Generalised Stone Dualities

Tristan Bice joint work with Charles Starling

Institute of Mathematics of the Polish Academy of Sciences

September 29th 2018
Workshop on Algebra, Logic and Topology
University of Coimbra

Background

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.
Questions

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.
Questions

1. Can we extend to non-0-dimensional spaces?

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.

Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

- These have been investigated by various people, e.g.

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

- These have been investigated by various people, e.g.

1. Wallman (1938), Shirota (1952), De Vries (1962).

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

- These have been investigated by various people, e.g.

1. Wallman (1938), Shirota (1952), De Vries (1962).
2. Stone (1937), Priestley (1970), Grätzer (1971).

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

- These have been investigated by various people, e.g.

1. Wallman (1938), Shirota (1952), De Vries (1962).
2. Stone (1937), Priestley (1970), Grätzer (1971).
3. Resende (2007), Exel (2008), Lawson (2010).

Background

- Stone (1936) established the duality:

$$
\text { Stone Spaces } \quad \leftrightarrow \quad \text { Boolean Algebras. }
$$

Stone Space $=0$-dimensional compact Hausdorff space.
Boolean Algebra $=$ bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

$$
\text { Étale Groupoids } \quad \leftrightarrow \quad \text { Inverse Semigroups? }
$$

- These have been investigated by various people, e.g.

1. Wallman (1938), Shirota (1952), De Vries (1962).
2. Stone (1937), Priestley (1970), Grätzer (1971).
3. Resende (2007), Exel (2008), Lawson (2010).

- Goal: explore further generalisations/unifications.

Naïve Approach

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0,1\}^{\mathbb{N}}$.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0,1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish $[0,1]$ and $\{0,1\}^{\mathbb{N}}$.

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0,1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish $[0,1]$ and $\{0,1\}^{\mathbb{N}}$.
- Solution: either

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0,1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish $[0,1]$ and $\{0,1\}^{\mathbb{N}}$.
- Solution: either

1. restrict to certain kinds of bases, e.g. closed under $O \cup N$ or

Naïve Approach

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $\left(O=\bar{O}^{\circ}\right)$ countable basis of $X=[0,1]$.
- Close under $O \cap N, \overline{O \cup N}^{\circ}$ and $(X \backslash O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0,1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish $[0,1]$ and $\{0,1\}^{\mathbb{N}}$.
- Solution: either

1. restrict to certain kinds of bases, e.g. closed under $O \cup N$ or
2. add more structure, e.g. the compact containment relation \Subset.

Alternative Approaches

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

$$
\text { Continuous Frames } \leftrightarrow \quad(\mathcal{O}(X), \subseteq) \text { for LC sober } X \text {. }
$$

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

$$
\text { Continuous Frames } \leftrightarrow \quad(\mathcal{O}(X), \subseteq) \text { for LC sober } X \text {. }
$$

Drawbacks:

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

$$
\text { Continuous Frames } \leftrightarrow \quad(\mathcal{O}(X), \subseteq) \text { for LC sober } X \text {. }
$$

Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

$$
\text { Continuous Frames } \leftrightarrow \quad(\mathcal{O}(X), \subseteq) \text { for LC sober } X \text {. }
$$

Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames $\leftrightarrow \quad(\mathcal{O}(X), \subseteq)$ for LC sober X.

Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- \Rightarrow can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames $\leftrightarrow \quad(\mathcal{O}(X), \subseteq)$ for LC sober X.

Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- \Rightarrow can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{R O}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):
Compingent Lattices/Algebras $\leftrightarrow \quad(B, \subseteq, \Subset)$ for $\mathrm{L} / \mathrm{CH} X$.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames $\leftrightarrow \quad(\mathcal{O}(X), \subseteq)$ for LC sober X.
Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- \Rightarrow can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{R O}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):
Compingent Lattices/Algebras $\leftrightarrow \quad(B, \subseteq, \Subset)$ for $\mathrm{L} / \mathrm{CH} X$.
Drawbacks: $\vee \neq \cup$. Also \Subset required as additional structure.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames $\leftrightarrow(\mathcal{O}(X), \subseteq)$ for LC sober X.
Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- \Rightarrow can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{R O}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):
Compingent Lattices/Algebras $\leftrightarrow \quad(B, \subseteq, \subseteq)$ for $\mathrm{L} / \mathrm{CH} X$.
Drawbacks: $\vee \neq \cup$. Also \Subset required as additional structure.
- Wallman (1938) takes \cap-U-bases $B \subseteq \mathcal{O}(X)$ of compact X :

Bounded Subfit Distributive Lattices $\leftrightarrow \quad(B, \subseteq)$ for $C T_{1} X$.

Alternative Approaches

- Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames $\leftrightarrow(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2 nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- \Rightarrow can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{R O}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):
Compingent Lattices/Algebras $\leftrightarrow \quad(B, \subseteq, \subseteq)$ for $\mathrm{L} / \mathrm{CH} X$.
Drawbacks: $\vee \neq \cup$. Also \Subset required as additional structure.
- Wallman (1938) takes \cap-U-bases $B \subseteq \mathcal{O}(X)$ of compact X : Bounded Subfit Distributive Lattices $\leftrightarrow \quad(B, \subseteq)$ for $C T_{1} X$.
Drawback: étale groupoids are often just locally compact (with non-étale 1-point compactification).

U-Bases

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) \text {. }
$$

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) .
$$

- Moreover, $(B, \leq, \prec)=(B, \subseteq, \Subset)$ is \prec-distributive in that

$$
a \leq b \vee c \quad \Leftrightarrow \quad \forall a^{\prime} \prec a \exists b^{\prime} \prec b \exists c^{\prime} \prec c\left(a^{\prime} \prec b^{\prime} \vee c^{\prime} \prec a\right) .
$$

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) \text {. }
$$

- Moreover, $(B, \leq, \prec)=(B, \subseteq, \Subset)$ is \prec-distributive in that $a \leq b \vee c \quad \Leftrightarrow \quad \forall a^{\prime} \prec a \exists b^{\prime} \prec b \exists c^{\prime} \prec c\left(a^{\prime} \prec b^{\prime} \vee c^{\prime} \prec a\right)$.
(\leq-distributivity is the usual notion for \vee-semilattices)

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) \text {. }
$$

- Moreover, $(B, \leq, \prec)=(B, \subseteq, \Subset)$ is \prec-distributive in that

$$
a \leq b \vee c \quad \Leftrightarrow \quad \forall a^{\prime} \prec a \exists b^{\prime} \prec b \exists c^{\prime} \prec c\left(a^{\prime} \prec b^{\prime} \vee c^{\prime} \prec a\right) .
$$

(\leq-distributivity is the usual notion for \vee-semilattices)
Theorem (B.-Starling 2018)
Every bounded \prec-distributive \vee-semilattice arises in this way.

U-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) \text {. }
$$

- Moreover, $(B, \leq, \prec)=(B, \subseteq, \Subset)$ is \prec-distributive in that $a \leq b \vee c \quad \Leftrightarrow \quad \forall a^{\prime} \prec a \exists b^{\prime} \prec b \exists c^{\prime} \prec c\left(a^{\prime} \prec b^{\prime} \vee c^{\prime} \prec a\right)$.
(\leq-distributivity is the usual notion for \vee-semilattices)
Theorem (B.-Starling 2018)
Every bounded \prec-distributive \vee-semilattice arises in this way.
From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).

\cup-Bases

- Given compact Hausdorff X, consider a \cup-basis B of open sets, i.e. require B to be closed under finite unions

$$
O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad(\text { and } \emptyset=\bigcup \emptyset \in B) .
$$

- In particular, B is bounded: $\min (B)=\emptyset$ and $\max (B)=X$.
- Can then recover compact containment \Subset as rather below:

$$
O \Subset N \quad \Leftrightarrow \quad \exists M \in B(O \cap M=\emptyset \text { and } N \cup M=X) .
$$

- Moreover, $(B, \leq, \prec)=(B, \subseteq, \Subset)$ is \prec-distributive in that $a \leq b \vee c \quad \Leftrightarrow \quad \forall a^{\prime} \prec a \exists b^{\prime} \prec b \exists c^{\prime} \prec c\left(a^{\prime} \prec b^{\prime} \vee c^{\prime} \prec a\right)$.
(\leq-distributivity is the usual notion for \vee-semilattices)
Theorem (B.-Starling 2018)
Every bounded \prec-distributive \vee-semilattice arises in this way.
From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).
- Classic Stone duality recovered when $\prec=\leq$.

Local Generalization

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\forall O \in B \quad \exists N \in B \quad(O \Subset N)
$$

(؟-round)

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Theorem (B.-Starling 2018)
Every \prec-round \prec-distributive \vee-semilattice arises this way.

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Theorem (B.-Starling 2018)
Every \prec-round \prec-distributive \vee-semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) . \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Theorem (B.-Starling 2018)
Every \prec-round \prec-distributive \vee-semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).

- Can even extend to locally Hausdorff spaces.

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) . \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Theorem (B.-Starling 2018)

Every \prec-round \prec-distributive \vee-semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).

- Can even extend to locally Hausdorff spaces.
- But in T_{1} or sober spaces, $\Subset \neq$ rather below.

Local Generalization

- Given locally compact Hausdorff X, consider a \cup-basis B of relatively compact open sets.
- Then B has no maximum but is instead \Subset-round:

$$
\begin{equation*}
\forall O \in B \quad \exists N \in B \quad(O \Subset N) . \tag{؟-round}
\end{equation*}
$$

- Also \Subset is recovered by a generalised rather below relation:

$$
O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B(O \cap M=\emptyset \text { and } N \cup M \supseteq P)
$$

Theorem (B.-Starling 2018)

Every \prec-round \prec-distributive \vee-semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$-Ultrafilters (B).

- Can even extend to locally Hausdorff spaces.
- But in T_{1} or sober spaces, $\Subset \neq$ rather below.
- E.g. if X is hyperconnected then $\emptyset=$ rather below.

Sober Generalization

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b) . \quad \text { (lower order) }
$$

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b) . \quad \text { (lower order) }
$$

- B is still a \prec-distributive \vee-semilattice.

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b) . \quad \text { (lower order) }
$$

- B is still a \prec-distributive \vee-semilattice.
- B is also a predomain, i.e. each a^{\succ} is a round ideal.

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b) . \quad \text { (lower order) }
$$

- B is still a \prec-distributive \vee-semilattice.
- B is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)
Every \prec-distributive \vee-semilattice predomain arises in this way.

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b) . \quad \text { (lower order) }
$$

- B is still a \prec-distributive \vee-semilattice.
- B is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)
Every \prec-distributive \vee-semilattice predomain arises in this way.
From a \cup-basis (B, \Subset) we reconstruct $X \approx$ Prime- ©-Filters (B).

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b)
$$

- B is still a \prec-distributive \vee-semilattice.
- B is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec-distributive \vee-semilattice predomain arises in this way.

- Unifies Grätzer (1971), Smyth/Jung-Sünderhauf (1990/1996): locally compact 0-dim sober spaces \leftrightarrow distributive \vee-semilattices. stably compact spaces \leftrightarrow strong proximity lattices.

Sober Generalization

- Take a \cup-basis B of locally compact sober X and let $\prec=\Subset$.
- Then $\leq=\subseteq$ is the lower order defined from \prec :

$$
a \leq b \quad \Leftrightarrow \quad \forall c \prec a(c \prec b)
$$

- B is still a \prec-distributive \vee-semilattice.
- B is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec-distributive \vee-semilattice predomain arises in this way.

- Unifies Grätzer (1971), Smyth/Jung-Sünderhauf (1990/1996): locally compact 0-dim sober spaces \leftrightarrow distributive \vee-semilattices. stably compact spaces \leftrightarrow strong proximity lattices.
- Could also be seen as generalising Priestley (1970) duality as
stably compact spaces \leftrightarrow compact pospaces \supseteq Priestley spaces.

Pseudobases

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X.
(Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X.
(Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X. (Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.
- From $\prec=\Subset$ define the cover relation C on subsets of P :

$$
Q \subset R \quad \Leftrightarrow \quad \exists \text { finite } F \subseteq R^{\succ}\left(Q^{\succ} \cap F^{\perp}=\emptyset\right) \text {. }
$$

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X. (Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.
- From $\prec=\Subset$ define the cover relation C on subsets of P :

$$
\begin{aligned}
Q \subset R & \Leftrightarrow \\
& \Leftrightarrow \quad \exists \text { finite } F \subseteq R^{\succ}\left(Q^{\succ} \cap F^{\perp}=\emptyset\right) . \\
& \Leftrightarrow Q \Subset \bigcup R .
\end{aligned}
$$

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X. (Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.
- From $\prec=\Subset$ define the cover relation C on subsets of P :

$$
\begin{aligned}
Q \subset R & \Leftrightarrow \\
& \Leftrightarrow \quad \exists \text { finite } F \subseteq R^{\succ}\left(Q^{\succ} \cap F^{\perp}=\emptyset\right) . \\
& \Leftrightarrow Q \Subset \bigcup R .
\end{aligned}
$$

Thus $\quad p \mathrm{Cq} \quad \Rightarrow \quad p \prec q \quad \Rightarrow \quad p \mathrm{C} q^{\succ}$

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X. (Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.
- From $\prec=\Subset$ define the cover relation C on subsets of P :

$$
\begin{aligned}
Q \subset R & \Leftrightarrow \\
& \Leftrightarrow \quad \exists \text { finite } F \subseteq R^{\succ}\left(Q^{\succ} \cap F^{\perp}=\emptyset\right) . \\
& \Leftrightarrow Q \Subset \bigcup R .
\end{aligned}
$$

Thus $\quad p \mathrm{Cq} \quad \Rightarrow \quad p \prec q \quad \Rightarrow \quad p \mathrm{q} q^{\succ}$
Theorem (B.-Starling 2018)
This completely characterises pseudobases of LCH X.

Pseudobases

- Given \Subset, do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \backslash\{\emptyset\}$ be a pseudobasis of LCH X :

Every $x \in X$ is contained in some $O \in P$.
Every $O \in \mathcal{O}(X)$ contains some $N \in P$.
The subsets in P distinguish the points of X. (Separating)
Neighborhoods in P of $x \in X$ are \Subset-round. (Point-Round)

- $X=\left(X_{P}\right)^{\text {patch }}=$ patch topology of topology generated by P.
- From $\prec=\Subset$ define the cover relation C on subsets of P :

$$
\begin{aligned}
Q \subset R & \Leftrightarrow \\
& \Leftrightarrow \text { finite } F \subseteq R^{\succ}\left(Q^{\succ} \cap F^{\perp}=\emptyset\right) . \\
& \bigcup Q \Subset \bigcup R .
\end{aligned}
$$

Thus $\quad p \mathrm{Cq} \quad \Rightarrow \quad p \prec q \quad \Rightarrow \quad p \mathrm{q} q^{\succ}$
Theorem (B.-Starling 2018)
This completely characterises pseudobases of LCH X.
From a pseudobasis (B, \Subset) we reconstruct $X \approx \Subset$ - $\operatorname{Tight}(B)$.

Bases

Bases

Theorem (B.-Starling 2018)
(P, \prec) is isomorphic to a basis of $\mathrm{LCH} X$ iff

$$
\begin{aligned}
p C q & \Rightarrow & p \prec q . & \text { (Separative) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\prime \succ} \subset p^{\succ} \cap q^{\succ} . & \text { (Bi-Shrinking) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\perp} \subset p^{\succ} \cap q^{\prime \perp} . & \text { (Trapping) }
\end{aligned}
$$

Bases

Theorem (B.-Starling 2018)
(P, \prec) is isomorphic to a basis of $\mathrm{LCH} X$ iff

$$
\begin{aligned}
p C q & \Rightarrow & p \prec q . & \text { (Separative) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\prime \succ} \subset p^{\succ} \cap q^{\succ} . & \text { (Bi-Shrinking) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\perp} \subset p^{\succ} \cap q^{\prime \perp} . & \text { (Trapping) }
\end{aligned}
$$

\therefore algebra/lattice strucutre in De Vries/Shirota duality not needed.

Bases

Theorem (B.-Starling 2018)
(P, \prec) is isomorphic to a basis of LCH X iff

$$
\begin{aligned}
p C q & \Rightarrow & p \prec q . & \text { (Separative) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\prime \succ} \subset p^{\succ} \cap q^{\succ} . & \text { (Bi-Shrinking) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\perp} \subset p^{\succ} \cap q^{\prime \perp} . & \text { (Trapping) }
\end{aligned}
$$

\therefore algebra/lattice strucutre in De Vries/Shirota duality not needed.

- Also have locally Hausdorff and non-commutative extensions.

Bases

Theorem (B.-Starling 2018)
(P, \prec) is isomorphic to a basis of LCH X iff

$$
\begin{aligned}
p C q & \Rightarrow & p \prec q . & \text { (Separative) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\prime \succ} \subset p^{\succ} \cap q^{\succ} . & \text { (Bi-Shrinking) } \\
p^{\prime} \prec p \text { and } q^{\prime} \prec q & \Rightarrow & p^{\prime \succ} \cap q^{\perp} \subset p^{\succ} \cap q^{\prime \perp} . & \text { (Trapping) }
\end{aligned}
$$

\therefore algebra/lattice strucutre in De Vries/Shirota duality not needed.

- Also have locally Hausdorff and non-commutative extensions.
- These results extend work of Exel (2008/2010), Lawson (2010/2012) and Lawson-Lenz (2013) (by removing the 0-dimensionality restriction)

Stone (1936)
Boolean Algebras
All Clopen Subsets

CH 0-Dimensional Spaces

De Vries (1962)
Compingent Algebras Regular ${ }^{c \circ}-\cup^{\circ}$ - \cap-Bases CH Spaces

Shirota (1952)
R-Lattices
Regular $\bar{U}^{\circ}-\cap$-Bases
LCH Spaces

Wallman (1938) Lawson (2012)
Normal Lattices Boolean Inverse Semigroups
U- -Bases All Compact Open Bisections
CH Spaces LCH Ample Groupoids

B.-Starling (2018)

Basic Inverse Semigroups Étale U-Bases
LCLH Étale Groupoids
B.-Starling (2018)

Pseudobasic Inverse Semigroups
Étale Pseudobases
LCLH Étale Groupoids

