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Classical Carathéodory’s Extension Theorem

Theorem

A measure m : B → [0, 1] on a Boolean algebra B ⊆ P(X )

uniquely extends to a countably additive measure on σ(B).

Minimal σ-algebra

contaning B

Proof.

B

τB [0, 1]

P(X )

m

µ

µ∗

1. Extend m to a countably additive

function

µ(U) = sup{m(B) | B ∈ B, B ⊆ U}

2. Extend µ to an outer measure

µ∗(M) = inf{µ(U) | U ∈ τB, M ⊆ U}

3. µ∗ is a measure on measurable subsets

H ⊆ P(X ). Restrict µ∗ to σ(B) ⊆ H.
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Extension theorem by Igor Kř́ıž and Aleš Pultr

Abstract σ-algebra is a Boolean algebra which has countable joins.

Abstract finitely (resp. countably) additive measure m : B → [0, 1]

satisfies

1. m(0B) = 0, m(1B) = 1,

2. m(a ∨ b) + m(a ∧ b) = m(a) + m(b)

3. (resp.
∑∞

i=0 m(ai ) = m(
∨∞

i=0 ai ) if ai ’s are pairwise disjoint)

Theorem (Kř́ıž, Pultr 2010)

Every finitely additive m : B → [0, 1]

uniquely extends to a countably additive

measure µ : σAlg 〈B〉 → [0, 1] such that

B

σAlg 〈B〉 [0, 1]

m

µ

Enlarges the space. On the other hand, useful for integration over

infinite-dimensional spaces!
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What instead of P(X )?

B

Idl(B) [0, 1]

???

m

µ

Idl(B) is a frame!

a ∧
∨

i bi =
∨

i (a ∧ bi )

e.g. O(X , τ) = τ

Finitely additive m : B → [0, 1] extends

to a valuation µ : Idl(B)→ [0, 1],

µ(I ) = sup{m(a) : a ∈ I}

i.e.

1. µ is a finitely additive measure

2. For a directed A⊆↑ Idl(B) :

sup
I∈A

µ(I ) = µ(
∨
↑ A)

We need a complete Boolean algebra

which

• embeds Idl(B), and

• has the same (frame-theoretic)

points as B has.
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Frame Theory intermezzo: Sublocales

A subspace M ⊆ X introduces a frame congruence ∼M on O(X ):

U ∼M V iff U ∩M = V ∩M

Congruences are equivalently represented as sublocales S ⊆ L

1. ∀A ⊆ S ,
∧

A ∈ S

2. ∀x ∈ L, s ∈ S , x → s ∈ S

The mapping “congruences 7→ sublocales”:

∼ ⊆ L×L 7−→ {largest elements of ∼-equivalence classes}

Every subspace of X introduces a sublocale of O(X )

but not vice versa!
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The complete lattice (coframe) of sublocales

S(L) = {S ⊆ L | S is a sublocale}, ordered by ⊆ .

Joins and meet easy to compute!

Open and closed sublocales (a ∈ L):

o(a) = {a→ x | x ∈ L} and c(a) = ↑a

They are complemented in S(L).∨
i o(ai ) = o(

∨
i ai ), c(a) ∨ c(b) = c(a ∧ b), ... (as expected)

Join-sublattice Sc(L) ⊆ S(L)

Sc(L) =

{
the set of sublocales obtained as

joins of closed sublocales

}
Always a frame!
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Theorem (Picado, Pultr, Tozzi 2016)

If L is subfit then Sc(L) is a complete Boolean algebra and

a ∈ L 7−→ o(a) ∈ Sc(L)

is an injective frame homomorphisms L ↪→ Sc(L).

Moreover

• If X is a T1 space, then Sc(O(X )) ∼= P(X ).

• In case of X = spec(B), we have O(X ) ∼= Idl(B) and so

Sc(Idl(B)) ∼= P(X ).

• =⇒ instead of P(X ) take Sc(Idl(B))

6
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Putting it together

B

Idl(B) [0, 1]

Sc(Idl(B))

m

µ

µ∗

Valuation µ : Idl(B)→ [0, 1] extends to an

outer measure µ∗ : Sc(Idl(B))→ [0, 1],

i.e.

µ∗(x) = inf{µ(i) | i ∈ Idl(B), x ≤ i}

1. µ∗ is monotone

2. µ∗(x ∨ y) + µ∗(x ∧ y) ≤ µ∗(a) + µ∗(b)

3. For a directed (xi )
∞
i=0 ⊆↑ Sc(Idl(B)) :

sup
i
µ∗(xi ) = µ∗(

∨
↑

i

xi )

Furthermore

H = {x ∈ Sc(Idl(B)) | µ∗(x) + µ∗(¬x) ≤ 1}

is a σ-algebra (containing σS(B)) and so µ∗�H is a measure.
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Pointfree Carathéodory’s Extension Theorem

Theorem

A finitely additive measure m : B → [0, 1] uniquely extends to a

countably additive measure on σS(B) ⊆ Sc(Idl(B)).

Corollary

There are bijective correspondences between

• finitely additive measures B → [0, 1]

• regular countably additive measures σS(B)→ [0, 1]

• regular valuations σS(Idl(B))→ [0, 1]
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Comparison with the classical result

For a Boolean algebra B ⊆ P(X ), it might happen that⋃
i
Bi ∈ B for some infinite {Bi}i ⊆ B.

However, in the Stone space spec(B) (i.e. in the “sobrification”)⋃
i
JBiK 6= J

⋃
i
BiK =

(⋃
i
JBiK

)◦
where JBK = {U | B ∈ U}.

=⇒ We don’t need the extra assumption for m : B → [0, 1]:

For any pairwise disjoint {Bi}∞i=0 ⊆ B such that
⋃

i Bi ∈ B

m(
⋃

i
Bi ) =

∞∑
i=0

m(Bi )
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The continuous map U : (X , P(X ))→ (spec(B), P(spec(B)))

U : x 7−→ {B ∈ B | x ∈ B}

introduces a frame homomorphism h : P(spec(B))→ P(X )

h : M 7→ {x | U(x) ∈ M}

Which restricts to σS(B) � σ(B)

σS(B) ⊆ Sc(Idl(B)) ∼= P(spec(B))
σ(B) σS(B)

h
B

[0, 1]

m
µ∗

µ

Define µ(M) = µ∗(U[M])

If the “extra assumption”

holds for m, we obtain the

Carathéodory’s measure!
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Canonical extensions

For a Boolean algebra B, we have

B ↪→ Bδ

Characterised as

1. B is join–meet and meet–join dense in Bδ

2. the embedding is compact

Recall

• Bδ is a complete Boolean algebra,

• for the Stone dual X of B we have Bδ ∼= (P(X ),⊆), and

• Bδ can be constructed entirely choice-free.

Consequently

• Bδ ∼= P(X ) ∼= Sc(Idl(B))
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Theorem (Ball, Pultr 2017)

Assume that L is subfit, L ↪→ M, and for any x < y in M there is

a < b in L such that

x ∧ b ≤ a and y ∨ a ≥ b.

If M is a Boolean frame then Sc(L) ∼= M.

Proof that Bδ ∼= Sc(Idl(B)) algebraically:

For x < y pick a join of B’s i ∈ Bδ such that

x ≤ i and y 6≤ i

and pick a meet of B’s f ∈ Bδ such that

f ≤ y and f 6≤ i

Then, a = i ∨ ¬f and b = 1 satisfy the conditions.
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Generalisation to distributive lattices?

We know Dδ ∼= Up(X ,≤) for the Priestly space (X , τ,≤) of D.

Is there a frame-theoretic construction for Dδ?

However

• Idl(D) need not be subfit

• Idl(D) ↪6−→ Sc(Idl(D))

What instead of Sc(−)? Something like So(L)?

... is it a frame?
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Extension theorem by Alex Simpson (2011)

Different approach

Sσ(L) = {S ⊆ L | S is a σ-sublocale of L}

Theorem

If L is a fit σ-frame, then a valuation

µ : L → [0, 1] uniquely extends to a val-

uation µ∗ : Sσ(L)→ [0, 1] such that

L

Sσ(L) [0, 1]

µ

µ∗

Although σ(B) ⊆ Sσ(Idl(B)), Sσ(L) is a coframe, not a σ-algebra!

=⇒ We can’t talk about points, it doesn’t specialise to point-set setting.

On the other hand, it “resolves” Banach-Tarski paradox!
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Concluding remarks

• Kř́ıž–Pultr’s solution factors through ours

B

σAlg 〈B〉 σS(B) [0, 1]

m

∃! µ∗

• It would be nice to construct Dδ frame-theoretically.

• The same reasoning as in the classical case applies.

• Common in Kř́ıž–Pultr + TJ: We can study measure theory in a

point-free fashion and only add points at the end, if needed.
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• Common in Kř́ıž–Pultr + TJ: We can study measure theory in a

point-free fashion and only add points at the end, if needed.

15



Thank you!

and ...
16



Happy Birthday Aleši!

Aleš is influential in

so many areas of

mathematics:

1. Algebraic

topology

2. Category theory

3. Duality theory

4. Fuzzy logic/sets

5. General algebra

6. Graph theory

7. Mathematical

analysis

8. Pointfree

topology

9. ...

The most common words in Aleš’s 185 titles:

(papers and book chapters combined)
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