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Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Some Notation and Terminology

Sup = Category of complete lattices and join-preserving maps.

Sup is a monoidal closed category.

• Semigroups in Sup are also called quantales (C.J. Mulvey 1983).

• Due to the universal property of the tensor product in Sup a quantale
can also be described as a complete lattice Q provided with an
associative, binary operation ∗ which is join-preserving in each
variable separately.

• A monoid in Sup is a quantale with unit or a unital quantale.

• Let > be the universal upper bound of a quantale Q. Then Q is

(1) semi-unital if α ≤ α ∗ > and α ≤ > ∗ α for α ∈ Q,
(2) semi-integral if α ∗ > ∗ β ≤ α ∗ β for α, β ∈ Q.
(3) Let Q be a semi-unital quantale. Then an element p ∈ Q is prime, if

p 6= > and the relation α ∗ β ≤ p implies α ∗ > ≤ p or > ∗ β ≤ p.
(4) A semi-unital quantale is spatial if prime elements are order

generating — i.e. every element is a meet of prime elements.
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Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Presentation of the Problem.
• Let A be a non-commutative and unital C ∗-algebra. Then the ideal

lattice L(A) of all closed left ideals of A provided with the ideal
multiplication ∗ is a quantale. It is well known that (L(A), ∗) is
idempotent, non-commutative and semi-integral. Hence:

• (L(A), ∗) is non-unital. Maximal left ideals are always prime
elements, but not vice versa!

• (L(A), ∗) is spatial.

Question. Does there exist a topological space (X , τ) such that
L(A) is isomorphic to τ?

Answer. No, because the intersection operation is commutative and
is related to the Boolean multiplication ∗ on C2 = {0, 1}.

• C2 provided with the Boolean multiplication is the unique unital
quantale on C2 which will now be denoted by 2.

• The replacement of the quantale 2 by a non-commutative and unital
quantale opens the door to enriched category theory.



Terminology and Motivation Enriched Topological Spaces Topologization of Semi-Unital and Semi-Integral Quantales

Every unital quantale Q = (Q, ∗, e) can be considered as a monoidal
biclosed category where the tensor product is given by the
multiplication ∗ of Q.

• Question′. Does there exists a unital quantale Q and a Q-enriched
topological space (X , T ) such that L(A) is essentially equivalent to
to T ?

Essentially equivalent means the existence of a quantale
monomorphism L(A)

ϕ−→ T such that the range ϕ(L(A)) of
ϕ and the universal upper bound > of T generate T .

The aim of this talk is to present a positive answer to this question
by proving the following more general result:

Theorem. There exists a unital quantale Q such that for any
semi-unital and spatial quantale X there exists a Q-enriched sober
space (Z , T ) satisfying the condition that the quantale X is
essentially equivalent to Q-enriched topology T .

• The previous theorem covers the case of the quantale X = (L(A), ∗).
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Q-Enriched Power Set
Let us fix a unital quantale Q = (Q, ∗, e).

• A right Q-module in Sup is a complete lattice L provided with a right

action L⊗Q
�−→ L.

• Right Q-modules form a category Modr (Q), and right Q-module
homomorphisms are join-preserving maps which also preserve the
right action.

• Since 2 is the unit object in Sup, Modr (2) ∼= Sup.

Theorem 1. (A. Joyal and M. Tierney 1984) Let X be a set. The
free right Q-module generated by X in the sense of Modr (Q) is the

complete lattice QX of all maps X
f−→ Q provided with the right

action which is determined by

(f � α)(x) = f (x) ∗ α, α ∈ Q, f ∈ QX .
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• Sup(Q)= category of Q-enriched join-complete lattices and
Q-enriched join-preserving maps.

A Q-enriched lattice (L, p) consists of the following data:

• The pair (L, p) is skeletal Q-enriched category where L is a set of

objects and L× L
p−→ Q is a hom-object assignment satisfying the

axioms:
e ≤ p(t, t),

p(r , s) ∗ p(s, t) ≤ p(r , t),

e ≤ p(s, t) ∧ p(t, s) =⇒ s = t.

• A skeletal Q-enriched category (L, p) is join-complete, if the Yoneda
embedding

(L, p) −→ P(L, p) = {f ∈ QL | p(t2, t1) ∗ f (t1) ≤ f (t2)}

has a (unique) left adjoint Q-functor P(L, p)
sup(L,p)−−−−→ (L, p).

Theorem 2. (I. Stubbe 2006) Modr (Q) ∼= Sup(Q).
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p−→ Q is a hom-object assignment satisfying the

axioms:
e ≤ p(t, t),

p(r , s) ∗ p(s, t) ≤ p(r , t),

e ≤ p(s, t) ∧ p(t, s) =⇒ s = t.

• A skeletal Q-enriched category (L, p) is join-complete, if the Yoneda
embedding

(L, p) −→ P(L, p) = {f ∈ QL | p(t2, t1) ∗ f (t1) ≤ f (t2)}

has a (unique) left adjoint Q-functor P(L, p)
sup(L,p)−−−−→ (L, p).

Theorem 2. (I. Stubbe 2006) Modr (Q) ∼= Sup(Q).
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Axioms of Q-enriched Topologies

Theorem 1 and Theorem 2 imply that the right Q-module QX is the
Q-enriched power set of X with the hom-object assignment p and
the formation of Q-enriched joins sup(QX ,p) given as follows:

p(f , g) =
∧
x∈X

f (x)↘ g(x), sup(QX ,p)(F )(x) =
∨

f ∈QX

f (x) ∗ F (f ).

• A Q-enriched topology T on a set X is a right Q-submodule of free
right Q-module QX satisfying the following topological axioms:

(RT1) > ∈ T ,
(RT2) if f1, f2 ∈ T , then f1 ∗ f2 ∈ T ,
where > is the constant map determined by the universal upper
bound > of Q and (f1 ∗ f2)(x) = f1(x) ∗ f2(x) for all x ∈ X .

• A pair (X , T ) is a Q-enriched topological space, if X is a set and T
is a Q-enriched topology on X .
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Definition 1. A triple (L, ∗,�) is a right Q-algebra if (L, ∗) is a
quantale and (L,�) is a right Q-module such that the following
compatibility relation holds:

(t1 ∗ t2) � α = t1 ∗ (t2 � α), t1, t2 ∈ L, α ∈ Q.

• A map between right Q-algebras L1
h−→ L2 is a right Q-algebra

morphism if h is a quantale homomorphism and a right Q-module
homomorphism. A right Q-algebra morphism h is strong if h preserves
additionally the respective universal upper bounds — i.e. h(>) = >.

• Examples.

(a) Because of (RT2) every Q-enriched topology is a right Q-algebra.

(b) Given a unital quantale (L, ∗, d) and a unital quantale

homomorphism Q
j−→ L. Then j induces a right action � on L

t � α = t ∗ j(α)

such that (L, ∗,�) is a right Q-algebra.
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Every right Q-algebra L = (L, ∗,�) induces a Q-enriched topolo-
gical space.

• The spectrum pt(L) is the set of all strong right Q-algebra

morphisms L
h−→ Q.

• Every element t ∈ L induces a map pt(L)
At−−→ Q by evaluation — i.e.

At(h) = h(t), h ∈ pt(L).

• Then T = {At | t ∈ L} is a Q-enriched topology on the spectrum
pt(L) and

• the pair (pt(L), T ) is a Q-enriched sober space — i.e.

• elements of T separate elements in pt(L) – pt(L) is a T0-space,

• every strong right Q-algebra morphism T ϕ−→ Q is induced by an
element h ∈ pt(L) — i.e. ϕ(At) = At(h).
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Quantization of 2
For an idempotent and non-commutative quantale on C3 = {⊥, a,>}
the element a strictly located between the top and the bottom can
only play two roles:

• a is left-sided and not right-sided. This leads to the quantale C `
3 .

• a is right-sided and not left-sided. This leads to the quantale C r
3 .

• The quantization of 2 is the tensor product Q2 = C `
3 ⊗ C r

3 and
consists of six elements:

>

c

a` ar

b

⊥

? ⊥ b a` ar c >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
b ⊥ b b ar ar ar

a` ⊥ a` a` > > >
ar ⊥ b b ar ar ar

c ⊥ a` a` > > >
> ⊥ a` a` > > >
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Prime Elements of Semi-unital Quantales and Strong

Homomorphisms
Given a semi-unital quantale Q. Then every prime element p of Q

can be identified with a strong (quantale) homomorphism Q
h−→ Q2

satisfying the condition:

p =
∨
{α ∈ Q | h(α) ≤ c}.

• Construction:

hp(α) =



⊥, > ∗ α ∗ > ≤ p,

b, > ∗ α ∗ > 6≤ p, α ∗ > ≤ p and > ∗ α ≤ p,

a`, α ∗ > 6≤ p and > ∗ α ≤ p,

ar , α ∗ > ≤ p and > ∗ α 6≤ p,

c , α ≤ p, α ∗ > 6≤ p and > ∗ α 6≤ p,

>, α 6≤ p.
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Theorem 3. (H. 2015) A semi-unital quantale Q is spatial — i.e.
prime elements are order generating — if and only if strong

homomorphisms Q
h−→ Q2 separate elements of Q.

• Let Q̂2 be the unitalization of Q2. Hence:

• Q̂2 has 12 elements and contains Q2 as a subquantale.

• C `
3 is a right Q̂2-algebra, and therefore the tensor product Q⊗ C `

3 is

also a right Q̂2-algebra.

• If Q is semi-unital and semi-integral, then there exists a quantale
monomorphism Q

ϕ−→ Q⊗ C `
3 determined by

ϕ(α) = (α⊗>) ∨
(
(α ∗ >)⊗ a`

)
, α ∈ Q.

• Finally, let Q⊗ C `
3 be the one point extension of Q⊗ C `

3 given by the
left semi-unitalization.
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Results

Let us consider the right Q̂2-subalgebra LQ of the one point
extension Q⊗ C `

3 of the tensor product Q⊗C `
3 which is generated by

the range ϕ(Q) of ϕ and the added point of the one point extension
of the tensor product Q⊗ C `

3 . Then LQ has the following properties:

• There exists a bijective map between the spectrum pt(LQ) of LQ and
the set of all strong homomorphism Q −→ Q2.

• A semi-unital and semi-integral quantale Q is spatial if and only if
elements of the spectrum pt(LQ) separate elements in LQ.

• If a quantale Q is semi-unital and spatial, then the Q̂2-enriched sober
space induced by the right Q̂2-algebra LQ is the topological
representation of Q — i.e. Q is essentially equivalent to the
Q̂2-enriched topology T on the spectrum pt(LQ).
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