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e Semigroups in Sup are also called quantales (C.J. Mulvey 1983).

e Due to the universal property of the tensor product in Sup a quantale
can also be described as a complete lattice £ provided with an
associative, binary operation * which is join-preserving in each
variable separately.

e A monoid in Sup is a quantale with unit or a unital quantale.

e Let T be the universal upper bound of a quantale . Then Q is

(1) semi-unital if a < a* T and a < T xa for a € Q,

(2) semi-integral if a*x T x 3 < ax*f for a, 8 € Q.

(3) Let Q be a semi-unital quantale. Then an element p € Q is prime, if
p # T and the relation ax 5 < p implies a* T < por T x5 < p.

(4) A semi-unital quantale is spatial if prime elements are order
generating — i.e. every element is a meet of prime elements.
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Presentation of the Problem.

e Let A be a non-commutative and unital C*-algebra. Then the ideal
lattice IL(A) of all closed left ideals of A provided with the ideal
multiplication * is a quantale. It is well known that (IL(A), %) is
idempotent, non-commutative and semi-integral. Hence:

e (LL(A), %) is non-unital. Maximal left ideals are always prime
elements, but not vice versal
e (L(A), %) is spatial.

Question. Does there exist a topological space (X, 7) such that
LL(A) is isomorphic to 77

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication * on G; = {0, 1}.

e (, provided with the Boolean multiplication is the unique unital
quantale on C, which will now be denoted by 2.

e The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Every unital quantale Q = (9, *, €) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication x of Q.



Every unital quantale Q = (9, *, €) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication x of Q.

e Question’. Does there exists a unital quantale £ and a Q-enriched
topological space (X, 7T) such that IL(A) is essentially equivalent to
toT ?



Every unital quantale Q = (9, , e) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication x of Q.

e Question’. Does there exists a unital quantale £ and a Q-enriched
topological space (X, 7T) such that IL(A) is essentially equivalent to
toT 7

Essentially equivalent means the existence of a quantale
monomorphism (A) = T such that the range o(IL(A)) of
@ and the universal upper bound T of T generate T .



Every unital quantale Q = (9, , e) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication x of Q.
Question’. Does there exists a unital quantale Q and a Q-enriched
topological space (X, 7T) such that IL(A) is essentially equivalent to
toT 7

Essentially equivalent means the existence of a quantale

monomorphism (A) = T such that the range o(IL(A)) of

@ and the universal upper bound T of T generate T .

The aim of this talk is to present a positive answer to this question
by proving the following more general result:

Theorem. There exists a unital quantale £Q such that for any
semi-unital and spatial quantale X there exists a Q-enriched sober
space (Z,T) satisfying the condition that the quantale X is
essentially equivalent to Q-enriched topology 7.



Every unital quantale Q = (9, , e) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication x of Q.

e Question’. Does there exists a unital quantale £ and a Q-enriched
topological space (X, 7T) such that IL(A) is essentially equivalent to
toT 7

Essentially equivalent means the existence of a quantale
monomorphism (A) = T such that the range o(IL(A)) of
@ and the universal upper bound T of T generate T .

The aim of this talk is to present a positive answer to this question
by proving the following more general result:

Theorem. There exists a unital quantale £Q such that for any
semi-unital and spatial quantale X there exists a Q-enriched sober
space (Z,T) satisfying the condition that the quantale X is
essentially equivalent to Q-enriched topology 7.

e The previous theorem covers the case of the quantale X = (IL(A), ).
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Let us fix a unital quantale Q = (9, , e).
e A right Q-module in Sup is a complete lattice L provided with a right
action L@ 9Q 25 L.

¢ Right Q-modules form a category Mod,(£Q), and right -module
homomorphisms are join-preserving maps which also preserve the
right action.

e Since 2 is the unit object in Sup, Mod,(2) = Sup.
Theorem 1. (A. Joyal and M. Tierney 1984) Let X be a set. The
free right -module generated by X in the sense of Mod, () is the

complete lattice Q% of all maps X 5a provided with the right
action which is determined by

(f @ a)(x) = f(x) * a, ae, fen
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A Q-enriched lattice (L, p) consists of the following data:

e The pair (L, p) is skeletal Q-enriched category where L is a set of
objects and L x L £ £ is a hom-object assignment satisfying the

axioms:
e < p(t,t),

p(r,s) = p(s,t) < p(r,t),
e < p(s,t) A p(t,s) = s=t.

o A skeletal Q-enriched category (L, p) is join-complete, if the Yoneda
embedding
(L,p) — P(L,p) = {f € Q" | p(t2, 1) * f(t1) < f(t2)}
has a (unique) left adjoint Q-functor P(L, p) ) (L, p).

Theorem 2. (l. Stubbe 2006) Mod,(Q) = Sup(Q).
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$-enriched power set of X with the hom-object assignment p and
the formation of Q-enriched joins supox ) given as follows:
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e A Q-enriched topology T on a set X is a right Q-submodule of free
right Q-module QX satisfying the following topological axioms:
(RT1) TeT,

(RTQ) if fi,h €T, ,then AxhHh €T,
where T is the constant map determined by the universal upper
bound T of Q and (f; x )(x) = fi(x) * f(x) for all x € X.

e A pair (X,T) is a Q-enriched topological space, if X is a set and T
is a -enriched topology on X.
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Definition 1. A triple (L, %, ) is a right Q-algebra if (L, ) is a
quantale and (L, @) is a right Q-module such that the following
compatibility relation holds:

(i) Da=t*(tEHa), t,hel, aef.

A map between right Q-algebras L; KN L, is a right Q-algebra

morphism if h is a quantale homomorphism and a right £2-module

homomorphism. A right Q-algebra morphism h is strong if h preserves

additionally the respective universal upper bounds —i.e. h(T) =T.

Examples.

(a) Because of (RT2) every Q-enriched topology is a right Q-algebra.

(b) Given a unital quantale (L, %, d) and a unital quantale

homomorphism ENVS Then j induces a right action [ on L
tHa=txj(a)

such that (L,*,[]) is a right Q-algebra.
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Every right Q-algebra I. = (L, %, ) induces a Q-enriched topolo-
gical space.

The spectrum pt(IL) is the set of all strong right QQ-algebra
morphisms L ENYSY

Every element t € L induces a map pt(L) 245 9 by evaluation — i.e.
Ai(h) = h(t),  hept(L).

Then 7 = {A; | t € L} is a Q-enriched topology on the spectrum
pt(L) and

the pair (pt(IL), 7) is a Q-enriched sober space — i.e.

elements of T separate elements in pt(IL) — pt(L) is a To-space,

every strong right Q-algebra morphism 7 % Q is induced by an
element h € pt(L) —ie. @(A;) = A(h).
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Quantization of 2

For an idempotent and non-commutative quantale on GG ={1,a, T}
the element a strictly located between the top and the bottom can
only play two roles:

e ais left-sided and not right-sided. This leads to the quantale CJ.
e ais right-sided and not left-sided. This leads to the quantale Cj.

e The quantization of 2 is the tensor product Q, = Cf ® C} and
consists of six elements:

T x| L|bla|la | c|T

I L] L) L]L|L

s ¢ b|L|b| b|a|a|ar
ay ar ap | Lla|a | T|T]|T
N\ b / ar | L| b | b|a|a| ar

| c|Lla|a | T|T]|T

1 Tl L|a|a|T|T|T
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Prime Elements of Semi-unital Quantales and Strong
Homomorphisms

Given a semi-unital quantale . Then every prime element p of Q

can be identified with a strong (quantale) homomorphism Q 29,
satisfying the condition:

p=V{aeQ| h(a) <c}.

e Construction:

(1, TxaxT <p,

b, TxaxT <Lp, axT <pand Txa < p,
a, axT L£pand T xa < p,

a,, axT <pand Txa <p,

¢, a<p, axT Lpand TxaLp,

LT, aZ£p.
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Theorem 3. (H. 2015) A semi-unital quantale £ is spatial — i.e.
prime elements are order generating — if and only if strong

. h
homomorphisms £ — £, separate elements of £).
Let Q5 be the unitalization of Q5. Hence:

1), has 12 elements and contains £), as a subquantale.

Cs is a right 55\2—a|gebra, and therefore the tensor product Q ® Cj is
also a right Q,-algebra.

If 9 is semi-unital and semi-integral, then there exists a quantale
monomorphism Q < Q ® C§ determined by

ea)=(a@T)V ((axT)® a), a € Q.

Finally, let Q ® C¥ be the one point extension of Q ® C} given by the
left semi-unitalization.
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Results

Let us consider the right L/);—subalgebra ILy of the one point
extension Q ® C} of the tensor product Q ® C§ which is generated by
the range »(2) of ¢ and the added point of the one point extension
of the tensor product Q ® C§. Then Iy has the following properties:

e There exists a bijective map between the spectrum pt(ILg) of Ly and
the set of all strong homomorphism Q — Q5.

e A semi-unital and semi-integral quantale £ is spatial if and only if
elements of the spectrum pt(LLg) separate elements in Lg.

e If a quantale £ is semi-unital and spatial, then the f,l\z—enriched sober
space induced by the right ,-algebra L.y, is the topological
representation of 2 — i.e. ) is essentially equivalent to the
Qy-enriched topology 7 on the spectrum pt(Lg).
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