesgue Bounded Convergence Theorem: integrals commute with pointwise limits of bounded sequences of integrable functions.
- The second litmus test is to use the integral to define a measure on X. If all goes well, the measure generates the integral in the familiar fashion.

An obstacle, resolved by truncation

- ▶ Unfortunately, all does not always go well. There are examples in the literature of an integral on a vector sublattice $G \subseteq \mathbb{R}^X$ which corresponds to no measure on X.
- ► The presence of the constant functions in G prevents this pathology, but it is far too strong an assumption for most purposes. The key attribute necessary to make things work is known as Stone's axiom: □

$$\forall g \in G^+ \ (g \land 1 \in G).$$

Notice that the constant function 1 itself is not required to be present in *G*.

▶ The function $g \mapsto g \land 1$ thus serves as a unary operation on G^+ . It has the following properties for all $f, g \in G^+$. \Box

(
$$\mathfrak{T}1$$
) $f \land \overline{g} \leq \overline{f} \leq f$.
($\mathfrak{T}2$) $\overline{g} = 0$ implies $g = 0$.
($\mathfrak{T}3$) $ng = \overline{ng}$ for all n implies $g = 0$.

($\mathfrak{T3}$) $ng = \overline{ng}$ for all n implies g = 0.

Truncated vector lattices

Definition of trunc

A truncated vector lattice, or trunc for short, is an archimedean vector lattice *G* endowed with a unary operation $G^+ \rightarrow G^+ = (g \mapsto \overline{g})$ satisfying ($\mathfrak{T}1$), ($\mathfrak{T}2$), and ($\mathfrak{T}3$). A truncation homomorphism is a vector lattice homomorphism $\theta: G \rightarrow H$ such that $\theta(\overline{g}) = \overline{\theta(g)}$ for all $g \in G$. The category of truncs and their homomorphisms is designated **T**.

- ▶ **T** is a modest extension of **W**, in the sense that **W** manifests itself as the (non-full) monoreflective subcategory comprised of the *unital* truncs, i.e., the truncs which contain an element $u \in G^+$ such that $\overline{g} = g \wedge u$ for all $g \in G^+$.
- For a trunc *G*, we let

$$\overline{G} \equiv \left\{ \overline{g} : g \in G^+ \right\} . \square$$

(日) (日) (日) (日) (日) (日) (日) (日)

Familiar examples of truncs

 A good example of a trunc is C₀X, the family of continuous real-valued functions on a compact Hausdorff pointed space X which vanish at the designated point. The truncation operation is

$$\overline{g}(x) \equiv \begin{cases} g(x) & \text{if } g(x) \le 1\\ 1 & \text{if } g(x) > 1. \end{cases} \quad \Box$$

Notice that the constant function 1 is not in C_0X . Notice also that C_0X separates the points of X.

Another good example of a trunc is LC₀X, the family of locally constant continuous real-valued functions on a pointed Boolean space X which vanish at the designated point. Notice that LC₀X separates the points of X.

Unital components

Definition

For elements $0 \le f, g \in \overline{G}$ in a trunc *G*, we say that *f* is a component of *g* if $f \le g$ and $f \land (g - f) = 0$. \Box We say that *u* is a *unital component of G* if $u \in \overline{G}$ and $u \land v$ is a component of *v* for each $v \in \overline{G}$. We write

 $\mathcal{UC}(G) \equiv \{ u : u \text{ is a unital component of } G \}.$

Proposition

The following are equivalent for an element u in a trunc G.

- 1. *u* is a unital component.
- 2. $u = \overline{2u}$.
- 3. If *G* is a subtrunc of C_0X for some compact Hausdorff pointed space *X* then $u = \chi_C$ for a clopen subset $C \subseteq X$ not containing the designated point *.

Simple truncs

Definition

A simple element in a trunc *G* is a linear combination of unital components. The set of simple elements forms a subtrunc of *G*, called the simple part of *G*, and written σG . A trunc is simple if $G = \sigma G$, i.e., if every element of the trunc is simple.

Theorem

The following are equivalent for a trunc G.

- 1. *G* is isomorphic to $\mathcal{LC}_0 X$ for a Boolean pointed space *X*.
- 2. *G* is isomorphic to a subtrunc of C_0X which is *bounded away from* 0. That is, for all $0 < g \in G$ there exists a real number $\varepsilon > 0$ such that

$$\forall x \in X \ (g(x) > 0 \implies g(x) > \varepsilon)$$

- 3. *G* is hyperarchimedean, i.e., maxSpec G = minSpec G, and *G* has enough unital components, i.e., for all $g \in G^+$ there exists a unital component *u* such that $\overline{g} \leq u$. \Box
- 4. G is simple.

Some categorical equivalences

Theorem

These categories are equivalent.

- 1. The category **gBa** of *generalized Boolean algebras*, i.e., distributive lattices closed under relative complementation, with bottom element, together with lattice homomorphisms which preserve the bottom element.
- The category BSp * of Boolean pointed spaces with continuous functions which preserve the designated points.
- 3. The category **sT** of simple truncs.

If (X, *) is a Boolean pointed space and $G = \mathcal{LC}_0 X$ is the corresponding simple trunc, then

 $\mathcal{UC}(G) = \{ \chi_C : C \text{ is a clopen subset of } X \text{ such that } * \notin C \}$

Integration on simple truncs is straightforward

Definition

A *charge* on a generalized Boolean algebra *A* is a real-valued function $\mu: A \to \mathbb{R}^+$ such that $\mu(0) = 0$ and $\mu(u \lor v) = \mu(u) + \mu(v)$ whenever $u \land v = \bot$. A *measure* is a charge such that $\sum_n \mu(a_n) = \mu(a_0)$ whenever $\{a_n\}$ is a pairwise disjoint subset of *A* such that $\bigvee_n a_n = a_0$ exists in *A*.

Proposition

In a simple trunc *G*, every integral restricts to a charge on $\mathcal{UC}(G)$, and every charge on $\mathcal{UC}(G)$ produces an integral on *G* as follows. Each element $g \in G$ can be uniquely expressed in the form $g = \sum_{U} r(u)u$ for a pairwise disjoint finite subset $U \subseteq \mathcal{UC}(G)$ and function $r: U \rightarrow \mathbb{R} \setminus \{0\}$. Define

$$\mathcal{I}g \equiv \sum_{U} r(u)\mu(u).$$

These are inverse processes. (This is so because of Dini's Theorem.)

The trunc $\mathcal{R}_0 L$

Another good example of a trunc is \mathcal{R}_0L , the family of frame maps from $\mathcal{O}\mathbb{R}_0$ into a pointed frame L which "vanish at the designated point". □

The truncation operation is

$$\overline{g}(-\infty, r) \equiv \begin{cases} \mathsf{T} & \text{if } r > 1\\ g(-\infty, r) & \text{if } r \le 1. \end{cases} \quad \Box$$

A unital component $u \in \mathcal{R}_0 L$ is of the form

$$u(R) = \begin{cases} \mathsf{T} & \text{if } 0, 1 \in R \\ x & \text{if } 0 \notin R \ni 1 \\ x^* & \text{if } 1 \notin R \ni 0 \\ \bot & \text{if } 0, 1 \notin R \end{cases} \qquad R \in \mathbb{R}$$

for a complemented element $x = \cos u$ in L.

The Madden representation of truncs

Theorem (B, 2014)

For every trunc there is a Lindelöf pointed frame L and a trunc injection $\mu_G : G \to \mathcal{R}_0 L = (g \mapsto \hat{g})$ such that

1. L is join-generated by

$$\operatorname{coz} G \cup \operatorname{con} G = \left\{ \operatorname{coz} g : g \in \overline{G} \right\} \cup \left\{ \operatorname{con} g : g \in \overline{G} \right\}$$
$$= \left\{ g(0, \infty) : g \in \overline{G} \right\} \cup \left\{ g(-\infty, 1) : g \in \overline{G} \right\}$$

2. for any subset $G_0 \subseteq \overline{G}$, if $\bigvee_{G_0} \operatorname{con} g = T$ then G_0 generates G as a truncation kernel.

The frame and injection are unique with respect to these properties, and are referred to as the *Madden frame* and *Madden representation*, respectively.

Bumper sticker

Every trunc has a home.

The Madden representation is functorial

For any trunc homomorphism $\theta: G \to \mathcal{R}_0 M$ there is a unique pointed frame homomorphism k such that $\mathcal{R}_0 k \circ \mu_G = \theta$, i.e., $\theta(g) = k \circ \hat{g}$ for all $g \in G$.

・ロト ・ 理 ト ・ ヨ ト ・

э

Simply generated truncs

A trunc *G* is *simply generated* if every element of G^+ is the join of the simple elements below it. In this case the insertion $\sigma G \rightarrow G$ is realized by a compactification *k* of *L*.

- ▶ Because the insertion $\sigma G \rightarrow G$ is one-one, k is dense.
- Because σG join-generates G, k is surjective.
- An integral on *G* restricts to an integral on the simple trunc σG , which corresponds to a measure on $\mathcal{UC}(G)$. And conversely, any measure on $\mathcal{UC}(G)$ provides an integral on σG , which extends easily to *G* by the rule

$$\mathcal{I}(g) \equiv \bigvee \{ \mathcal{I}f : g \geq f \in \sigma G \}.$$

Simply generated truncs are nice but rare

- An integral on a simply generated trunc G reduces to an integral on its simple part σG .
- An integral on σG reduces to a measure on the generalized Boolean algebra UC(G).
- But, in order to be simply generated, a trunc G must have lots of simple elements, which means lots of unital components, each of which comes from a complemented element in the underlying Madden frame L of the trunc. That is, L must have a base of complemented elements.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Pointwise convergence in pointfree topology

- The analysis of pointwise convergence reduces to an analysis of pointwise suprema and infima of sequences of real-valued functions.
- For sequences of real-valued functions, the term 'pointwise infimum' defines itself. It can also be fully articulated in the Madden representation, as follows.

► Consider a descending sequence f₁ ≥ f₂ ≥ f₃... of nonnegative real-valued functions on [0, 1]. $\bigwedge f_n = 0$ means $\neg \exists f_0 \forall n \ (0 < f_0 \leq f_n)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

 $\bigwedge^{\bullet} f_n = 0$ means $\bigcup_n f_n^{-1}(-\infty, \varepsilon) = X$ for all $\varepsilon > 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pointwise meets and joins

Definition

We say that a subset $K \subseteq \mathbb{R}_0^+ L$ has pointwise meet 0, and write $\bigwedge^{\bullet} K = 0$, if $\bigvee_K k(-\infty, \varepsilon) = T$ for all $\varepsilon > 0$. For a general subset $K \subseteq G$ and element k_0 in G, $\bigwedge^{\bullet} K = k_0$ means that $\bigwedge_K^{\bullet} (k - k_0) = 0$. And dually for $\bigvee^{\bullet} K = k_0$.

Pointwise meets and joins are just those which are "context free".

Proposition

For a subset $K \subseteq \mathcal{R}_0^+ L$, $\bigwedge^{\bullet} K = 0$ iff $\bigwedge_K \theta(k) = 0$ for all trunc homomorphisms $\theta: G \to H$.

Definition of directional pointwise convergence in $\mathcal{R}_0 L$

A sequence $\{g_n\} \subseteq \mathcal{R}_0^+ L$ converges pointwise downwards to 0, and write $g_n \searrow 0$, if it is decreasing and $\bigwedge_n^{\bullet} g_n = 0$, i.e., if $\bigvee_n g_n(-\infty, \varepsilon) = T$ for all $\varepsilon > 0$. Likewise $g_n \searrow g_0$ means $(g_n - g_0) \searrow 0$. $g_n \nearrow g_0$ is defined dually.

Nakano-Stone type theorems

Theorem (Banashewski/Hong)

 $\mathcal{R}L$ has the feature that every bounded (countable) subset of positive elements has a supremum iff *L* is extremally (basically) disconnected.

A space X is called a *P*-space if $CX = \mathcal{L}CX$, i.e., if every continuous real-valued function on X is locally constant, i.e., if every zero set is clopen. A frame L is called a *P*-frame if every cozero element of L is complemented.

Theorem (B., Hager, Walters-Wayland)

 $\mathcal{R}L$ has the feature that every bounded (countable) subset of positive elements has a pointwise supremum iff *L* is a Boolean algebra (a *P*-frame).

Theorem (B., Walters-Wayland, Zenk)

Pointed *P*-frames are monocoreflective in pointed frames. We write $L \rightarrow \mathcal{P}_*L$ for the reflector arrow for a pointed frame *L*.

The reflection \mathcal{P}_*L has the same points as L does. Thus if L is spatial but not a P-frame then \mathcal{P}_*L is not spatial.

The epimorphism theory in ${\bf T}$ mirrors that in ${\bf W}$

Theorem

A trunc *G* is epicomplete, i.e., *G* has no proper extensions epic in **T**, iff *G* is of the form \mathcal{R}_0L for a *P*-frame *L*.

Theorem

The epicomplete objects form a monoreflective subcategory of **T**. A reflector for the trunc *G* with Madden frame *L* is the extension $G \rightarrow \mu_G(G) \leq \mathcal{R}_0 L \rightarrow \mathcal{R}_0 \mathcal{P}_* L$.

Notation for the epicompletion

 $G \rightarrow \xi G$

Pointwise dense extensions are closely related to epic extensions

Theorem

The epicompletion $G \rightarrow \xi G$ can be understood as the pointwise completion of G.

- 1. Pointwise convergence on G is the restriction of pointwise convergence on ξG .
- 2. G is pointwise dense in ξG .
- 3. ξG is *pointwise complete* in the sense that it has no proper extension in which it is pointwise dense.

We shall use ξG to play the role of \mathbb{R}^{χ} in the construction of the Daniell integral.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Pointwise convergence in \mathcal{R}_0L

Definition of pointwise convergence

A sequence $\{g_n\} \subseteq \mathcal{R}_0L$ converges pointwise to 0, written $g_n \xrightarrow{\bullet} 0$, provided that it is bounded and $\bigvee_{n>m}^{\bullet} g_n \searrow 0$ in ξG .

Note that the following are equivalent.

- 1. $\{g_n\}$ has an upper bound in some supertrunc of *G*.
- 2. $\{g_n\}$ has a pointwise join in ξG .
- 3. $\{g_i g_j : i, j \in \mathbb{N}\}$ has a pointwise join in ξG .

We say that the sequence $\{g_n\}$ is bounded somewhere.

Pointwise convergence has nice properties.

Proposition

The trunc operations are pointwise continuous.

Proposition

Trunc homomorphisms are pointwise continuous.

Proposition

A pointwise dense subtrunc is epically embedded.

Conjecture

A subtrunc is epically embedded iff it is pointwise dense.

Pointwise Cauchy sequences

Definition of pointwise Cauchy sequence

A sequence $\{g_n\} \subseteq \mathcal{R}_0 L$ is said to be *pointwise Cauchy* if it is bounded somewhere and $\bigvee_{i,i>m}^{\bullet}(g_i - g_j) \searrow 0$.

Proposition

For a sequence $\{g_n\} \subseteq G^+$ which is bounded somewhere, the following are equivalent.

1. There exists $h \in \xi G$ such that $g_n \xrightarrow{\bullet} h$.

2. $\{g_n\}$ is pointwise Cauchy.

3.
$$\bigvee_{m}^{\bullet} \bigwedge_{n \geq m}^{\bullet} g_n = \bigwedge_{m}^{\bullet} \bigvee_{n \geq m}^{\bullet} g_n$$
.

Caution

It is not the case that every element of ξG is the pointwise limit of a sequence from *G*. The pointwise closure operator must be iterated transfinitely to get from *G* to ξG .

Extending a given integral

Let \mathcal{I} be an integral on G, i.e., $\mathcal{I}: G \to \mathbb{R}$ is positive, linear, and continuous.

Definition

Call a sequence $\{g_n\}$ *integrable* if it is pointwise Cauchy and has finite total integral, i.e., $\bigvee_m \mathcal{I} \bigvee_{i,j \le m} (g_i - g_j) < \infty$. We denote the family of integrable sequences by \mathcal{IS} . Let

$$G' \equiv \left\{ h \in \xi G : \exists \{g_n\} \in \mathcal{IS} (g_n \xrightarrow{\bullet} h) \right\}.$$

Proposition

- If {g_n} is an integrable sequence in a trunc G then {Ig_n} is a convergent sequence of real numbers.
- G' is a subtrunc of ξG containing G.
- ► The extension of I is an integral on G' which extends I on G.

Extending a given integral

Theorem

Let \mathcal{I} be an integral on a trunc G. Then there is a subtrunc $G^{\circ} \subseteq \xi G$ containing G with the following properties.

- 1. Pointwise convergence on *G*° restricts to pointwise convergence on *G*, and *G* is pointwise dense in *G*°.
- 2. G° is almost pointwise complete, in the sense that every integrable sequence on G° is convergent to an element of G° .
- **3**. \mathcal{I} extends to G° .
- 4. *G*° is simply generated.
- 5. Thus \mathcal{I} restricts to an integral on σG° which comes from a measure on $\mathcal{UC}(G^{\circ})$, and this measure generates \mathcal{I} in the standard fashion.

A few comments

The Lebesgue Dominated Convergence Theorem takes the following form. Suppose G = G°, {g_n} ∈ IS, and g₀ ∈ G. Then

$$g_n \xrightarrow{\bullet} g_0 \implies \mathcal{I}g_n \rightarrow \mathcal{I}g_0.$$

- The construction of the extension G → G° of the integral is done by a transfinite iteration, using pointwise convergence at every step, rather than extending the integral all at once as is done in the classical construction.
- ▶ When \mathcal{I} is taken to be the Riemann integral on the trunc G of continuous functions $\mathbb{R} \to \mathbb{R}$ of compact support, the extension $G \to G^\circ$ generates the trunc of Baire measurable functions. We do not get the Lebesgue measurable functions, because G is not pointwise dense in them. Nor are the Lebesgue measurable functions an epic extensions of G in the category **T**.

Happy birthday, Aleš!