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Background

I Stone (1936) established the duality:

Stone Spaces ↔ Boolean Algebras.

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

1. Can we extend to non-0-dimensional spaces?
2. What about more general (semi)lattices or posets?
3. What about non-commutative generalisations between

Étale Groupoids ↔ Inverse Semigroups?

I These have been investigated by various people, e.g.

1. Wallman (1938), Shirota (1952), De Vries (1962).
2. Stone (1937), Priestley (1970), Grätzer (1971).
3. Resende (2007), Exel (2008), Lawson (2010).

I Goal: explore further generalisations/unifications.
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Näıve Approach

I Try to recover compact Hausdorff X from a basis B ⊆ O(X ).

I Problem: ⊆ does not contain enough information.

I E.g. take a regular (O = O
◦
) countable basis of X = [0, 1].

I Close under O ∩ N, O ∪ N
◦

and (X \ O)◦.

I Then B is not just a basis but also a Boolean algebra.

I X has no isolated points so B has no atoms.

I All countable atomless Boolean algebras are isomorphic.

I Thus B ≈ clopen subsets of the Cantor space {0, 1}N.

I ⊆ on arbitrary bases fails to distinguish [0, 1] and {0, 1}N.
I Solution: either

1. restrict to certain kinds of bases, e.g. closed under O ∪ N or
2. add more structure, e.g. the compact containment relation b.
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Alternative Approaches

I Hoffman-Lawson (1978) consider all open sets O(X )

Continuous Frames ↔ (O(X ),⊆) for LC sober X .

Drawbacks:
I O(X ) is usually uncountable, even when X is 2nd countable.
I Boolean algebras are 1st order while frames are 2nd order.
I ⇒ can not construct frames via recursion on finite structures,

model theoretic ultraproducts, Fräısse limits, etc.

I Shirota (1952)/De Vries (1962) consider regular sublattice
bases B ⊆ RO(X ) (i.e. O,N ∈ B ⇒ O ∩ N,O ∪ N

◦ ∈ B):

Compingent Lattices/Algebras ↔ (B,⊆,b) for L/CH X .

Drawbacks: ∨ 6= ∪. Also b required as additional structure.

I Wallman (1938) takes ∩-∪-bases B ⊆ O(X ) of compact X :

Bounded Subfit Distributive Lattices ↔ (B,⊆) for CT1 X .

Drawback: étale groupoids are often just locally compact
(with non-étale 1-point compactification).
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∪-Bases

I Given compact Hausdorff X , consider a ∪-basis B of open
sets, i.e. require B to be closed under finite unions

O,N ∈ B ⇒ O ∪ N ∈ B (and ∅ =
⋃
∅ ∈ B).

I In particular, B is bounded: min(B) = ∅ and max(B) = X .
I Can then recover compact containment b as rather below:

O b N ⇔ ∃M ∈ B (O ∩M = ∅ and N ∪M = X ).

I Moreover, (B,≤,≺) = (B,⊆,b) is ≺-distributive in that

a ≤ b∨c ⇔ ∀a′ ≺ a ∃b′ ≺ b ∃c ′ ≺ c (a′ ≺ b′∨c ′ ≺ a).

(≤-distributivity is the usual notion for ∨-semilattices)

Theorem (B.-Starling 2018)

Every bounded ≺-distributive ∨-semilattice arises in this way.

From a basis (B,b) we can reconstruct X ≈ b-Ultrafilters(B).

I Classic Stone duality recovered when ≺ = ≤.
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Local Generalization

I Given locally compact Hausdorff X , consider a ∪-basis B of
relatively compact open sets.

I Then B has no maximum but is instead b-round:

∀O ∈ B ∃N ∈ B (O b N). (b-round)

I Also b is recovered by a generalised rather below relation:

O b N ⇔ ∀P ⊇ N ∃M ∈ B (O∩M = ∅ and N∪M ⊇ P).

Theorem (B.-Starling 2018)

Every ≺-round ≺-distributive ∨-semilattice arises this way.

From a basis (B,b) we can reconstruct X ≈ b-Ultrafilters(B).

I Can even extend to locally Hausdorff spaces.

I But in T1 or sober spaces, b 6= rather below.

I E.g. if X is hyperconnected then ∅ = rather below.
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Sober Generalization

I Take a ∪-basis B of locally compact sober X and let ≺ = b.
I Then ≤ = ⊆ is the lower order defined from ≺:

a ≤ b ⇔ ∀c ≺ a (c ≺ b). (lower order)

I B is still a ≺-distributive ∨-semilattice.
I B is also a predomain, i.e. each a� is a round ideal.

Theorem (B.-Starling 2018)

Every ≺-distributive ∨-semilattice predomain arises in this way.

From a ∪-basis (B,b) we reconstruct X ≈ Prime-b-Filters(B).

I Unifies Grätzer (1971), Smyth/Jung-Sünderhauf (1990/1996):

locally compact 0-dim sober spaces ↔ distributive ∨-semilattices.

stably compact spaces ↔ strong proximity lattices.

I Could also be seen as generalising Priestley (1970) duality as

stably compact spaces ↔ compact pospaces ⊇ Priestley spaces.
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Pseudobases

I Given b, do we even need joins/unions? Not if X is LCH.
I Let P ⊆ O(X ) \ {∅} be a pseudobasis of LCH X :

Every x ∈ X is contained in some O ∈ P. (Cover)

Every O ∈ O(X ) contains some N ∈ P. (Dense)

The subsets in P distinguish the points of X . (Separating)

Neighborhoods in P of x ∈ X are b-round. (Point-Round)

I X = (XP)patch = patch topology of topology generated by P.
I From ≺ = b define the cover relation C on subsets of P:

Q C R ⇔ ∃ finite F ⊆ R� (Q� ∩ F⊥ = ∅).

⇔
⋃

Q b
⋃

R.

Thus p C q ⇒ p ≺ q ⇒ p C q�

Theorem (B.-Starling 2018)

This completely characterises pseudobases of LCH X .

From a pseudobasis (B,b) we reconstruct X ≈ b-Tight(B).
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Bases

Theorem (B.-Starling 2018)

(P,≺) is isomorphic to a basis of LCH X iff

p C q ⇒ p ≺ q. (Separative)

p′ ≺ p and q′ ≺ q ⇒ p′� ∩ q′� C p� ∩ q�. (Bi-Shrinking)

p′ ≺ p and q′ ≺ q ⇒ p′� ∩ q⊥ C p� ∩ q′⊥. (Trapping)

∴ algebra/lattice strucutre in De Vries/Shirota duality not needed.

I Also have locally Hausdorff and non-commutative extensions.

I These results extend work of Exel (2008/2010),
Lawson (2010/2012) and Lawson-Lenz (2013)
(by removing the 0-dimensionality restriction)
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Stone (1936)
Boolean Algebras

All Clopen Subsets
CH 0-Dimensional Spaces

De Vries (1962)
Compingent Algebras

Regular c◦-∪◦-∩-Bases
CH Spaces

Wallman (1938)
Normal Lattices
∪-∩-Bases
CH Spaces

Lawson (2012)
Boolean Inverse Semigroups

All Compact Open Bisections
LCH Ample Groupoids

Shirota (1952)
R-Lattices

Regular ∪◦-∩-Bases
LCH Spaces

B.-Starling (2018)
Basic Inverse Semigroups

Étale ∪-Bases
LCLH Étale Groupoids

B.-Starling (2018)
Pseudobasic Inverse Semigroups

Étale Pseudobases
LCLH Étale Groupoids


