A pointfree account of Carathéodory's Extension Theorem

Tomáš Jakl ${ }^{a}$

Workshop on Algebra, Logic and Topology in Coimbra
27 September 2018

$$
\begin{aligned}
& \text { UNIVERSITE: } \\
& \text { COTEDARUR }
\end{aligned}
$$

[^0]
Classical Carathéodory’s Extension Theorem

Theorem

A measure $m: \mathcal{B} \rightarrow[0,1]$ on a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$
uniquely extends to a countably additive measure on $\sigma(\mathcal{B})$.

Minimal σ-algebra
contaning B

Classical Carathéodory's Extension Theorem

Theorem

A measure $m: \mathcal{B} \rightarrow[0,1]$ on a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$ uniquely extends to a countably additive measure on $\sigma(\mathcal{B})$.

Proof.
\mathcal{B}

1. Extend m to a countably additive function

$$
\mu(U)=\sup \{m(B) \mid B \in \mathcal{B}, B \subseteq U\}
$$

2. Extend μ to an outer measure

$$
\mu *(M)=\inf \left\{\mu(U) \mid U \in \tau_{\mathcal{B}}, M \subseteq U\right\}
$$

3. μ^{*} is a measure on measurable subsets $\mathcal{H} \subseteq \mathcal{P}(X)$. Restrict μ^{*} to $\sigma(\mathcal{B}) \subseteq \mathcal{H}$.

Extension theorem by Igor Kříž and Aleš Pultr

Abstract σ-algebra is a Boolean algebra which has countable joins.
Abstract finitely (resp. countably) additive measure m : $B \rightarrow[0,1]$ satisfies

1. $m\left(0_{B}\right)=0, \quad m\left(1_{B}\right)=1$,
2. $m(a \vee b)+m(a \wedge b)=m(a)+m(b)$
3. (resp. $\sum_{i=0}^{\infty} m\left(a_{i}\right)=m\left(\bigvee_{i=0}^{\infty} a_{i}\right)$ if a_{i} 's are pairwise disjoint)

Extension theorem by Igor Kříž and Aleš Pultr

Abstract σ-algebra is a Boolean algebra which has countable joins.
Abstract finitely (resp. countably) additive measure m : $B \rightarrow[0,1]$ satisfies

1. $m\left(0_{B}\right)=0, \quad m\left(1_{B}\right)=1$,
2. $m(a \vee b)+m(a \wedge b)=m(a)+m(b)$
3. (resp. $\sum_{i=0}^{\infty} m\left(a_{i}\right)=m\left(\bigvee_{i=0}^{\infty} a_{i}\right)$ if a_{i} 's are pairwise disjoint)

Theorem (Kříž, Pultr 2010)

Every finitely additive $m: B \rightarrow[0,1]$ uniquely extends to a countably additive measure $\mu: \sigma$ Alg $\langle B\rangle \rightarrow[0,1]$ such that

Enlarges the space. On the other hand, useful for integration over infinite-dimensional spaces!

What instead of $\mathcal{P}(X)$?

Finitely additive $m: B \rightarrow[0,1]$ extends
 to a valuation $\mu: \operatorname{Idl}(B) \rightarrow[0,1]$,

$$
\mu(I)=\sup \{m(a): a \in I\}
$$

What instead of $\mathcal{P}(X)$?

Finitely additive $m: B \rightarrow[0,1]$ extends

B

$\operatorname{Id|}(B) \xrightarrow{\mu}[0,1]$
!
\vdots
$?$
$? ? ?$ to a valuation $\mu: \operatorname{IdI}(B) \rightarrow[0,1]$, i.e.

1. μ is a finitely additive measure
2. For a directed $A \subseteq \uparrow \mid \operatorname{Id}(B)$:

$$
\sup _{I \in A} \mu(I)=\mu\left(\bigvee^{\uparrow} A\right)
$$

What instead of $\mathcal{P}(X)$?

Finitely additive $m: B \rightarrow[0,1]$ extends to a valuation $\mu: \operatorname{IdI}(B) \rightarrow[0,1]$, i.e.

1. μ is a finitely additive measure
2. For a directed $A \subseteq \uparrow \mid \operatorname{IdI}(B)$:

$$
\sup _{I \in A} \mu(I)=\mu\left(\bigvee^{\uparrow} A\right)
$$

We need a complete Boolean algebra which

- embeds $\operatorname{Idl}(B)$, and
- has the same (frame-theoretic) points as B has.

What instead of $\mathcal{P}(X)$?

Finitely additive $m: B \rightarrow[0,1]$ extends to a valuation $\mu: \operatorname{ldl}(B) \rightarrow[0,1]$, i.e.

1. μ is a finitely additive measure
2. For a directed $A \subseteq \uparrow \mid \operatorname{IdI}(B)$:

$$
\sup _{I \in A} \mu(I)=\mu\left(\bigvee^{\uparrow} A\right)
$$

We need a complete Boolean algebra which

- embeds $\operatorname{Idl}(B)$, and
- has the same (frame-theoretic) points as B has.

$$
\text { e.g. } \mathcal{O}(X, \tau)=\tau
$$

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_{M} on $\mathcal{O}(X)$:

$$
U \sim_{M} V \quad \text { iff } \quad U \cap M=V \cap M
$$

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_{M} on $\mathcal{O}(X)$:

$$
U \sim_{M} V \quad \text { iff } \quad U \cap M=V \cap M
$$

Congruences are equivalently represented as sublocales $S \subseteq L$

1. $\forall A \subseteq S, \bigwedge A \in S$
2. $\forall x \in L, s \in S, \quad x \rightarrow s \in S$

Frame Theory intermezzo: Sublocales

A subspace $M \subseteq X$ introduces a frame congruence \sim_{M} on $\mathcal{O}(X)$:

$$
U \sim_{M} V \quad \text { iff } \quad U \cap M=V \cap M
$$

Congruences are equivalently represented as sublocales $S \subseteq L$

$$
\begin{aligned}
& \text { 1. } \forall A \subseteq S, \quad \bigwedge A \in S \\
& \text { 2. } \forall x \in L, s \in S, \quad x \rightarrow s \in S
\end{aligned}
$$

The mapping "congruences \mapsto sublocales":

$$
\sim \subseteq L \times L \longmapsto\{\text { largest elements of } \sim \text {-equivalence classes }\}
$$

Every subspace of X introduces a sublocale of $\mathcal{O}(X)$ but not vice versa!

The complete lattice (coframe) of sublocales

$$
\mathcal{S}(L)=\{S \subseteq L \mid S \text { is a sublocale }\}, \quad \text { ordered by } \subseteq .
$$

Joins and meet easy to compute!

The complete lattice (coframe) of sublocales

$$
\mathcal{S}(L)=\{S \subseteq L \mid S \text { is a sublocale }\}, \quad \text { ordered by } \subseteq
$$

Joins and meet easy to compute!

Open and closed sublocales $(a \in L)$:

$$
\mathfrak{o}(a)=\{a \rightarrow x \mid x \in L\} \quad \text { and } \quad \mathfrak{c}(a)=\uparrow a
$$

They are complemented in $\mathcal{S}(L)$.
$\bigvee_{i} \mathfrak{o}\left(a_{i}\right)=\mathfrak{o}\left(\bigvee_{i} a_{i}\right), \quad \mathfrak{c}(a) \vee \mathfrak{c}(b)=\mathfrak{c}(a \wedge b), \quad \ldots \quad$ (as expected)

The complete lattice (coframe) of sublocales

$$
\mathcal{S}(L)=\{S \subseteq L \mid S \text { is a sublocale }\}, \quad \text { ordered by } \subseteq
$$

Joins and meet easy to compute!

Open and closed sublocales $(a \in L)$:

$$
\mathfrak{o}(a)=\{a \rightarrow x \mid x \in L\} \quad \text { and } \quad \mathfrak{c}(a)=\uparrow a
$$

They are complemented in $\mathcal{S}(L)$.
$\bigvee_{i} \mathfrak{o}\left(a_{i}\right)=\mathfrak{o}\left(\bigvee_{i} a_{i}\right), \quad \mathfrak{c}(a) \vee \mathfrak{c}(b)=\mathfrak{c}(a \wedge b), \quad \ldots \quad$ (as expected)
Join-sublattice $\mathcal{S}_{\mathfrak{c}}(L) \subseteq \mathcal{S}(L)$

$$
\mathcal{S}_{\mathfrak{c}}(L)=\left\{\begin{array}{c}
\text { the set of sublocales obtained as } \\
\text { joins of closed sublocales }
\end{array}\right\}
$$

Always a frame!

Theorem (Picado, Pultr, Tozzi 2016)

If L is subfit then $\mathcal{S}_{\mathrm{c}}(L)$ is a complete Boolean algebra and

$$
a \in L \longmapsto \mathfrak{o}(a) \in \mathcal{S}_{\mathfrak{c}}(L)
$$

is an injective frame homomorphisms $L \hookrightarrow \mathcal{S}_{\mathfrak{c}}(L)$.

Theorem (Picado, Pultr, Tozzi 2016)

If L is subfit then $\mathcal{S}_{\mathfrak{c}}(L)$ is a complete Boolean algebra and

$$
a \in L \longmapsto \mathfrak{o}(a) \in \mathcal{S}_{\mathfrak{c}}(L)
$$

is an injective frame homomorphisms $L \hookrightarrow \mathcal{S}_{\mathfrak{c}}(L)$.

Moreover

- If X is a T_{1} space, then $\mathcal{S}_{\mathfrak{c}}(\mathcal{O}(X)) \cong \mathcal{P}(X)$.
- In case of $X=\operatorname{spec}(B)$, we have $\mathcal{O}(X) \cong \operatorname{IdI}(B)$ and so

$$
\mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(B)) \cong \mathcal{P}(X)
$$

Theorem (Picado, Pultr, Tozzi 2016)

If L is subfit then $\mathcal{S}_{\mathfrak{c}}(L)$ is a complete Boolean algebra and

$$
a \in L \longmapsto \mathfrak{o}(a) \in \mathcal{S}_{\mathfrak{c}}(L)
$$

is an injective frame homomorphisms $L \hookrightarrow \mathcal{S}_{\mathrm{c}}(L)$.

Moreover

- If X is a T_{1} space, then $\mathcal{S}_{\mathfrak{c}}(\mathcal{O}(X)) \cong \mathcal{P}(X)$.
- In case of $X=\operatorname{spec}(B)$, we have $\mathcal{O}(X) \cong \operatorname{IdI}(B)$ and so

$$
\mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(B)) \cong \mathcal{P}(X)
$$

- \Longrightarrow instead of $\mathcal{P}(X)$ take $\mathcal{S}_{\mathrm{c}}(\operatorname{IdI}(B))$

Putting it together

Valuation $\mu: \operatorname{Idl}(B) \rightarrow[0,1]$ extends to an outer measure $\mu^{*}: \mathcal{S}_{\mathfrak{c}}(\operatorname{ldl}(B)) \rightarrow[0,1]$,

$$
\mu^{*}(x)=\inf \{\mu(i) \mid i \in \operatorname{IdI}(B), x \leq i\}
$$

Putting it together

Valuation $\mu: \operatorname{Idl}(B) \rightarrow[0,1]$ extends to an outer measure $\mu^{*}: \mathcal{S}_{\mathfrak{c}}(\operatorname{IdI}(B)) \rightarrow[0,1]$, ie.

1. μ^{*} is monotone
2. $\mu^{*}(x \vee y)+\mu^{*}(x \wedge y) \leq \mu^{*}(a)+\mu^{*}(b)$
3. For a directed $\left(x_{i}\right)_{i=0}^{\infty} \subseteq^{\uparrow} \mathcal{S}_{\mathrm{c}}(\operatorname{IdI}(B))$:

$$
\sup _{i} \mu^{*}\left(x_{i}\right)=\mu^{*}\left(\bigvee_{i}^{\uparrow} x_{i}\right)
$$

Putting it together

Valuation $\mu: \operatorname{Idl}(B) \rightarrow[0,1]$ extends to an outer measure $\mu^{*}: \mathcal{S}_{\mathrm{c}}(\operatorname{IdI}(B)) \rightarrow[0,1]$, i.e.

1. μ^{*} is monotone
2. $\mu^{*}(x \vee y)+\mu^{*}(x \wedge y) \leq \mu^{*}(a)+\mu^{*}(b)$
3. For a directed $\left(x_{i}\right)_{i=0}^{\infty} \subseteq^{\uparrow} \mathcal{S}_{\mathfrak{c}}(\operatorname{IdI}(B))$:

$$
\sup _{i} \mu^{*}\left(x_{i}\right)=\mu^{*}\left(\bigvee_{i}^{\uparrow} x_{i}\right)
$$

Furthermore

$$
\mathcal{H}=\left\{x \in \mathcal{S}_{\mathbf{c}}(\operatorname{Id|}(B)) \mid \mu^{*}(x)+\mu^{*}(\neg x) \leq 1\right\}
$$

is a σ-algebra (containing $\sigma_{\mathcal{S}}(B)$) and so $\mu^{*} \upharpoonright_{\mathcal{H}}$ is a measure.

Pointfree Carathéodory's Extension Theorem

Theorem
A finitely additive measure m : $B \rightarrow[0,1]$ uniquely extends to a countably additive measure on $\sigma_{\mathcal{S}}(B) \subseteq \mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(B))$.

Pointfree Carathéodory's Extension Theorem

Theorem

A finitely additive measure $m: B \rightarrow[0,1]$ uniquely extends to a countably additive measure on $\sigma_{\mathcal{S}}(B) \subseteq \mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(B))$.

Corollary

There are bijective correspondences between

- finitely additive measures $B \rightarrow[0,1]$
- regular countably additive measures $\sigma_{\mathcal{S}}(B) \rightarrow[0,1]$
- regular valuations $\sigma_{\mathcal{S}}(\operatorname{Id}(B)) \rightarrow[0,1]$

Comparison with the classical result

For a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$, it might happen that

$$
\bigcup_{i} B_{i} \in \mathcal{B} \quad \text { for some infinite } \quad\left\{B_{i}\right\}_{i} \subseteq \mathcal{B}
$$

However, in the $\operatorname{Stone} \operatorname{space} \operatorname{spec}(\mathcal{B}) \quad$ (i.e. in the "sobrification")

$$
\bigcup_{i} \llbracket B_{i} \rrbracket \neq \llbracket \bigcup_{i} B_{i} \rrbracket=\left(\overline{\bigcup_{i} \llbracket B_{i} \rrbracket}\right)^{\circ}
$$

where $\llbracket B \rrbracket=\{\mathcal{U} \mid B \in \mathcal{U}\}$.

Comparison with the classical result

For a Boolean algebra $\mathcal{B} \subseteq \mathcal{P}(X)$, it might happen that

$$
\bigcup_{i} B_{i} \in \mathcal{B} \quad \text { for some infinite } \quad\left\{B_{i}\right\}_{i} \subseteq \mathcal{B}
$$

However, in the $\operatorname{Stone} \operatorname{space} \operatorname{spec}(\mathcal{B}) \quad$ (i.e. in the "sobrification")

$$
\bigcup_{i} \llbracket B_{i} \rrbracket \neq \llbracket \bigcup_{i} B_{i} \rrbracket=\left(\overline{\bigcup_{i} \llbracket B_{i} \rrbracket}\right)^{\circ}
$$

where $\llbracket B \rrbracket=\{\mathcal{U} \mid B \in \mathcal{U}\}$.
\Longrightarrow We don't need the extra assumption for $m: \mathcal{B} \rightarrow[0,1]$:
For any pairwise disjoint $\left\{B_{i}\right\}_{i=0}^{\infty} \subseteq \mathcal{B}$ such that $\bigcup_{i} B_{i} \in \mathcal{B}$

$$
m\left(\bigcup_{i} B_{i}\right)=\sum_{i=0}^{\infty} m\left(B_{i}\right)
$$

The continuous map $U:(X, \mathcal{P}(X)) \rightarrow(\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$
U: x \longmapsto\{B \in \mathcal{B} \mid x \in B\}
$$

The continuous map $U:(X, \mathcal{P}(X)) \rightarrow(\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$
U: x \longmapsto\{B \in \mathcal{B} \mid x \in B\}
$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \rightarrow \mathcal{P}(X)$

$$
h: M \mapsto\{x \mid U(x) \in M\}
$$

The continuous map $U:(X, \mathcal{P}(X)) \rightarrow(\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$
U: x \longmapsto\{B \in \mathcal{B} \mid x \in B\}
$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \rightarrow \mathcal{P}(X)$

$$
h: M \mapsto\{x \mid U(x) \in M\}
$$

Which restricts to $\sigma_{\mathcal{S}}(\mathcal{B}) \rightarrow \sigma(\mathcal{B})$

$$
\sigma_{\mathcal{S}}(\mathcal{B}) \subseteq \mathcal{S}_{\mathrm{c}}(\operatorname{Idl}(\mathcal{B})) \cong \mathcal{P}(\operatorname{spec}(\mathcal{B}))
$$

The continuous map $U:(X, \mathcal{P}(X)) \rightarrow(\operatorname{spec}(\mathcal{B}), \mathcal{P}(\operatorname{spec}(\mathcal{B})))$

$$
U: x \longmapsto\{B \in \mathcal{B} \mid x \in B\}
$$

introduces a frame homomorphism $h: \mathcal{P}(\operatorname{spec}(\mathcal{B})) \rightarrow \mathcal{P}(X)$

$$
h: M \mapsto\{x \mid U(x) \in M\}
$$

Which restricts to $\sigma_{\mathcal{S}}(\mathcal{B}) \rightarrow \sigma(\mathcal{B})$

Define $\bar{\mu}(M)=\mu^{*}(U[M])$
If the "extra assumption" holds for m, we obtain the Carathéodory's measure!

Canonical extensions

For a Boolean algebra B, we have

$$
B \hookrightarrow B^{\delta}
$$

Characterised as

1. B is join-meet and meet-join dense in B^{δ}
2. the embedding is compact

Canonical extensions

For a Boolean algebra B, we have

$$
B \hookrightarrow B^{\delta}
$$

Characterised as

1. B is join-meet and meet-join dense in B^{δ}
2. the embedding is compact

Recall

- B^{δ} is a complete Boolean algebra,
- for the Stone dual X of B we have $B^{\delta} \cong(\mathcal{P}(X), \subseteq)$, and
- B^{δ} can be constructed entirely choice-free.

Consequently

- $B^{\delta} \cong \mathcal{P}(X) \cong \mathcal{S}_{\mathrm{c}}(\operatorname{Idl}(B))$

Theorem (Ball, Pultr 2017)

Assume that L is subfit, $L \hookrightarrow M$, and for any $x<y$ in M there is $a<b$ in L such that

$$
x \wedge b \leq a \quad \text { and } \quad y \vee a \geq b
$$

If M is a Boolean frame then $\mathcal{S}_{\mathfrak{c}}(L) \cong M$.

Theorem (Ball, Pultr 2017)

Assume that L is subfit, $L \hookrightarrow M$, and for any $x<y$ in M there is $a<b$ in L such that

$$
x \wedge b \leq a \quad \text { and } \quad y \vee a \geq b
$$

If M is a Boolean frame then $\mathcal{S}_{\mathfrak{c}}(L) \cong M$.

Proof that $B^{\delta} \cong \mathcal{S}_{\mathbf{c}}(\operatorname{ldl}(B))$ algebraically:
For $x<y$ pick a join of $B^{\prime} s i \in B^{\delta}$ such that

$$
x \leq i \quad \text { and } \quad y \not \leq i
$$

and pick a meet of B 's $f \in B^{\delta}$ such that

$$
f \leq y \quad \text { and } \quad f \not \leq i
$$

Then, $a=i \vee \neg f$ and $b=1$ satisfy the conditions.

Generalisation to distributive lattices?

We know $D^{\delta} \cong \mathrm{Up}(X, \leq)$ for the Priestly space (X, τ, \leq) of D.
Is there a frame-theoretic construction for D^{δ} ?

However

- $\operatorname{Idl}(D)$ need not be subfit
- $\operatorname{IdI}(D) \nLeftarrow \mathcal{S}_{\mathfrak{c}}(\operatorname{IdI}(D))$

What instead of $\mathcal{S}_{\mathfrak{c}}(-)$? Something like $\mathcal{S}_{\mathfrak{o}}(L)$?

Generalisation to distributive lattices?

We know $D^{\delta} \cong \mathrm{Up}(X, \leq)$ for the Priestly space (X, τ, \leq) of D.
Is there a frame-theoretic construction for D^{δ} ?

However

- $\operatorname{IdI}(D)$ need not be subfit
- $\operatorname{Idl}(D) \nLeftarrow \mathcal{S}_{\mathfrak{c}}(\operatorname{Idl}(D))$

What instead of $\mathcal{S}_{\mathfrak{c}}(-)$? Something like $\mathcal{S}_{\mathfrak{0}}(L)$? ... is it a frame?

Extension theorem by Alex Simpson (2011)

Different approach

$$
\mathcal{S}^{\sigma}(L)=\{S \subseteq L \mid S \text { is a } \sigma \text {-sublocale of } L\}
$$

Theorem

If L is a fit σ-frame, then a valuation $\mu: L \rightarrow[0,1]$ uniquely extends to a valuation $\mu^{*}: \mathcal{S}^{\sigma}(L) \rightarrow[0,1]$ such that

$$
\underset{\mathcal{S}^{\sigma}(L) \xrightarrow[\mu^{*}]{L}}{\substack{\mu}[0,1]}
$$

Extension theorem by Alex Simpson (2011)

Different approach

$$
\mathcal{S}^{\sigma}(L)=\{S \subseteq L \mid S \text { is a } \sigma \text {-sublocale of } L\}
$$

Theorem

If L is a fit σ-frame, then a valuation $\mu: L \rightarrow[0,1]$ uniquely extends to a valuation $\mu^{*}: \mathcal{S}^{\sigma}(L) \rightarrow[0,1]$ such that

Although $\sigma(B) \subseteq \mathcal{S}^{\sigma}(\operatorname{ldl}(B)), \mathcal{S}^{\sigma}(L)$ is a coframe, not a σ-algebra!
\Longrightarrow We can't talk about points, it doesn't specialise to point-set setting.

On the other hand, it "resolves" Banach-Tarski paradox!

Concluding remarks

- Křiž-Pultr's solution factors through ours

Concluding remarks

- Křiž-Pultr's solution factors through ours

- It would be nice to construct D^{δ} frame-theoretically.

Concluding remarks

- Křiž-Pultr's solution factors through ours

- It would be nice to construct D^{δ} frame-theoretically.
- The same reasoning as in the classical case applies.
- Common in Kříž-Pultr + TJ: We can study measure theory in a point-free fashion and only add points at the end, if needed.

Thank you!

Happy Birthday Aleši!

Aleš is influential in so many areas of mathematics:

1. Algebraic topology
2. Category theory
3. Duality theory
4. Fuzzy logic/sets
5. General algebra
6. Graph theory
7. Mathematical
analysis
8. Pointfree topology
9. ...

Happy Birthday Aleši!

The most common words in Aleš's 185 titles:
Aleš is influential in so many areas of mathematics:

1. Algebraic topology
2. Category theory
3. Duality theory
4. Fuzzy logic/sets
5. General algebra
6. Graph theory
7. Mathematical analysis
8. Pointfree topology
9. ...
(papers and book chapters combined)

[^0]: ${ }^{a}$ The research discussed has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No.670624)

