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Motivation

I Functor O : Top→ Frmop represents spaces as frames
I Left adjoint Σ : Frmop → Top ‘reconstructs’ space: ΣOX ∼= X

whenever X is sober

I There are many other ways to construct frames induced by
topological spaces, e.g.

Top(X ,P) = {f : (X , T )→ ([0,∞], TScott) | f continuous}

I But the spectrum of Top(X ,P) is X×]0,∞], not X !
I Can we ‘mod out’ P?
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Preliminaries

I S := ({0, 1}, {∅, {1}, {0, 1}}) and 0 < 1
I For any space X , OX ∼= Top(X ,S)
I For any frame L,

ΣL = Frm(L,S) ∼= Spec∧(L) = {a ∈ L | a is meet-irreducible}.
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Topological frames I

Definition
Let (F,≤) be a frame endowed with a topology TF. We call
(F,≤, TF) a topological frame provided that the operations

∧ : F× F→ F : (a, b) 7→ a ∧ b

and
sup
i∈I

: FI → F : (ai )i∈I 7→ sup
i∈I

ai

are continuous.

Any chain endowed with the Scott topology is a topological frame.
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Topological frames II

Definition
Let (F1,≤1, T1) and (F2,≤2, T2) be topological frames. A map
f : F1 → F2 is called a topological frame morphism if
f : (F1, T1)→ (F2, T2) is continuous and f : (F1,≤1)→ (F2,≤2) is
a frame homomorphism.

We call TopFrm the category with topological frames as objects and
topological frame morphisms as morphisms.
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Topological frames III

Proposition
The diagram

TopFrm UT //

U

""

UF

��

Top

UTop

��
Frm UFrm // Set

commutes, the functors UTop and UF are topological, UFrm is
monadic, UT is adjoint and U is faithful and adjoint.
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F-frames and F-spectra
Let X be a topological space and F a topological frame.
I ΓX : F→ Top(X ,F) : a 7→ ca is a frame homomorphism

I Define FrmF as the comma category F/Frm
I OF : Top→ Frmop

F with OF(X ) = ΓX and

OF(ϕ) : Top(Y ,F)→ Top(X ,F) : f 7→ f ϕ

Let L = (L, γL : F→ L) be an F-frame.
I Endow SpecF(L) = FrmF(L,F) with the initial topology for the

source
(evl : FrmF(L,F)→ F : f 7→ f (l))l∈L

I We obtain a functor SpecF : Frmop
F → Top which is left adjoint

to OF
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F-spatial frames and F-sober spaces

Definition
I L is F-spatial if

ρL : L→ Top(FrmF(L,F),F) : l 7→ (f 7→ f (l))

is an isomorphism of F-frames.
I X is F-sober if

ηX : X → FrmF(Top(X ,F),F) : x 7→ (f 7→ f (x))

is a homeomorphism.

If F = S, everything reduces to the classical setting.
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More on F-soberness

Proposition
X is F-sober if and only if each of the following holds:
1. (f : X → F)f ∈Top(X ,F) is initial
2. (f : X → F)f ∈Top(X ,F) is pointseparating
3. FrmF(Top(X ,F),F) = {evx | x ∈ X}

Proposition
If X is Hausdorff and ...(conditions on F)..., then X is F-sober
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Some spectra I

I SpecP(Top(S,P)) ∼= P, so a sober space is not F-sober in
general.
Proof: First we note that

Top(S,P) = {f : 2→ [0,∞] | f (0) ≤ f (1)}
∼= {(x , y) ∈ P× P | x ≤ y}.

For ϕ ∈ SpecP(Top(S,P)) and x , y ∈ P with x ≤ y , we have

(x , y) = (0, y) ∨ (x , x) = ((y , y) ∧ (0,∞)) ∨ (x , x),

so

ϕ(x , y) = (ϕ(y , y) ∧ ϕ(0,∞)) ∨ ϕ(x , x) = (y ∧ ϕ(0,∞)) ∨ x .
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Some spectra II
Then the map

Φ : SpecP(Top(S,P))→ P : ϕ 7→ ϕ(0,∞)

is a homeomorphism. For α ∈ P, Φ−1(α) = ϕα with

ϕα : Top(S,P)→ P : (x , y) 7→ (y ∧ α) ∨ x .
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Some spectra III
I SpecP(Top(n,P)) ∼= Top(n \ {0}op,P), where n = {0, ..., n − 1}

Proof: First we note that

Top(n,P) ∼= {(x0, ..., xn−1) ∈ Pn | ∀n : xn ≤ xn+1}.

For x = (x0, ..., xn−1) ∈ Top(n,P),

x =
n−1∨
i=0

((xi , xi , ..., xi ) ∧ (0, 0, ..., 0,∞,∞, ...,∞)),

so again

ϕ(x) =
n−1∨
i=0

xi ∧ ϕ(ei ).
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Some spectra IV

Then the map

Φ : SpecP(Top(n,P))→ Top(n \ {0}op,P) : ϕ 7→ (ϕ(ei ))n−1
i=1

is a homeomorphism. For
α = (α1, ..., αn−1) ∈ Top(n \ {0}op,P) and α0 :=∞, the
inverse is given by

ϕα : Top(n \ {0}op,P)→ P : x 7→
n−1∨
i=0

xi ∧ αi .
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Some spectra V

Figure: (ev(2,5,7) ◦ Φ−1)(α, β) = 2 ∨ (5 ∧ β) ∨ (7 ∧ α) with
(β, α) ∈ Top(2op,P) ∩ [0, 10]2
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Some spectra VI

I Spec3(Top(P, 3)) ∼= Top(2,P)
Proof: Define a 3-frame isomorphism

θ : Top(P, 3)→ Top(2,P⊥)op : f 7→ (j0(f ), j1(f ))

where ji (f ) = sup{α ∈ P | f (α) ≤ i}. Define

Φ : Top(2,P)→ Frm3(Top(2,P⊥)op, 3) : (α, β) 7→ ϕα,β

with

ϕα,β : Top(2,P⊥)op → 3 : (x , y) 7→


0 β ≤ x
1 x < β and α ≤ y
2 y < α
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Some spectra VII

Then Φ is well-defined and injective. To prove that it is onto,
take ϕ ∈ Frm3(Top(2,P⊥)op, 3) and define

β := inf{x ∈ P | ϕ(x , x) ≤ 0}, α = inf{x ∈ P | ϕ(x , x) ≤ 1}.

Since (x , y) = ((y , y)∨′ (⊥,∞))∧′ (x , x) and ϕ(⊥,∞) = 1, we
have that

ϕ(x , y) = (ϕ(y , y) ∨ 1) ∧ ϕ(x , x)

for all (x , y) ∈ Top(2,P⊥)op. It can be easily verified that
ϕ = ϕα,β.
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Some spectra VIII

Figure: ϕ4,6 with (x , y) ∈ Top(2,P)op ∩ [0, 10]2
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Open questions

I For F1,F2 in a class of topological frames with additional
properties, can we find a general description for
SpecF2(Top(X ,F1))? Or just for F1 = F2?

I For what conditions on F1,F2 does

X Hausdorff⇒ X F1-sober⇒ X F2-sober⇒ X sober

hold?
I What can be said about the forgetful functors FrmF → Frm and

FrmF → Set?
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