A pointfree account of Carathéodory's Extension Theorem

Tomáš Jakl ^a

Workshop on Algebra, Logic and Topology in Coimbra 27 September 2018

^aThe research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No.670624)

Classical Carathéodory's Extension Theorem

Theorem

A measure $m: \mathcal{B} \to [0,1]$ on a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$ uniquely extends to a countably additive measure on $\sigma(\mathcal{B})$.

> Minimal σ-algebra contaning B

Classical Carathéodory's Extension Theorem

Theorem

A measure $m: \mathcal{B} \to [0, 1]$ on a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$ uniquely extends to a countably additive measure on $\sigma(\mathcal{B})$.

Proof.

1. Extend *m* to a **countably additive** function

$$\mu(U) = \sup\{m(B) \mid B \in \mathcal{B}, \ B \subseteq U\}$$

2. Extend μ to an **outer measure**

$$\mu * (M) = \inf \{ \mu(U) \mid U \in \tau_{\mathcal{B}}, \ M \subseteq U \}$$

3. μ^* is a measure on measurable subsets $\mathcal{H} \subseteq \mathcal{P}(X)$. Restrict μ^* to $\sigma(\mathcal{B}) \subseteq \mathcal{H}$.

1

Extension theorem by Igor Kříž and Aleš Pultr

Abstract σ -algebra is a Boolean algebra which has countable joins. Abstract finitely (resp. countably) additive measure $m \colon B \to [0, 1]$ satisfies

1.
$$m(0_B) = 0$$
, $m(1_B) = 1$,
2. $m(a \lor b) + m(a \land b) = m(a) + m(b)$
3. (resp. $\sum_{i=0}^{\infty} m(a_i) = m(\bigvee_{i=0}^{\infty} a_i)$ if a_i 's are pairwise disjoint)

Extension theorem by Igor Kříž and Aleš Pultr

Abstract σ -algebra is a Boolean algebra which has countable joins. Abstract finitely (resp. countably) additive measure $m \colon B \to [0, 1]$ satisfies

1.
$$m(0_B) = 0$$
, $m(1_B) = 1$,
2. $m(a \lor b) + m(a \land b) = m(a) + m(b)$
3. (resp. $\sum_{i=0}^{\infty} m(a_i) = m(\bigvee_{i=0}^{\infty} a_i)$ if a_i 's are pairwise disjoint)

Theorem (Kříž, Pultr 2010) Every finitely additive $m: B \rightarrow [0,1]$ uniquely extends to a countably additive measure $\mu: \sigma Alg \langle B \rangle \rightarrow [0,1]$ such that

Enlarges the space. On the other hand, useful for integration over infinite-dimensional spaces!

Finitely additive $m: B \to [0, 1]$ extends to a valuation $\mu: IdI(B) \to [0, 1]$, $\mu(I) = \sup\{m(a) : a \in I\}$

Finitely additive $m: B \to [0, 1]$ extends to a **valuation** $\mu: \operatorname{Idl}(B) \to [0, 1]$, i.e. 1. μ is a finitely additive measure

2. For a directed $A \subseteq^{\uparrow} IdI(B)$:

$$\sup_{I\in A}\mu(I)=\mu(\bigvee^{\uparrow}A)$$

Finitely additive $m: B \to [0, 1]$ extends to a **valuation** $\mu: Idl(B) \to [0, 1]$, i.e. 1. μ is a finitely additive measure 2. For a directed $A \subseteq^{\uparrow} Idl(B)$:

$$\sup_{I\in A}\mu(I)=\mu(\bigvee^{\uparrow}A)$$

We need a complete Boolean algebra which

- embeds Idl(B), and
- has the same (frame-theoretic) points as *B* has.

Idl(B) is a frame! $a \wedge \bigvee_i b_i = \bigvee_i (a \wedge b_i)$ e.g. $\mathcal{O}(X, \tau) = \tau$ Finitely additive $m: B \to [0, 1]$ extends to a **valuation** $\mu: \operatorname{Idl}(B) \to [0, 1]$, i.e. 1. μ is a finitely additive measure

2. For a directed
$$A \subseteq^{\uparrow} \mathsf{IdI}(B)$$
:

$$\sup_{I\in A}\mu(I)=\mu(\bigvee^{\uparrow}A)$$

We need a complete Boolean algebra which

- embeds Idl(B), and
- has the same (frame-theoretic) points as *B* has.

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_M on $\mathcal{O}(X)$:

 $U \sim_M V$ iff $U \cap M = V \cap M$

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_M on $\mathcal{O}(X)$: $U \sim_M V$ iff $U \cap M = V \cap M$

Congruences are equivalently represented as sublocales $S \subseteq L$

1.
$$\forall A \subseteq S$$
, $\bigwedge A \in S$
2. $\forall x \in L, s \in S, x \to s \in S$

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_M on $\mathcal{O}(X)$: $U \sim_M V$ iff $U \cap M = V \cap M$

Congruences are equivalently represented as sublocales $S \subseteq L$

1.
$$\forall A \subseteq S$$
, $\bigwedge A \in S$

2.
$$\forall x \in L, s \in S, x \to s \in S$$

The mapping "congruences \mapsto sublocales":

 $\sim \subseteq L \times L \longmapsto \{ \text{largest elements of } \sim -\text{equivalence classes} \}$

Every subspace of X introduces a sublocale of $\mathcal{O}(X)$ but not vice versa! The complete lattice (coframe) of sublocales

$$\mathcal{S}(L) = \{S \subseteq L \mid S \text{ is a sublocale}\}, \text{ ordered by } \subseteq L$$

Joins and meet easy to compute!

The complete lattice (coframe) of sublocales

$$\mathcal{S}(L) = \{S \subseteq L \mid S \text{ is a sublocale}\}, \text{ ordered by } \subseteq L$$

Joins and meet easy to compute!

Open and closed sublocales $(a \in L)$:

$$\mathfrak{o}(a) = \{a
ightarrow x \mid x \in L\}$$
 and $\mathfrak{c}(a) = \uparrow a$

They are complemented in $\mathcal{S}(L)$.

$$\bigvee_i \mathfrak{o}(a_i) = \mathfrak{o}(\bigvee_i a_i), \quad \mathfrak{c}(a) \lor \mathfrak{c}(b) = \mathfrak{c}(a \land b), \quad ... \quad (\text{as expected})$$

The complete lattice (coframe) of sublocales

$$\mathcal{S}(L) = \{S \subseteq L \mid S \text{ is a sublocale}\}, \text{ ordered by } \subseteq L$$

Joins and meet easy to compute!

Open and closed sublocales $(a \in L)$:

$$\mathfrak{o}(a) = \{a
ightarrow x \mid x \in L\}$$
 and $\mathfrak{c}(a) = \uparrow a$

They are complemented in $\mathcal{S}(L)$.

$$\bigvee_i \mathfrak{o}(a_i) = \mathfrak{o}(\bigvee_i a_i), \quad \mathfrak{c}(a) \lor \mathfrak{c}(b) = \mathfrak{c}(a \land b), \quad ... \quad (\text{as expected})$$

Join-sublattice $\mathcal{S}_{\mathfrak{c}}(L) \subseteq \mathcal{S}(L)$

$$S_{c}(L) = \begin{cases} \text{the set of sublocales obtained as} \\ \text{joins of closed sublocales} \end{cases}$$

Always a frame!

Theorem (Picado, Pultr, Tozzi 2016)

If L is subfit then $S_{c}(L)$ is a complete Boolean algebra and

$$\mathsf{a} \in \mathsf{L} \longmapsto \mathfrak{o}(\mathsf{a}) \in \mathcal{S}_\mathfrak{c}(\mathsf{L})$$

is an injective frame homomorphisms $L \hookrightarrow S_{\mathfrak{c}}(L)$.

Theorem (Picado, Pultr, Tozzi 2016) If L is subfit then $S_{c}(L)$ is a complete Boolean algebra and

 $a \in L \mapsto \mathfrak{o}(a) \in \mathcal{S}_{\mathfrak{c}}(L)$

is an injective frame homomorphisms $L \hookrightarrow S_{c}(L)$.

Moreover

- If X is a T_1 space, then $\mathcal{S}_{\mathfrak{c}}(\mathcal{O}(X)) \cong \mathcal{P}(X)$.
- In case of $X = \operatorname{spec}(B)$, we have $\mathcal{O}(X) \cong \operatorname{Idl}(B)$ and so

 $\mathcal{S}_{\mathfrak{c}}(\mathsf{Idl}(B)) \cong \mathcal{P}(X).$

Theorem (Picado, Pultr, Tozzi 2016) If L is subfit then $S_{c}(L)$ is a complete Boolean algebra and

 $a \in L \longmapsto \mathfrak{o}(a) \in \mathcal{S}_{\mathfrak{c}}(L)$

is an injective frame homomorphisms $L \hookrightarrow S_{c}(L)$.

Moreover

- If X is a T_1 space, then $\mathcal{S}_{\mathfrak{c}}(\mathcal{O}(X)) \cong \mathcal{P}(X)$.
- In case of $X = \operatorname{spec}(B)$, we have $\mathcal{O}(X) \cong \operatorname{Idl}(B)$ and so

 $\mathcal{S}_{\mathfrak{c}}(\mathsf{Idl}(B)) \cong \mathcal{P}(X).$

• \implies instead of $\mathcal{P}(X)$ take $\mathcal{S}_{\mathfrak{c}}(\mathsf{Idl}(B))$

Putting it together

Valuation μ : $Idl(B) \rightarrow [0, 1]$ extends to an outer measure μ^* : $S_c(Idl(B)) \rightarrow [0, 1]$, $\mu^*(x) = \inf\{\mu(i) \mid i \in Idl(B), x \leq i\}$

Putting it together

Valuation μ : Idl $(B) \rightarrow [0, 1]$ extends to an **outer measure** μ^* : $S_{\mathfrak{c}}(Idl(B)) \rightarrow [0, 1]$, i.e.

- 1. μ^* is monotone
- 2. $\mu^*(x \lor y) + \mu^*(x \land y) \le \mu^*(a) + \mu^*(b)$

3. For a directed $(x_i)_{i=0}^{\infty} \subseteq^{\uparrow} \mathcal{S}_{\mathfrak{c}}(\mathsf{Idl}(B))$:

$$\sup_{i} \mu^*(x_i) = \mu^*(\bigvee_{i}^{\uparrow} x_i)$$

Putting it together

Valuation μ : Idl $(B) \rightarrow [0, 1]$ extends to an **outer measure** $\mu^* : S_{\mathfrak{c}}(Idl(B)) \rightarrow [0, 1]$, i.e.

1. μ^* is monotone 2. $\mu^*(x \lor y) + \mu^*(x \land y) \le \mu^*(a) + \mu^*(b)$ 3. For a directed $(x_i)_{i=0}^{\infty} \subseteq^{\uparrow} \mathcal{S}_{\mathfrak{c}}(\mathsf{IdI}(B))$:

$$\sup_{i} \mu^*(x_i) = \mu^*(\bigvee_{i=1}^{\uparrow} x_i)$$

Furthermore

$$\mathcal{H} = \{x \in \mathcal{S}_{\mathfrak{c}}(\mathsf{IdI}(B)) \mid \mu^*(x) + \mu^*(\neg x) \leq 1\}$$

is a σ -algebra (containing $\sigma_{\mathcal{S}}(B)$) and so $\mu^* |_{\mathcal{H}}$ is a measure.

Pointfree Carathéodory's Extension Theorem

Theorem

A finitely additive measure $m: B \to [0, 1]$ uniquely extends to a countably additive measure on $\sigma_{\mathcal{S}}(B) \subseteq \mathcal{S}_{c}(\mathsf{Idl}(B))$.

Pointfree Carathéodory's Extension Theorem

Theorem

A finitely additive measure $m: B \to [0, 1]$ uniquely extends to a countably additive measure on $\sigma_{\mathcal{S}}(B) \subseteq \mathcal{S}_{c}(\mathsf{Idl}(B))$.

Corollary

There are bijective correspondences between

- finitely additive measures $B \rightarrow [0, 1]$
- regular countably additive measures σ_S(B) → [0, 1]
- regular valuations $\sigma_{\mathcal{S}}(\mathsf{Idl}(B)) \to [0,1]$

Comparison with the classical result

For a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$, it might happen that $\bigcup_{i} B_{i} \in \mathcal{B}$ for some infinite $\{B_{i}\}_{i} \subseteq \mathcal{B}$. However, in the Stone space spec (\mathcal{B}) (i.e. in the "sobrification") $\bigcup_{i} \llbracket B_{i} \rrbracket \neq \llbracket \bigcup_{i} B_{i} \rrbracket = \left(\overline{\bigcup_{i} \llbracket B_{i} \rrbracket} \right)^{\circ}$ where $\llbracket B \rrbracket = \{\mathcal{U} \mid B \in \mathcal{U}\}$.

Comparison with the classical result

For a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$, it might happen that $\bigcup_{i} B_{i} \in \mathcal{B}$ for some infinite $\{B_{i}\}_{i} \subseteq \mathcal{B}$. However, in the Stone space spec (\mathcal{B}) (i.e. in the "sobrification") $\bigcup_{i} \llbracket B_{i} \rrbracket \neq \llbracket \bigcup_{i} B_{i} \rrbracket = \left(\overline{\bigcup_{i} \llbracket B_{i} \rrbracket} \right)^{\circ}$ where $\llbracket B \rrbracket = \{\mathcal{U} \mid B \in \mathcal{U}\}$.

 \implies We don't need the **extra assumption** for $m: \mathcal{B} \rightarrow [0, 1]$:

For any pairwise disjoint $\{B_i\}_{i=0}^{\infty} \subseteq \mathcal{B}$ such that $\bigcup_i B_i \in \mathcal{B}$

$$m(\bigcup_i B_i) = \sum_{i=0}^{\infty} m(B_i)$$

The continuous map $U: (X, \mathcal{P}(X)) \rightarrow (\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

 $U: x \longmapsto \{B \in \mathcal{B} \mid x \in B\}$

The continuous map $U: (X, \mathcal{P}(X)) \rightarrow (\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$U: x \longmapsto \{B \in \mathcal{B} \mid x \in B\}$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \to \mathcal{P}(X)$

 $h: M \mapsto \{x \mid U(x) \in M\}$

The continuous map $U: (X, \mathcal{P}(X)) \rightarrow (\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$U: x \longmapsto \{B \in \mathcal{B} \mid x \in B\}$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \to \mathcal{P}(X)$

$$h: M \mapsto \{x \mid U(x) \in M\}$$

Which restricts to $\sigma_{\mathcal{S}}(\mathcal{B}) \twoheadrightarrow \sigma(\mathcal{B})$ $\sigma_{\mathcal{S}}(\mathcal{B}) \subseteq \mathcal{S}_{\mathfrak{c}}(\mathsf{IdI}(\mathcal{B})) \cong \mathcal{P}(\mathsf{spec}(\mathcal{B}))$ The continuous map $U \colon (X, \mathcal{P}(X)) \to (\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$U: x \longmapsto \{B \in \mathcal{B} \mid x \in B\}$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \to \mathcal{P}(X)$

$$h: M \mapsto \{x \mid U(x) \in M\}$$

Which restricts to $\sigma_{\mathcal{S}}(\mathcal{B}) \twoheadrightarrow \sigma(\mathcal{B})$

Define $\overline{\mu}(M) = \mu^*(U[M])$

If the "extra assumption" holds for *m*, we obtain the Carathéodory's measure!

Canonical extensions

For a Boolean algebra B, we have

 $B \hookrightarrow B^{\delta}$

Characterised as

- 1. *B* is join-meet and meet-join dense in B^{δ}
- 2. the embedding is compact

Canonical extensions

For a Boolean algebra B, we have

 $B \hookrightarrow B^\delta$

Characterised as

- 1. *B* is join-meet and meet-join dense in B^{δ}
- 2. the embedding is compact

Recall

- B^{δ} is a complete Boolean algebra,
- for the Stone dual X of B we have $B^{\delta} \cong (\mathcal{P}(X), \subseteq)$, and
- B^{δ} can be constructed entirely choice-free.

Consequently

•
$$B^{\delta} \cong \mathcal{P}(X) \cong \mathcal{S}_{\mathfrak{c}}(\mathsf{Idl}(B))$$

Theorem (Ball, Pultr 2017)

Assume that L is subfit, L \hookrightarrow M, and for any x < y in M there is a < b in L such that

 $x \wedge b \leq a$ and $y \vee a \geq b$.

If M is a Boolean frame then $S_{\mathfrak{c}}(L) \cong M$.

Theorem (Ball, Pultr 2017)

Assume that L is subfit, $L \hookrightarrow M$, and for any x < y in M there is a < b in L such that

 $x \wedge b \leq a$ and $y \vee a \geq b$.

If M is a Boolean frame then $S_{\mathfrak{c}}(L) \cong M$.

Proof that $B^{\delta} \cong S_{\mathfrak{c}}(\mathsf{IdI}(B))$ algebraically: For x < y pick a join of B's $i \in B^{\delta}$ such that $x \leq i$ and $y \not\leq i$

and pick a meet of B's $f \in B^{\delta}$ such that

 $f \leq y$ and $f \not\leq i$

Then, $a = i \lor \neg f$ and b = 1 satisfy the conditions.

Generalisation to distributive lattices?

We know $D^{\delta} \cong Up(X, \leq)$ for the Priestly space (X, τ, \leq) of D. Is there a frame-theoretic construction for D^{δ} ?

However

- Idl(D) need not be subfit
- $\operatorname{Idl}(D) \hookrightarrow \mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(D))$

What instead of $S_{\mathfrak{c}}(-)$? Something like $S_{\mathfrak{o}}(L)$?

Generalisation to distributive lattices?

We know $D^{\delta} \cong Up(X, \leq)$ for the Priestly space (X, τ, \leq) of D. Is there a frame-theoretic construction for D^{δ} ?

However

- Idl(D) need not be subfit
- $\operatorname{Idl}(D) \hookrightarrow \mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(D))$

What instead of $S_{\mathfrak{c}}(-)$? Something like $S_{\mathfrak{o}}(L)$? ... is it a frame?

Extension theorem by Alex Simpson (2011)

Different approach

 $\mathcal{S}^{\sigma}(L) = \{S \subseteq L \mid S \text{ is a } \sigma\text{-sublocale of } L\}$

Theorem

If L is a fit σ -frame, then a valuation $\mu: L \to [0, 1]$ uniquely extends to a valuation $\mu^*: S^{\sigma}(L) \to [0, 1]$ such that

Extension theorem by Alex Simpson (2011)

Different approach

 $S^{\sigma}(L) = \{S \subseteq L \mid S \text{ is a } \sigma\text{-sublocale of } L\}$

Theorem

If L is a fit σ -frame, then a valuation $\mu: L \to [0, 1]$ uniquely extends to a valuation $\mu^*: S^{\sigma}(L) \to [0, 1]$ such that

Although $\sigma(B) \subseteq S^{\sigma}(IdI(B))$, $S^{\sigma}(L)$ is a coframe, not a σ -algebra! \implies We can't talk about points, it doesn't specialise to point-set setting.

On the other hand, it "resolves" Banach-Tarski paradox!

Concluding remarks

• Kříž–Pultr's solution factors through ours

Concluding remarks

• Kříž–Pultr's solution factors through ours

• It would be nice to construct D^{δ} frame-theoretically.

Concluding remarks

• Kříž–Pultr's solution factors through ours

- It would be nice to construct D^{δ} frame-theoretically.
- The same reasoning as in the classical case applies.
- Common in Kříž–Pultr + TJ: We can study measure theory in a point-free fashion and only add points at the end, if needed.

Thank you!

Happy Birthday Aleši!

Aleš is influential in so many areas of mathematics:

- 1. Algebraic topology
- 2. Category theory
- 3. Duality theory
- 4. Fuzzy logic/sets
- 5. General algebra
- 6. Graph theory
- 7. Mathematical analysis
- 8. Pointfree topology

Happy Birthday Aleši!

Aleš is influential in so many areas of mathematics:

- 1. Algebraic topology
- 2. Category theory
- 3. Duality theory
- 4. Fuzzy logic/sets
- 5. General algebra
- 6. Graph theory
- 7. Mathematical analysis
- 8. Pointfree topology

The most common words in Aleš's 185 titles:

(papers and book chapters combined)

9. ..