Generalised Stone Dualities

Tristan Bice joint work with Charles Starling

Institute of Mathematics of the Polish Academy of Sciences

September 29th 2018 Workshop on Algebra, Logic and Topology University of Coimbra

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stone (1936) established the duality:

Stone Spaces \leftrightarrow Boolean Algebras.

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Questions

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions

1. Can we extend to non-0-dimensional spaces?

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

 ${\sf \acute{E}tale\ Groupoids}\qquad \leftrightarrow\qquad {\sf Inverse\ Semigroups?}$

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

 $\acute{\mathsf{E}}\mathsf{tale}\ \mathsf{Groupoids}\qquad\leftrightarrow\qquad\mathsf{Inverse}\ \mathsf{Semigroups?}$

These have been investigated by various people, e.g.

Stone (1936) established the duality:

Stone Spaces \leftrightarrow Boolean Algebras.

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

These have been investigated by various people, e.g.
1. Wallman (1938), Shirota (1952), De Vries (1962).

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

- These have been investigated by various people, e.g.
 - 1. Wallman (1938), Shirota (1952), De Vries (1962).
 - 2. Stone (1937), Priestley (1970), Grätzer (1971).

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

- These have been investigated by various people, e.g.
 - 1. Wallman (1938), Shirota (1952), De Vries (1962).
 - 2. Stone (1937), Priestley (1970), Grätzer (1971).
 - 3. Resende (2007), Exel (2008), Lawson (2010).

Stone (1936) established the duality:

 $\mathsf{Stone}\;\mathsf{Spaces}\qquad\leftrightarrow\qquad\mathsf{Boolean}\;\mathsf{Algebras}.$

Stone Space = 0-dimensional compact Hausdorff space.

Boolean Algebra = bounded complemented distributive lattice.

Questions

- 1. Can we extend to non-0-dimensional spaces?
- 2. What about more general (semi)lattices or posets?
- 3. What about non-commutative generalisations between

Étale Groupoids \leftrightarrow Inverse Semigroups?

- These have been investigated by various people, e.g.
 - 1. Wallman (1938), Shirota (1952), De Vries (1962).
 - 2. Stone (1937), Priestley (1970), Grätzer (1971).
 - 3. Resende (2007), Exel (2008), Lawson (2010).
- ► Goal: explore further generalisations/unifications.

- < ロ > ・ 目 > ・ 目 > ・ 目 - の へ ()・

• Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.

• Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• Problem: \subseteq does not contain enough information.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].

- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- ▶ Then *B* is not just a basis but also a Boolean algebra.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].

- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- ▶ Then *B* is not just a basis but also a Boolean algebra.
- ► X has no isolated points so B has no atoms.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- ▶ Then *B* is not just a basis but also a Boolean algebra.
- ► X has no isolated points so B has no atoms.
- ► All countable atomless Boolean algebras are isomorphic.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- ▶ Then *B* is not just a basis but also a Boolean algebra.
- ► X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Thus $B \approx$ clopen subsets of the Cantor space $\{0, 1\}^{\mathbb{N}}$.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- ► Thus B ≈ clopen subsets of the Cantor space {0,1}^N.
- \subseteq on arbitrary bases fails to distinguish [0, 1] and $\{0, 1\}^{\mathbb{N}}$.

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0, 1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish [0, 1] and $\{0, 1\}^{\mathbb{N}}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solution: either

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- ► Thus B ≈ clopen subsets of the Cantor space {0,1}^N.
- \subseteq on arbitrary bases fails to distinguish [0,1] and $\{0,1\}^{\mathbb{N}}$.
- Solution: either
 - 1. restrict to certain kinds of bases, e.g. closed under $O \cup N$ or

- Try to recover compact Hausdorff X from a basis $B \subseteq \mathcal{O}(X)$.
- Problem: \subseteq does not contain enough information.
- E.g. take a regular $(O = \overline{O}^{\circ})$ countable basis of X = [0, 1].
- Close under $O \cap N$, $\overline{O \cup N}^{\circ}$ and $(X \setminus O)^{\circ}$.
- Then B is not just a basis but also a Boolean algebra.
- X has no isolated points so B has no atoms.
- All countable atomless Boolean algebras are isomorphic.
- Thus $B \approx$ clopen subsets of the Cantor space $\{0, 1\}^{\mathbb{N}}$.
- \subseteq on arbitrary bases fails to distinguish [0, 1] and $\{0, 1\}^{\mathbb{N}}$.
- Solution: either
 - 1. restrict to certain kinds of bases, e.g. closed under $O \cup N$ or
 - 2. add more structure, e.g. the compact containment relation \subseteq .

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

• $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

• $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Boolean algebras are 1st order while frames are 2nd order.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- ➤ ⇒ can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- ➤ ⇒ can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{RO}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):

Compingent Lattices/Algebras \leftrightarrow (B, \subseteq, \Subset) for L/CH X.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- ➤ ⇒ can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases B ⊆ RO(X) (i.e. O, N ∈ B ⇒ O ∩ N, O ∪ N° ∈ B):

Compingent Lattices/Algebras \leftrightarrow (B, \subseteq, \Subset) for L/CH X.

Drawbacks: $\lor \neq \bigcup$. Also \Subset required as additional structure.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow ($\mathcal{O}(X), \subseteq$) for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- ➤ ⇒ can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- Shirota (1952)/De Vries (1962) consider regular sublattice bases B ⊆ RO(X) (i.e. O, N ∈ B ⇒ O ∩ N, O ∪ N° ∈ B):

Compingent Lattices/Algebras \leftrightarrow (B, \subseteq, \Subset) for L/CH X.

Drawbacks: $\lor \neq \bigcup$. Also \Subset required as additional structure.

Wallman (1938) takes ∩-∪-bases B ⊆ O(X) of compact X: Bounded Subfit Distributive Lattices ↔ (B, ⊆) for CT₁ X.

• Hoffman-Lawson (1978) consider all open sets $\mathcal{O}(X)$

Continuous Frames \leftrightarrow $(\mathcal{O}(X), \subseteq)$ for LC sober X. Drawbacks:

- $\mathcal{O}(X)$ is usually uncountable, even when X is 2nd countable.
- Boolean algebras are 1st order while frames are 2nd order.
- ➤ ⇒ can not construct frames via recursion on finite structures, model theoretic ultraproducts, Fraïsse limits, etc.
- ▶ Shirota (1952)/De Vries (1962) consider regular sublattice bases $B \subseteq \mathcal{RO}(X)$ (i.e. $O, N \in B \Rightarrow O \cap N, \overline{O \cup N}^{\circ} \in B$):

 $\mathsf{Compingent Lattices}/\mathsf{Algebras} \quad \leftrightarrow \quad (B,\subseteq,\Subset) \text{ for } \mathsf{L}/\mathsf{CH} X.$

Drawbacks: $\lor \neq \cup$. Also \Subset required as additional structure.

Wallman (1938) takes ∩-∪-bases B ⊆ O(X) of compact X:
Bounded Subfit Distributive Lattices ↔ (B, ⊆) for CT₁ X.
Drawback: étale groupoids are often just locally compact (with non-étale 1-point compactification).

$\cup \text{-}\mathsf{Bases}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$$

. .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \Rightarrow O \cup N \in B \text{ (and } \emptyset = \bigcup \emptyset \in B).$$

▶ In particular, B is bounded: $min(B) = \emptyset$ and max(B) = X.

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$$

- ▶ In particular, B is bounded: $\min(B) = \emptyset$ and $\max(B) = X$.
- ► Can then recover compact containment *⊂* as rather below:

$$O \Subset N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$$

- ▶ In particular, B is bounded: $min(B) = \emptyset$ and max(B) = X.
- ► Can then recover compact containment ⊂ as rather below:

$$O \subseteq N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

▶ Moreover, $(B, \leq, \prec) = (B, \subseteq, \Subset)$ is \prec -distributive in that

 $a \leq b \lor c \quad \Leftrightarrow \quad \forall a' \prec a \; \exists b' \prec b \; \exists c' \prec c \; (a' \prec b' \lor c' \prec a).$

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

 $O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$

▶ In particular, B is bounded: $min(B) = \emptyset$ and max(B) = X.

► Can then recover compact containment ⊂ as rather below:

$$O \Subset N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

- ▶ Moreover, $(B, \leq, \prec) = (B, \subseteq, \Subset)$ is \prec -distributive in that
 - $a \leq b \lor c \quad \Leftrightarrow \quad \forall a' \prec a \; \exists b' \prec b \; \exists c' \prec c \; (a' \prec b' \lor c' \prec a).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(\leq -distributivity is the usual notion for \lor -semilattices)

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

 $O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$

▶ In particular, B is bounded: $min(B) = \emptyset$ and max(B) = X.

► Can then recover compact containment ⊂ as rather below:

$$O \Subset N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

▶ Moreover, $(B, \leq, \prec) = (B, \subseteq, \Subset)$ is \prec -distributive in that

 $a \leq b \lor c \quad \Leftrightarrow \quad \forall a' \prec a \; \exists b' \prec b \; \exists c' \prec c \; (a' \prec b' \lor c' \prec a).$

(≤-distributivity is the usual notion for ∨-semilattices) Theorem (B.-Starling 2018)

Every bounded \prec -distributive \lor -semilattice arises in this way.

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$$

- In particular, B is bounded: $\min(B) = \emptyset$ and $\max(B) = X$.
- ► Can then recover compact containment ⊂ as rather below:

$$O \Subset N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

▶ Moreover, $(B, \leq, \prec) = (B, \subseteq, \Subset)$ is \prec -distributive in that

 $a \leq b \lor c \quad \Leftrightarrow \quad \forall a' \prec a \; \exists b' \prec b \; \exists c' \prec c \; (a' \prec b' \lor c' \prec a).$

(≤-distributivity is the usual notion for ∨-semilattices) Theorem (B.-Starling 2018)

Every bounded \prec -distributive \lor -semilattice arises in this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

► Given compact Hausdorff X, consider a U-basis B of open sets, i.e. require B to be closed under finite unions

$$O, N \in B \quad \Rightarrow \quad O \cup N \in B \quad (and \ \emptyset = \bigcup \emptyset \in B).$$

- ▶ In particular, B is bounded: $min(B) = \emptyset$ and max(B) = X.
- ► Can then recover compact containment ⊂ as rather below:

$$O \Subset N \quad \Leftrightarrow \quad \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M = X).$$

▶ Moreover, $(B, \leq, \prec) = (B, \subseteq, \Subset)$ is \prec -distributive in that

 $a \leq b \lor c \quad \Leftrightarrow \quad \forall a' \prec a \; \exists b' \prec b \; \exists c' \prec c \; (a' \prec b' \lor c' \prec a).$

(≤-distributivity is the usual notion for ∨-semilattices) Theorem (B.-Starling 2018)

Every bounded \prec -distributive \lor -semilattice arises in this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

► Classic Stone duality recovered when $\prec = \leq$.

► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.

- ► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *C*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *C*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Also \Subset is recovered by a generalised rather below relation:

$$O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \ \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$$

- ► Given locally compact Hausdorff X, consider a ∪-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *⊂*-round:

 $\forall O \in B \ \exists N \in B \ (O \Subset N). \quad (\Subset\text{-round})$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Also \Subset is recovered by a generalised rather below relation:

 $O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$

Theorem (B.-Starling 2018) Every \prec -round \prec -distributive \lor -semilattice arises this way.

- ► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *C*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Also \Subset is recovered by a generalised rather below relation:

$$O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$$

Theorem (B.-Starling 2018)

Every \prec -round \prec -distributive \lor -semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

- ► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *⊂*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

• Also \Subset is recovered by a generalised rather below relation:

$$O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$$

Theorem (B.-Starling 2018)

Every \prec -round \prec -distributive \lor -semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

Can even extend to locally Hausdorff spaces.

- ► Given locally compact Hausdorff X, consider a U-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *⊂*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

• Also \Subset is recovered by a generalised rather below relation:

$$O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \ \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$$

Theorem (B.-Starling 2018)

Every \prec -round \prec -distributive \lor -semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

- Can even extend to locally Hausdorff spaces.
- But in T_1 or sober spaces, $\Subset \neq$ rather below.

- ► Given locally compact Hausdorff X, consider a ∪-basis B of relatively compact open sets.
- ► Then *B* has no maximum but is instead *C*-round:

$$\forall O \in B \ \exists N \in B \ (O \Subset N). \qquad (\Subset\text{-round})$$

• Also \Subset is recovered by a generalised rather below relation:

$$O \Subset N \quad \Leftrightarrow \quad \forall P \supseteq N \ \exists M \in B \ (O \cap M = \emptyset \text{ and } N \cup M \supseteq P).$$

Theorem (B.-Starling 2018)

Every \prec -round \prec -distributive \lor -semilattice arises this way. From a basis (B, \Subset) we can reconstruct $X \approx \Subset$ -Ultrafilters(B).

- Can even extend to locally Hausdorff spaces.
- But in T_1 or sober spaces, $\Subset \neq$ rather below.
- E.g. if X is hyperconnected then \emptyset = rather below.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

 $a \le b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$ (lower order)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \le b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ *B* is still a \prec -distributive \lor -semilattice.

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \le b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *B* is still a \prec -distributive \lor -semilattice.
- *B* is also a predomain, i.e. each a^{\succ} is a round ideal.

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \leq b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *B* is still a \prec -distributive \lor -semilattice.
- *B* is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec -distributive \lor -semilattice predomain arises in this way.

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \leq b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- *B* is still a \prec -distributive \lor -semilattice.
- *B* is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec -distributive \lor -semilattice predomain arises in this way. From a \cup -basis (B, \Subset) we reconstruct $X \approx \text{Prime-} \circledast\text{-Filters}(B)$.

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \leq b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

- ▶ *B* is still a \prec -distributive \lor -semilattice.
- ▶ *B* is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec -distributive \lor -semilattice predomain arises in this way. From a \cup -basis (B, \Subset) we reconstruct $X \approx \text{Prime-} \circledast\text{-Filters}(B)$.

Unifies Grätzer (1971), Smyth/Jung-Sünderhauf (1990/1996):

locally compact 0-dim sober spaces $\quad \leftrightarrow \quad distributive ~\lor-semilattices.$

stably compact spaces \leftrightarrow strong proximity lattices.

- ▶ Take a \cup -basis *B* of locally compact sober *X* and let $\prec = \Subset$.
- Then $\leq = \subseteq$ is the lower order defined from \prec :

$$a \leq b \quad \Leftrightarrow \quad \forall c \prec a \ (c \prec b).$$
 (lower order)

- ▶ *B* is still a \prec -distributive \lor -semilattice.
- ▶ *B* is also a predomain, i.e. each a^{\succ} is a round ideal.

Theorem (B.-Starling 2018)

Every \prec -distributive \lor -semilattice predomain arises in this way. From a \cup -basis (B, \Subset) we reconstruct $X \approx \text{Prime-} \circledast\text{-Filters}(B)$.

Unifies Grätzer (1971), Smyth/Jung-Sünderhauf (1990/1996):

locally compact 0-dim sober spaces $\quad \leftrightarrow \quad distributive ~\lor-semilattices.$

stably compact spaces $\ \leftrightarrow \$ strong proximity lattices.

▶ Could also be seen as generalising Priestley (1970) duality as stably compact spaces \leftrightarrow compact pospaces \supseteq Priestley spaces.

(4日) (個) (目) (目) (目) (の)()

▶ Given \subseteq , do we even need joins/unions? Not if X is LCH.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- ▶ Given \subseteq , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Given \subseteq , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $X = (X_P)^{\text{patch}} =$ patch topology of topology generated by P.

- ▶ Given \subseteq , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

X = (X_P)^{patch} = patch topology of topology generated by P.
From ≺ = ∈ define the cover relation C on subsets of P:

$$Q \subset R \quad \Leftrightarrow \quad \exists \text{ finite } F \subseteq R^{\succ} (Q^{\succ} \cap F^{\perp} = \emptyset).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Given \subseteq , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

X = (X_P)^{patch} = patch topology of topology generated by P.
From ≺ = ∈ define the cover relation C on subsets of P:

$$Q \subset R \quad \Leftrightarrow \quad \exists \text{ finite } F \subseteq R^{\succ} (Q^{\succ} \cap F^{\perp} = \emptyset).$$
$$\Leftrightarrow \quad \bigcup Q \Subset \bigcup R.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Given \Subset , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

X = (X_P)^{patch} = patch topology of topology generated by P.
From ≺ = ∈ define the cover relation C on subsets of P:

$$\begin{array}{cccc} Q \ \mathsf{C} \ \mathsf{R} & \Leftrightarrow & \exists \ \mathsf{finite} \ \mathsf{F} \subseteq \mathsf{R}^{\succ} \ (Q^{\succ} \cap \mathsf{F}^{\perp} = \emptyset). \\ & \Leftrightarrow & \bigcup Q \Subset \bigcup \mathsf{R}. \end{array}$$

Thus $p \ \mathsf{C} \ q & \Rightarrow & p \prec q \Rightarrow & p \ \mathsf{C} \ q^{\succ} \end{array}$

- ロ ト - 4 回 ト - 4 □ - 4

- ▶ Given \Subset , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

X = (X_P)^{patch} = patch topology of topology generated by P.
From ≺ = ∈ define the cover relation C on subsets of P:

$$\begin{array}{cccc} Q \subset R & \Leftrightarrow & \exists \text{ finite } F \subseteq R^{\succ} (Q^{\succ} \cap F^{\perp} = \emptyset). \\ & \Leftrightarrow & \bigcup Q \Subset \bigcup R. \end{array}$$

Thus $p \subset q \Rightarrow p \prec q \Rightarrow p \subset q^{\succ}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (B.-Starling 2018)

This completely characterises pseudobases of LCH X.

- ▶ Given \Subset , do we even need joins/unions? Not if X is LCH.
- Let $P \subseteq \mathcal{O}(X) \setminus \{\emptyset\}$ be a pseudobasis of LCH X:

Every $x \in X$ is contained in some $O \in P$.(Cover)Every $O \in \mathcal{O}(X)$ contains some $N \in P$.(Dense)The subsets in P distinguish the points of X.(Separating)Neighborhoods in P of $x \in X$ are \Subset -round.(Point-Round)

X = (X_P)^{patch} = patch topology of topology generated by P.
From ≺ = ∈ define the cover relation C on subsets of P:

$$\begin{array}{cccc} Q \in R & \Leftrightarrow & \exists \text{ finite } F \subseteq R^{\succ} (Q^{\succ} \cap F^{\perp} = \emptyset). \\ & \Leftrightarrow & \bigcup Q \Subset \bigcup R. \end{array}$$

Thus $p \in q \Rightarrow p \prec q \Rightarrow p \in q^{\succ}$

Theorem (B.-Starling 2018)

This completely characterises pseudobases of LCH X. From a pseudobasis (B, \Subset) we reconstruct $X \approx \Subset$ -Tight(B).

Theorem (B.-Starling 2018) (P, \prec) is isomorphic to a basis of LCH X iff

$$\begin{array}{rcl} p \ C \ q & \Rightarrow & p \prec q. & (\text{Separative}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q'^{\succ} \ C \ p^{\succ} \cap q^{\succ}. & (\text{Bi-Shrinking}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q^{\perp} \ C \ p^{\succ} \cap q'^{\perp}. & (\text{Trapping}) \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (B.-Starling 2018) (P, \prec) is isomorphic to a basis of LCH X iff

$$\begin{array}{rcl} p \ \mathsf{C} \ q & \Rightarrow & p \prec q. & (\text{Separative}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q'^{\succ} \ \mathsf{C} \ p^{\succ} \cap q^{\succ}. & (\text{Bi-Shrinking}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q^{\perp} \ \mathsf{C} \ p^{\succ} \cap q'^{\perp}. & (\text{Trapping}) \end{array}$$

: algebra/lattice strucutre in De Vries/Shirota duality not needed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (B.-Starling 2018) (P, \prec) is isomorphic to a basis of LCH X iff

$$\begin{array}{rcl} p \ C \ q & \Rightarrow & p \prec q. & (\text{Separative}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q'^{\succ} \ C \ p^{\succ} \cap q^{\succ}. & (\text{Bi-Shrinking}) \\ p' \prec p \ \text{and} \ q' \prec q & \Rightarrow & p'^{\succ} \cap q^{\perp} \ C \ p^{\succ} \cap q'^{\perp}. & (\text{Trapping}) \end{array}$$

: algebra/lattice strucutre in De Vries/Shirota duality not needed.

Also have locally Hausdorff and non-commutative extensions.

Theorem (B.-Starling 2018) (P, \prec) is isomorphic to a basis of LCH X iff

$$\begin{array}{ll} p \ C \ q & \Rightarrow & p \ \prec q. & (Separative) \\ p' \ \prec p \ \text{and} \ q' \ \prec q & \Rightarrow & p'^{\succ} \ \cap q'^{\succ} \ C \ p^{\succ} \ \cap q^{\succ}. & (Bi-Shrinking) \\ p' \ \prec p \ \text{and} \ q' \ \prec q & \Rightarrow & p'^{\succ} \ \cap q^{\perp} \ C \ p^{\succ} \ \cap q'^{\perp}. & (Trapping) \end{array}$$

: algebra/lattice strucutre in De Vries/Shirota duality not needed.

- Also have locally Hausdorff and non-commutative extensions.
- These results extend work of Exel (2008/2010), Lawson (2010/2012) and Lawson-Lenz (2013) (by removing the 0-dimensionality restriction)

