Enriched Topologies and Topological Representation of Semi-Unital Quantales

Ulrich Höhle

Bergische Universität, Wuppertal, Germany

Coimbra, September 2018

Terminology and Motivation

Enriched Topological Spaces

 Topologization of Semi-Unital and Semi-Integral Quantales

Sup = Category of complete lattices and join-preserving maps.

Sup = Category of complete lattices and join-preserving maps. Sup is a monoidal closed category.

• Semigroups in Sup are also called quantales (C.J. Mulvey 1983).

- Semigroups in Sup are also called quantales (C.J. Mulvey 1983).
- Due to the universal property of the tensor product in Sup a quantale can also be described as a complete lattice \mathfrak{Q} provided with an associative, binary operation * which is join-preserving in each variable separately.

- Semigroups in Sup are also called quantales (C.J. Mulvey 1983).
- Due to the universal property of the tensor product in Sup a quantale can also be described as a complete lattice \mathfrak{Q} provided with an associative, binary operation * which is join-preserving in each variable separately.
- A monoid in Sup is a quantale with unit or a unital quantale.

- Semigroups in Sup are also called quantales (C.J. Mulvey 1983).
- Due to the universal property of the tensor product in Sup a quantale can also be described as a complete lattice \mathfrak{Q} provided with an associative, binary operation * which is join-preserving in each variable separately.
- A monoid in Sup is a quantale with unit or a unital quantale.
- Let \top be the universal upper bound of a quantale \mathfrak{Q} . Then \mathfrak{Q} is
 - (1) semi-unital if $\alpha \leq \alpha * \top$ and $\alpha \leq \top * \alpha$ for $\alpha \in \mathfrak{Q}$,
 - (2) semi-integral if $\alpha * \top * \beta \leq \alpha * \beta$ for $\alpha, \beta \in \mathfrak{Q}$.
 - (3) Let \mathfrak{Q} be a semi-unital quantale. Then an element $p \in \mathfrak{Q}$ is prime, if $p \neq \top$ and the relation $\alpha * \beta \leq p$ implies $\alpha * \top \leq p$ or $\top * \beta \leq p$.
 - (4) A semi-unital quantale is spatial if prime elements are order generating — i.e. every element is a meet of prime elements.

Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!
- $(\mathbb{L}(A), *)$ is spatial.

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!
- $(\mathbb{L}(A), *)$ is spatial.

Question. Does there exist a topological space (X, τ) such that $\mathbb{L}(A)$ is isomorphic to τ ?

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!
- $(\mathbb{L}(A), *)$ is spatial.

Question. Does there exist a topological space (X, τ) such that $\mathbb{L}(A)$ is isomorphic to τ ?

Answer. No, because the intersection operation is commutative and is related to the Boolean multiplication * on $C_2 = \{0, 1\}$.

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!
- $(\mathbb{L}(A), *)$ is spatial.

Question. Does there exist a topological space (X, τ) such that $\mathbb{L}(A)$ is isomorphic to τ ?

Answer. No, because the intersection operation is commutative and is related to the Boolean multiplication * on $C_2 = \{0, 1\}$.

• C_2 provided with the Boolean multiplication is the unique unital quantale on C_2 which will now be denoted by **2**.

- Let A be a non-commutative and unital C*-algebra. Then the ideal lattice L(A) of all closed left ideals of A provided with the ideal multiplication * is a quantale. It is well known that (L(A), *) is idempotent, non-commutative and semi-integral. Hence:
- (L(A), *) is non-unital. Maximal left ideals are always prime elements, but not vice versa!
- $(\mathbb{L}(A), *)$ is spatial.

Question. Does there exist a topological space (X, τ) such that $\mathbb{L}(A)$ is isomorphic to τ ?

Answer. No, because the intersection operation is commutative and is related to the Boolean multiplication * on $C_2 = \{0, 1\}$.

- C_2 provided with the Boolean multiplication is the unique unital quantale on C_2 which will now be denoted by **2**.
- The replacement of the quantale **2** by a non-commutative and unital quantale opens the door to enriched category theory.

Question'. Does there exists a unital quantale Ω and a Ω-enriched topological space (X, T) such that L(A) is essentially equivalent to to T ?

Question'. Does there exists a unital quantale Ω and a Ω-enriched topological space (X, T) such that L(A) is essentially equivalent to to T ?

Essentially equivalent means the existence of a quantale monomorphism $\mathbb{L}(A) \xrightarrow{\varphi} \mathcal{T}$ such that the range $\varphi(\mathbb{L}(A))$ of φ and the universal upper bound \top of \mathcal{T} generate \mathcal{T} .

Question'. Does there exists a unital quantale Ω and a Ω-enriched topological space (X, T) such that L(A) is essentially equivalent to to T ?

Essentially equivalent means the existence of a quantale monomorphism $\mathbb{L}(A) \xrightarrow{\varphi} \mathcal{T}$ such that the range $\varphi(\mathbb{L}(A))$ of φ and the universal upper bound \top of \mathcal{T} generate \mathcal{T} .

The aim of this talk is to present a positive answer to this question by proving the following more general result:

Theorem. There exists a unital quantale \mathfrak{Q} such that for any semi-unital and spatial quantale \mathbb{X} there exists a \mathfrak{Q} -enriched sober space (Z, \mathcal{T}) satisfying the condition that the quantale \mathbb{X} is essentially equivalent to \mathfrak{Q} -enriched topology \mathcal{T} .

Question'. Does there exists a unital quantale Ω and a Ω-enriched topological space (X, T) such that L(A) is essentially equivalent to to T ?

Essentially equivalent means the existence of a quantale monomorphism $\mathbb{L}(A) \xrightarrow{\varphi} \mathcal{T}$ such that the range $\varphi(\mathbb{L}(A))$ of φ and the universal upper bound \top of \mathcal{T} generate \mathcal{T} .

The aim of this talk is to present a positive answer to this question by proving the following more general result:

Theorem. There exists a unital quantale \mathfrak{Q} such that for any semi-unital and spatial quantale \mathbb{X} there exists a \mathfrak{Q} -enriched sober space (Z, \mathcal{T}) satisfying the condition that the quantale \mathbb{X} is essentially equivalent to \mathfrak{Q} -enriched topology \mathcal{T} .

• The previous theorem covers the case of the quantale $\mathbb{X} = (\mathbb{L}(A), *)$.

Q-Enriched Power Set

Let us fix a unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, e)$.

Q-Enriched Power Set

Let us fix a unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, e)$.

A right Ω-module in Sup is a complete lattice L provided with a right action L ⊗ Ω → L.

$\mathfrak{Q}\text{-}\mathsf{Enriched}$ Power Set

Let us fix a unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, e)$.

- A right Ω-module in Sup is a complete lattice L provided with a right action L ⊗ Ω → L.
- Right Q-modules form a category Mod_r(Q), and right Q-module homomorphisms are join-preserving maps which also preserve the right action.

$\mathfrak{Q}\text{-}\mathsf{Enriched}$ Power Set

Let us fix a unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, e)$.

- A right Ω-module in Sup is a complete lattice L provided with a right action L ⊗ Ω [□]→ L.
- Right Q-modules form a category Mod_r(Q), and right Q-module homomorphisms are join-preserving maps which also preserve the right action.
- Since **2** is the unit object in Sup, $Mod_r(\mathbf{2}) \cong Sup$.

$\mathfrak{Q}\text{-}\mathsf{Enriched}$ Power Set

Let us fix a unital quantale $\mathfrak{Q} = (\mathfrak{Q}, *, e)$.

- A right Ω-module in Sup is a complete lattice L provided with a right action L ⊗ Ω → L.
- Right D-modules form a category Mod_r(D), and right D-module homomorphisms are join-preserving maps which also preserve the right action.
- Since $\mathbf{2}$ is the unit object in Sup, $\operatorname{Mod}_r(\mathbf{2}) \cong$ Sup.

Theorem 1. (A. Joyal and M. Tierney 1984) Let X be a set. The free right \mathfrak{Q} -module generated by X in the sense of $\operatorname{Mod}_r(\mathfrak{Q})$ is the complete lattice \mathfrak{Q}^X of all maps $X \xrightarrow{f} \mathfrak{Q}$ provided with the right action which is determined by

$$(f \boxdot \alpha)(x) = f(x) * \alpha, \qquad \alpha \in \mathfrak{Q}, \ f \in \mathfrak{Q}^X.$$

A \mathfrak{Q} -enriched lattice (L, p) consists of the following data:

A \mathfrak{Q} -enriched lattice (L, p) consists of the following data:

• The pair (L, p) is skeletal \mathfrak{Q} -enriched category where

A \mathfrak{Q} -enriched lattice (L, p) consists of the following data:

The pair (L, p) is skeletal Ω-enriched category where L is a set of objects and L × L → Ω is a hom-object assignment satisfying the axioms:

$$e \leq p(t, t),$$

 $p(r, s) * p(s, t) \leq p(r, t),$
 $e \leq p(s, t) \land p(t, s) \implies s = t.$

A \mathfrak{Q} -enriched lattice (L, p) consists of the following data:

The pair (L, p) is skeletal Ω-enriched category where L is a set of objects and L × L → Ω is a hom-object assignment satisfying the axioms:

$$e \le p(t, t),$$

 $p(r, s) * p(s, t) \le p(r, t),$
 $e \le p(s, t) \land p(t, s) \implies s = t.$

 A skeletal Q-enriched category (L, p) is join-complete, if the Yoneda embedding

$$(L,p) \longrightarrow \mathbb{P}(L,p) = \{f \in \mathfrak{Q}^L \mid p(t_2,t_1) * f(t_1) \leq f(t_2)\}$$

has a (unique) left adjoint \mathfrak{Q} -functor $\mathbb{P}(L,p) \xrightarrow{\sup_{(L,p)}} (L,p)$.

A \mathfrak{Q} -enriched lattice (L, p) consists of the following data:

The pair (L, p) is skeletal Ω-enriched category where L is a set of objects and L × L → Ω is a hom-object assignment satisfying the axioms:

$$e \le p(t, t),$$

 $p(r, s) * p(s, t) \le p(r, t),$
 $e \le p(s, t) \land p(t, s) \implies s = t.$

 A skeletal Q-enriched category (L, p) is join-complete, if the Yoneda embedding

$$(L,p) \longrightarrow \mathbb{P}(L,p) = \{f \in \mathfrak{Q}^L \mid p(t_2,t_1) * f(t_1) \leq f(t_2)\}$$

has a (unique) left adjoint \mathfrak{Q} -functor $\mathbb{P}(L, p) \xrightarrow{\sup_{(L,p)}} (L, p)$. **Theorem 2**. (I. Stubbe 2006) $\operatorname{Mod}_r(\mathfrak{Q}) \cong \operatorname{Sup}(\mathfrak{Q})$.

Axioms of Q-enriched Topologies

Theorem 1 and Theorem 2 imply that the right \mathfrak{Q} -module \mathfrak{Q}^X is the \mathfrak{Q} -enriched power set of X with the hom-object assignment p and the formation of \mathfrak{Q} -enriched joins $\sup_{(\mathfrak{Q}^X, p)}$ given as follows:

$$p(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \quad \sup_{(\mathfrak{Q}^X,p)} (F)(x) = \bigvee_{f \in \mathfrak{Q}^X} f(x) * F(f).$$

Axioms of *Q*-enriched Topologies

Theorem 1 and Theorem 2 imply that the right \mathfrak{Q} -module \mathfrak{Q}^X is the \mathfrak{Q} -enriched power set of X with the hom-object assignment p and the formation of \mathfrak{Q} -enriched joins $\sup_{(\mathfrak{Q}^X, p)}$ given as follows:

$$p(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \quad \sup_{(\mathfrak{Q}^X,p)} (F)(x) = \bigvee_{f \in \mathfrak{Q}^X} f(x) * F(f).$$

A Q-enriched topology T on a set X is a right Q-submodule of free right Q-module Q^X satisfying the following topological axioms:
(RT1) ⊥ ∈ T,
(RT2) if f₁, f₂ ∈ T, then f₁ * f₂ ∈ T,
where ⊤ is the constant map determined by the universal upper

bound \top of \mathfrak{Q} and $(f_1 * f_2)(x) = f_1(x) * f_2(x)$ for all $x \in X$.

Axioms of *Q*-enriched Topologies

Theorem 1 and Theorem 2 imply that the right \mathfrak{Q} -module \mathfrak{Q}^X is the \mathfrak{Q} -enriched power set of X with the hom-object assignment p and the formation of \mathfrak{Q} -enriched joins $\sup_{(\mathfrak{Q}^X, p)}$ given as follows:

$$p(f,g) = \bigwedge_{x \in X} f(x) \searrow g(x), \quad \sup_{(\mathfrak{Q}^X,p)} (F)(x) = \bigvee_{f \in \mathfrak{Q}^X} f(x) * F(f).$$

A Q-enriched topology T on a set X is a right Q-submodule of free right Q-module Q^X satisfying the following topological axioms:
(RT1) ⊥ ∈ T,
(RT2) if f₁, f₂ ∈ T, then f₁ * f₂ ∈ T,
where ⊥ is the constant map determined by the universal upper

bound $\overline{\top}$ of \mathfrak{Q} and $(f_1 * f_2)(x) = f_1(x) * f_2(x)$ for all $x \in X$.

A pair (X, T) is a Q-enriched topological space, if X is a set and T is a Q-enriched topology on X.

$$(t_1 * t_2) \boxdot \alpha = t_1 * (t_2 \boxdot \alpha), \qquad t_1, t_2 \in L, \ \alpha \in \mathfrak{Q}.$$

 $(t_1 * t_2) \boxdot \alpha = t_1 * (t_2 \boxdot \alpha), \qquad t_1, t_2 \in L, \alpha \in \mathfrak{Q}.$

A map between right Q-algebras L₁ ^h→ L₂ is a right Q-algebra morphism if h is a quantale homomorphism and a right Q-module homomorphism. A right Q-algebra morphism h is strong if h preserves additionally the respective universal upper bounds — i.e. h(⊤) = ⊤.

 $(t_1 * t_2) \boxdot \alpha = t_1 * (t_2 \boxdot \alpha), \qquad t_1, t_2 \in L, \alpha \in \mathfrak{Q}.$

A map between right Q-algebras L₁ → L₂ is a right Q-algebra morphism if h is a quantale homomorphism and a right Q-module homomorphism. A right Q-algebra morphism h is strong if h preserves additionally the respective universal upper bounds — i.e. h(T) = T.

• Examples.

 $(t_1 * t_2) \boxdot \alpha = t_1 * (t_2 \boxdot \alpha), \qquad t_1, t_2 \in L, \alpha \in \mathfrak{Q}.$

A map between right Q-algebras L₁ ^h→ L₂ is a right Q-algebra morphism if h is a quantale homomorphism and a right Q-module homomorphism. A right Q-algebra morphism h is strong if h preserves additionally the respective universal upper bounds — i.e. h(⊤) = ⊤.

• Examples.

(a) Because of (RT2) every \mathfrak{Q} -enriched topology is a right \mathfrak{Q} -algebra.

$$(t_1 * t_2) \boxdot \alpha = t_1 * (t_2 \boxdot \alpha), \qquad t_1, t_2 \in L, \ \alpha \in \mathfrak{Q}.$$

A map between right Q-algebras L₁ ^h→ L₂ is a right Q-algebra morphism if h is a quantale homomorphism and a right Q-module homomorphism. A right Q-algebra morphism h is strong if h preserves additionally the respective universal upper bounds — i.e. h(⊤) = ⊤.

Examples.

(a) Because of (RT2) every Ω-enriched topology is a right Ω-algebra.
(b) Given a unital quantale (L, *, d) and a unital quantale homomorphism Ω → L. Then j induces a right action . on L
t . α = t * j(α)

such that $(L, *, \boxdot)$ is a right \mathfrak{Q} -algebra.

$\frac{\mathsf{Every \ right \ } \mathfrak{Q}\text{-algebra \ } \mathbb{L} = (\mathcal{L}, \ast, \boxdot) \text{ induces a \ } \mathfrak{Q}\text{-enriched topolo-}}{\mathsf{gical \ space}}.$

 The spectrum pt(L) is the set of all strong right Ω-algebra morphisms L ^h→ Ω.

- The spectrum pt(L) is the set of all strong right Ω-algebra morphisms L ^h→ Ω.
- Every element $t \in L$ induces a map $pt(\mathbb{L}) \xrightarrow{\mathbb{A}_t} \mathfrak{Q}$ by evaluation i.e.

$$\mathbb{A}_t(h) = h(t), \qquad h \in \mathsf{pt}(\mathbb{L}).$$

- The spectrum pt(L) is the set of all strong right Ω-algebra morphisms L ^h→ Ω.
- Every element $t \in L$ induces a map $pt(\mathbb{L}) \xrightarrow{\mathbb{A}_t} \mathfrak{Q}$ by evaluation i.e.

$$A_t(h) = h(t), \qquad h \in pt(\mathbb{L}).$$

• Then $\mathcal{T} = \{\mathbb{A}_t \mid t \in L\}$ is a \mathfrak{Q} -enriched topology on the spectrum $pt(\mathbb{L})$ and

- The spectrum pt(L) is the set of all strong right Ω-algebra morphisms L ^h→ Ω.
- Every element $t \in L$ induces a map $pt(\mathbb{L}) \xrightarrow{\mathbb{A}_t} \mathfrak{Q}$ by evaluation i.e.

$$A_t(h) = h(t), \qquad h \in pt(\mathbb{L}).$$

- Then $\mathcal{T} = \{\mathbb{A}_t \mid t \in L\}$ is a \mathfrak{Q} -enriched topology on the spectrum $pt(\mathbb{L})$ and
- the pair $(pt(\mathbb{L}), \mathcal{T})$ is a \mathfrak{Q} -enriched sober space i.e.

- The spectrum pt(L) is the set of all strong right Q-algebra morphisms L → Q.
- Every element $t \in L$ induces a map $pt(\mathbb{L}) \xrightarrow{\mathbb{A}_t} \mathfrak{Q}$ by evaluation i.e.

$$\mathbb{A}_t(h) = h(t), \qquad h \in \mathsf{pt}(\mathbb{L}).$$

- Then $\mathcal{T} = \{\mathbb{A}_t \mid t \in L\}$ is a \mathfrak{Q} -enriched topology on the spectrum $pt(\mathbb{L})$ and
- the pair $(pt(\mathbb{L}), \mathcal{T})$ is a \mathfrak{Q} -enriched sober space i.e.
- elements of \mathcal{T} separate elements in $pt(\mathbb{L}) pt(\mathbb{L})$ is a T_0 -space,

- The spectrum pt(L) is the set of all strong right Q-algebra morphisms L → Q.
- Every element $t \in L$ induces a map $pt(\mathbb{L}) \xrightarrow{\mathbb{A}_t} \mathfrak{Q}$ by evaluation i.e.

$$\mathbb{A}_t(h) = h(t), \qquad h \in \mathsf{pt}(\mathbb{L}).$$

- Then $\mathcal{T} = \{\mathbb{A}_t \mid t \in L\}$ is a \mathfrak{Q} -enriched topology on the spectrum $pt(\mathbb{L})$ and
- the pair $(pt(\mathbb{L}), \mathcal{T})$ is a \mathfrak{Q} -enriched sober space i.e.
- elements of \mathcal{T} separate elements in $pt(\mathbb{L}) pt(\mathbb{L})$ is a T_0 -space,
- every strong right Ω-algebra morphism T → Ω is induced by an element h ∈ pt(L) i.e. φ(A_t) = A_t(h).

For an idempotent and non-commutative quantale on $C_3 = \{\bot, a, \top\}$ the element *a* strictly located between the top and the bottom can only play two roles:

For an idempotent and non-commutative quantale on $C_3 = \{\bot, a, \top\}$ the element *a* strictly located between the top and the bottom can only play two roles:

• a is left-sided and not right-sided. This leads to the quantale C_3^{ℓ} .

For an idempotent and non-commutative quantale on $C_3 = \{\bot, a, \top\}$ the element *a* strictly located between the top and the bottom can only play two roles:

- *a* is left-sided and not right-sided. This leads to the quantale C_3^{ℓ} .
- a is right-sided and not left-sided. This leads to the quantale C_3^r .

For an idempotent and non-commutative quantale on $C_3 = \{\bot, a, \top\}$ the element *a* strictly located between the top and the bottom can only play two roles:

- a is left-sided and not right-sided. This leads to the quantale C_3^{ℓ} .
- a is right-sided and not left-sided. This leads to the quantale C_3^r .
- The quantization of 2 is the tensor product Ω₂ = C^ℓ₃ ⊗ C^r₃ and consists of six elements:

Т	*	\perp	Ь	a_ℓ	a _r	с	Т
$ \begin{array}{c} $	\perp	\perp	\perp	\perp	\perp		\perp
	b	\perp	b	b	ar	ar	a _r
	a_ℓ	\perp	a_ℓ	a_ℓ	Т	Т	Т
	a _r	\perp	b	b	a _r	ar	a _r
	с	\perp	a_ℓ	a_ℓ	Т	Т	Т
\perp	Т		a_ℓ	a_ℓ	Т	T	Т

Prime Elements of Semi-unital Quantales and Strong Homomorphisms

Given a semi-unital quantale \mathfrak{Q} . Then every prime element p of \mathfrak{Q} can be identified with a strong (quantale) homomorphism $\mathfrak{Q} \xrightarrow{h} \mathfrak{Q}_2$ satisfying the condition:

$$p = \bigvee \{ \alpha \in \mathfrak{Q} \mid h(\alpha) \leq c \}.$$

Prime Elements of Semi-unital Quantales and Strong Homomorphisms

Given a semi-unital quantale \mathfrak{Q} . Then every prime element p of \mathfrak{Q} can be identified with a strong (quantale) homomorphism $\mathfrak{Q} \xrightarrow{h} \mathfrak{Q}_2$ satisfying the condition:

$$\boldsymbol{p} = \bigvee \{ \alpha \in \mathfrak{Q} \mid \boldsymbol{h}(\alpha) \leq \boldsymbol{c} \}.$$

Construction:

$$h_{p}(\alpha) = \begin{cases} \bot, & \top * \alpha * \top \leq p, \\ b, & \top * \alpha * \top \nleq p, \ \alpha * \top \leq p \text{ and } \top * \alpha \leq p, \\ a_{\ell}, & \alpha * \top \nleq p \text{ and } \top * \alpha \leq p, \\ a_{r}, & \alpha * \top \leq p \text{ and } \top * \alpha \nleq p, \\ c, & \alpha \leq p, \ \alpha * \top \nleq p \text{ and } \top * \alpha \nleq p, \\ \top, & \alpha \nleq p. \end{cases}$$

• Let $\widehat{\mathfrak{Q}_2}$ be the unitalization of \mathfrak{Q}_2 . Hence:

- Let $\widehat{\mathfrak{Q}_2}$ be the unitalization of \mathfrak{Q}_2 . Hence:
- $\widehat{\mathfrak{Q}_2}$ has 12 elements and contains \mathfrak{Q}_2 as a subquantale.

- Let $\widehat{\mathfrak{Q}_2}$ be the unitalization of \mathfrak{Q}_2 . Hence:
- $\widehat{\mathfrak{Q}_2}$ has 12 elements and contains \mathfrak{Q}_2 as a subquantale.
- C_3^{ℓ} is a right $\widehat{\mathfrak{Q}}_2$ -algebra, and therefore the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ is also a right $\widehat{\mathfrak{Q}}_2$ -algebra.

- Let $\widehat{\mathfrak{Q}_2}$ be the unitalization of \mathfrak{Q}_2 . Hence:
- $\widehat{\mathfrak{Q}_2}$ has 12 elements and contains \mathfrak{Q}_2 as a subquantale.
- C_3^{ℓ} is a right $\widehat{\mathfrak{Q}}_2$ -algebra, and therefore the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ is also a right $\widehat{\mathfrak{Q}}_2$ -algebra.
- If Ω is semi-unital and semi-integral, then there exists a quantale monomorphism Ω → Ω ⊗ C₃^ℓ determined by

$$\varphi(\alpha) = (\alpha \otimes \top) \lor ((\alpha * \top) \otimes a_{\ell}), \qquad \alpha \in \mathfrak{Q}.$$

- Let $\widehat{\mathfrak{Q}_2}$ be the unitalization of \mathfrak{Q}_2 . Hence:
- $\widehat{\mathfrak{Q}_2}$ has 12 elements and contains \mathfrak{Q}_2 as a subquantale.
- C_3^{ℓ} is a right $\widehat{\mathfrak{Q}}_2$ -algebra, and therefore the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ is also a right $\widehat{\mathfrak{Q}}_2$ -algebra.
- If Ω is semi-unital and semi-integral, then there exists a quantale monomorphism Ω → Ω ⊗ C₃^ℓ determined by

$$\varphi(\alpha) = (\alpha \otimes \top) \lor ((\alpha * \top) \otimes a_{\ell}), \qquad \alpha \in \mathfrak{Q}.$$

• Finally, let $\mathfrak{Q} \otimes C_3^{\ell}$ be the one point extension of $\mathfrak{Q} \otimes C_3^{\ell}$ given by the left semi-unitalization.

Let us consider the right $\widehat{\mathfrak{Q}_2}$ -subalgebra $\mathbb{L}_{\mathfrak{Q}}$ of the one point extension $\overline{\mathfrak{Q} \otimes C_3^{\ell}}$ of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ which is generated by the range $\varphi(\mathfrak{Q})$ of φ and the added point of the one point extension of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$. Then $\mathbb{L}_{\mathfrak{Q}}$ has the following properties:

Let us consider the right $\widehat{\mathfrak{Q}_2}$ -subalgebra $\mathbb{L}_{\mathfrak{Q}}$ of the one point extension $\overline{\mathfrak{Q} \otimes C_3^{\ell}}$ of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ which is generated by the range $\varphi(\mathfrak{Q})$ of φ and the added point of the one point extension of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$. Then $\mathbb{L}_{\mathfrak{Q}}$ has the following properties:

• There exists a bijective map between the spectrum $pt(\mathbb{L}_{\mathfrak{Q}})$ of $\mathbb{L}_{\mathfrak{Q}}$ and the set of all strong homomorphism $\mathfrak{Q} \to \mathfrak{Q}_2$.

Let us consider the right $\widehat{\mathfrak{Q}_2}$ -subalgebra $\mathbb{L}_{\mathfrak{Q}}$ of the one point extension $\overline{\mathfrak{Q} \otimes C_3^{\ell}}$ of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ which is generated by the range $\varphi(\mathfrak{Q})$ of φ and the added point of the one point extension of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$. Then $\mathbb{L}_{\mathfrak{Q}}$ has the following properties:

- There exists a bijective map between the spectrum $pt(\mathbb{L}_{\mathfrak{Q}})$ of $\mathbb{L}_{\mathfrak{Q}}$ and the set of all strong homomorphism $\mathfrak{Q} \to \mathfrak{Q}_2$.
- A semi-unital and semi-integral quantale Ω is spatial if and only if elements of the spectrum pt(L_Ω) separate elements in L_Ω.

Let us consider the right $\widehat{\mathfrak{Q}_2}$ -subalgebra $\mathbb{L}_{\mathfrak{Q}}$ of the one point extension $\overline{\mathfrak{Q} \otimes C_3^{\ell}}$ of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$ which is generated by the range $\varphi(\mathfrak{Q})$ of φ and the added point of the one point extension of the tensor product $\mathfrak{Q} \otimes C_3^{\ell}$. Then $\mathbb{L}_{\mathfrak{Q}}$ has the following properties:

- There exists a bijective map between the spectrum $pt(\mathbb{L}_{\mathfrak{Q}})$ of $\mathbb{L}_{\mathfrak{Q}}$ and the set of all strong homomorphism $\mathfrak{Q} \to \mathfrak{Q}_2$.
- A semi-unital and semi-integral quantale Ω is spatial if and only if elements of the spectrum pt(L_Ω) separate elements in L_Ω.
- If a quantale Ω is semi-unital and spatial, then the Ω₂-enriched sober space induced by the right Ω₂-algebra L_Ω is the topological representation of Ω i.e. Ω is essentially equivalent to the Ω₂-enriched topology T on the spectrum pt(L_Ω).