# Frames of continuous functions

Wouter Van Den Haute Joint work with Wendy Lowen and Mark Sioen

Workshop on Algebra, Logic and Topology

Universiteit Antwerpen



#### Motivation

- ▶ Functor  $\mathcal{O}$  : Top → Frm<sup>op</sup> represents spaces as frames
- Left adjoint  $\Sigma$  : Frm<sup>op</sup>  $\rightarrow$  Top 'reconstructs' space:  $\Sigma \mathcal{O} X \cong X$ whenever X is sober



#### Motivation

- ▶ Functor  $\mathcal{O} : \mathsf{Top} \to \mathsf{Frm}^{\mathrm{op}}$  represents spaces as frames
- Left adjoint  $\Sigma$  : Frm<sup>op</sup>  $\rightarrow$  Top 'reconstructs' space:  $\Sigma O X \cong X$  whenever X is sober
- There are many other ways to construct frames induced by topological spaces, e.g.

 $\mathsf{Top}(X,\mathbb{P}) = \{f: (X,\mathcal{T}) \to ([0,\infty],\mathcal{T}_{\mathrm{Scott}}) \mid f \text{ continuous}\}$ 



#### Motivation

- ▶ Functor  $\mathcal{O} : \mathsf{Top} \to \mathsf{Frm}^{\mathrm{op}}$  represents spaces as frames
- Left adjoint  $\Sigma$  : Frm<sup>op</sup>  $\rightarrow$  Top 'reconstructs' space:  $\Sigma O X \cong X$  whenever X is sober
- There are many other ways to construct frames induced by topological spaces, e.g.

 $\mathsf{Top}(X,\mathbb{P}) = \{f: (X,\mathcal{T}) \to ([0,\infty],\mathcal{T}_{\mathrm{Scott}}) \mid f \text{ continuous}\}$ 

- ▶ But the spectrum of  $\text{Top}(X, \mathbb{P})$  is  $X \times ]0, \infty]$ , not X!
- ► Can we 'mod out' P?



#### Preliminaries

#### ▶ $S := (\{0,1\}, \{\emptyset, \{1\}, \{0,1\}\})$ and 0 < 1

- ► For any space X,  $\mathcal{O}X \cong \text{Top}(X, \mathbb{S})$
- For any frame *L*,  $\Sigma L = \operatorname{Frm}(L, \mathbb{S}) \cong \operatorname{Spec}_{\wedge}(L) = \{a \in L \mid a \text{ is meet-irreducible}\}.$



# Topological frames I

#### Definition

Let  $(\mathbb{F}, \leq)$  be a frame endowed with a topology  $\mathcal{T}_{\mathbb{F}}$ . We call  $(\mathbb{F}, \leq, \mathcal{T}_{\mathbb{F}})$  a *topological frame* provided that the operations

$$\wedge : \mathbb{F} \times \mathbb{F} \to \mathbb{F} : (a, b) \mapsto a \wedge b$$

#### and

$$\sup_{i\in I}: \mathbb{F}^I \to \mathbb{F}: (a_i)_{i\in I} \mapsto \sup_{i\in I} a_i$$

are continuous.

Any chain endowed with the Scott topology is a topological frame.



# Topological frames II

#### Definition

Let  $(\mathbb{F}_1, \leq_1, \mathcal{T}_1)$  and  $(\mathbb{F}_2, \leq_2, \mathcal{T}_2)$  be topological frames. A map  $f : \mathbb{F}_1 \to \mathbb{F}_2$  is called a *topological frame morphism* if  $f : (\mathbb{F}_1, \mathcal{T}_1) \to (\mathbb{F}_2, \mathcal{T}_2)$  is continuous and  $f : (\mathbb{F}_1, \leq_1) \to (\mathbb{F}_2, \leq_2)$  is a frame homomorphism.

We call TopFrm the category with topological frames as objects and topological frame morphisms as morphisms.



# Topological frames III

#### Proposition

The diagram



commutes, the functors  $U_{Top}$  and  $U_F$  are topological,  $U_{Frm}$  is monadic,  $U_T$  is adjoint and U is faithful and adjoint.

 $\mathbb{F}$ -frames and  $\mathbb{F}$ -spectraLet X be a topological space and  $\mathbb{F}$  a topological frame. $\mathbb{F}_X : \mathbb{F} \to \operatorname{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism

#### $\mathbb F\text{-}\mathsf{frames}$ and $\mathbb F\text{-}\mathsf{spectra}$

Let X be a topological space and  $\mathbb{F}$  a topological frame.

- $\Gamma_X : \mathbb{F} \to \operatorname{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism
- $\blacktriangleright\,$  Define  $\mathsf{Frm}_{\mathbb F}$  as the comma category  $\mathbb F/\mathsf{Frm}$

### $\mathbb F\text{-}\mathsf{frames}$ and $\mathbb F\text{-}\mathsf{spectra}$

Let X be a topological space and  $\mathbb{F}$  a topological frame.

- $\Gamma_X : \mathbb{F} \to \operatorname{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism
- $\blacktriangleright\,$  Define  $\mathsf{Frm}_{\mathbb F}$  as the comma category  $\mathbb F/\mathsf{Frm}$
- $\blacktriangleright \ \mathcal{O}_{\mathbb{F}}: \mathsf{Top} \to \mathsf{Frm}^{\mathrm{op}}_{\mathbb{F}} \text{ with } \mathcal{O}_{\mathbb{F}}(X) = \Gamma_X \text{ and }$

 $\mathcal{O}_{\mathbb{F}}(\varphi): \operatorname{Top}(Y, \mathbb{F}) \to \operatorname{Top}(X, \mathbb{F}): f \mapsto f \varphi$ 

### $\mathbb F\text{-}\mathsf{frames}$ and $\mathbb F\text{-}\mathsf{spectra}$

Let X be a topological space and  ${\mathbb F}$  a topological frame.

- $\Gamma_X : \mathbb{F} \to \operatorname{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism
- $\blacktriangleright\,$  Define  $\mathsf{Frm}_{\mathbb F}$  as the comma category  $\mathbb F/\mathsf{Frm}$
- $\blacktriangleright \ \mathcal{O}_{\mathbb{F}}: \mathsf{Top} \to \mathsf{Frm}^{\mathrm{op}}_{\mathbb{F}} \text{ with } \mathcal{O}_{\mathbb{F}}(X) = \mathsf{\Gamma}_X \text{ and }$

 $\mathcal{O}_{\mathbb{F}}(\varphi): \operatorname{\mathsf{Top}}(Y, \mathbb{F}) 
ightarrow \operatorname{\mathsf{Top}}(X, \mathbb{F}): f \mapsto f \varphi$ 

Let  $L = (L, \gamma_L : \mathbb{F} \to L)$  be an  $\mathbb{F}$ -frame.

• Endow  $\text{Spec}_{\mathbb{F}}(L) = \text{Frm}_{\mathbb{F}}(L, \mathbb{F})$  with the initial topology for the source

$$(\operatorname{ev}_{I}:\operatorname{Frm}_{\mathbb{F}}(L,\mathbb{F})\to\mathbb{F}:f\mapsto f(I))_{I\in L}$$

## $\mathbb F\text{-}\mathsf{frames}$ and $\mathbb F\text{-}\mathsf{spectra}$

Let X be a topological space and  ${\mathbb F}$  a topological frame.

- $\Gamma_X : \mathbb{F} \to \operatorname{Top}(X, \mathbb{F}) : a \mapsto c_a$  is a frame homomorphism
- $\blacktriangleright\,$  Define  $\mathsf{Frm}_{\mathbb F}$  as the comma category  $\mathbb F/\mathsf{Frm}$
- $\blacktriangleright \ \mathcal{O}_{\mathbb{F}}: \mathsf{Top} \to \mathsf{Frm}^{\mathrm{op}}_{\mathbb{F}} \text{ with } \mathcal{O}_{\mathbb{F}}(X) = \mathsf{\Gamma}_X \text{ and }$

 $\mathcal{O}_{\mathbb{F}}(\varphi): \operatorname{\mathsf{Top}}(Y, \mathbb{F}) 
ightarrow \operatorname{\mathsf{Top}}(X, \mathbb{F}): f \mapsto f \varphi$ 

Let  $L = (L, \gamma_L : \mathbb{F} \to L)$  be an  $\mathbb{F}$ -frame.

• Endow  $\text{Spec}_{\mathbb{F}}(L) = \text{Frm}_{\mathbb{F}}(L, \mathbb{F})$  with the initial topology for the source

$$(\operatorname{ev}_{I}:\operatorname{Frm}_{\mathbb{F}}(L,\mathbb{F})\to\mathbb{F}:f\mapsto f(I))_{I\in L}$$

▶ We obtain a functor  $Spec_{\mathbb{F}} : Frm_{\mathbb{F}}^{op} \to Top$  which is left adjoint to  $\mathcal{O}_{\mathbb{F}}$ 



#### Definition

► L is  $\mathbb{F}$ -spatial if

 $\rho_L: L \to \mathsf{Top}(\mathsf{Frm}_{\mathbb{F}}(L, \mathbb{F}), \mathbb{F}): I \mapsto (f \mapsto f(I))$ 

is an isomorphism of  $\ensuremath{\mathbb{F}}\xspace$ -frames.

```
• X is \mathbb{F}-sober if
```

 $\eta_X : X \to \operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X, \mathbb{F}), \mathbb{F}) : x \mapsto (f \mapsto f(x))$ 

is a homeomorphism.



#### Definition

► L is **F**-spatial if

 $\rho_L: L \to \mathsf{Top}(\mathsf{Frm}_{\mathbb{F}}(L, \mathbb{F}), \mathbb{F}): I \mapsto (f \mapsto f(I))$ 

is an isomorphism of  $\ensuremath{\mathbb{F}}\xspace$ -frames.

```
• X is \mathbb{F}-sober if
```

 $\eta_X : X \to \operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X, \mathbb{F}), \mathbb{F}) : x \mapsto (f \mapsto f(x))$ 

is a homeomorphism.

If  $\mathbb{F}=\mathbb{S},$  everything reduces to the classical setting.



#### More on $\mathbb{F}$ -soberness

#### Proposition

X is  $\mathbb{F}$ -sober if and only if each of the following holds:

- 1.  $(f: X \to \mathbb{F})_{f \in \operatorname{Top}(X,\mathbb{F})}$  is initial
- 2.  $(f : X \to \mathbb{F})_{f \in \mathsf{Top}(X,\mathbb{F})}$  is pointseparating
- 3.  $\operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X, \mathbb{F}), \mathbb{F}) = {\operatorname{ev}_{x} \mid x \in X}$



#### More on $\mathbb{F}$ -soberness

#### Proposition

X is  $\mathbb{F}$ -sober if and only if each of the following holds:

- 1.  $(f: X \to \mathbb{F})_{f \in \operatorname{Top}(X,\mathbb{F})}$  is initial
- 2.  $(f: X \to \mathbb{F})_{f \in \mathsf{Top}(X,\mathbb{F})}$  is pointseparating
- 3.  $\operatorname{Frm}_{\mathbb{F}}(\operatorname{Top}(X, \mathbb{F}), \mathbb{F}) = {\operatorname{ev}_{x} \mid x \in X}$

#### Proposition

If X is Hausdorff and ...(conditions on  $\mathbb{F}$ )..., then X is  $\mathbb{F}$ -sober



# Some spectra I

Spec<sub>ℙ</sub>(Top(S, ℙ)) ≃ ℙ, so a sober space is not 𝔽-sober in general.

**Proof:** First we note that

$$\mathsf{Top}(\mathbb{S},\mathbb{P}) = \{f: \mathbf{2} \to [0,\infty] \mid f(0) \le f(1)\} \\ \cong \{(x,y) \in \mathbb{P} \times \mathbb{P} \mid x \le y\}.$$

For  $\varphi \in \operatorname{Spec}_{\mathbb{P}}(\operatorname{Top}(\mathbb{S},\mathbb{P}))$  and  $x,y \in \mathbb{P}$  with  $x \leq y$ , we have

 $(x,y)=(0,y)\vee(x,x)=((y,y)\wedge(0,\infty))\vee(x,x),$ 

SO

$$\varphi(x,y) = (\varphi(y,y) \land \varphi(0,\infty)) \lor \varphi(x,x) = (y \land \varphi(0,\infty)) \lor x.$$



# Some spectra II

$$\begin{split} \Phi: \operatorname{Spec}_{\mathbb{P}}(\operatorname{Top}(\mathbb{S},\mathbb{P})) \to \mathbb{P}: \varphi \mapsto \varphi(0,\infty) \\ \text{is a homeomorphism. For } \alpha \in \mathbb{P}, \ \Phi^{-1}(\alpha) = \varphi_{\alpha} \text{ with} \\ \varphi_{\alpha}: \operatorname{Top}(\mathbb{S},\mathbb{P}) \to \mathbb{P}: (x,y) \mapsto (y \wedge \alpha) \lor x. \end{split}$$

# Spec<sub>P</sub>(Top(n, P)) ≅ Top(n \ {0}<sup>op</sup>, P), where n = {0, ..., n − 1} Proof: First we note that

$$\mathsf{Top}(\mathbf{n},\mathbb{P}) \cong \{(x_0,...,x_{n-1}) \in \mathbb{P}^n \mid \forall n : x_n \leq x_{n+1}\}.$$

For  $\mathbf{x} = (x_0, ..., x_{n-1}) \in \mathsf{Top}(\mathbf{n}, \mathbb{P})$ ,

$$\mathbf{x} = \bigvee_{i=0}^{n-1} ((x_i, x_i, ..., x_i) \land (0, 0, ..., 0, \infty, \infty, ..., \infty)),$$

so again

$$\varphi(\mathbf{x}) = \bigvee_{i=0}^{n-1} x_i \wedge \varphi(e_i).$$



#### Some spectra IV

Then the map

- $\Phi: \mathsf{Spec}_{\mathbb{P}}(\mathsf{Top}(\mathbf{n},\mathbb{P})) \to \mathsf{Top}(\mathbf{n} \setminus \{\mathbf{0}\}^{\mathrm{op}},\mathbb{P}): \varphi \mapsto (\varphi(e_i))_{i=1}^{n-1}$
- is a homeomorphism. For  $\alpha = (\alpha_1, ..., \alpha_{n-1}) \in \mathsf{Top}(\mathbf{n} \setminus \{0\}^{\mathrm{op}}, \mathbb{P})$  and  $\alpha_0 := \infty$ , the inverse is given by

$$\varphi_{\alpha}: \mathsf{Top}(\mathbf{n} \setminus \{0\}^{\mathrm{op}}, \mathbb{P}) \to \mathbb{P}: \mathbf{x} \mapsto \bigvee_{i=0}^{n-1} x_i \wedge \alpha_i.$$

# Some spectra V





Figure:  $(ev_{(2,5,7)} \circ \Phi^{-1})(\alpha, \beta) = 2 \lor (5 \land \beta) \lor (7 \land \alpha)$  with  $(\beta, \alpha) \in \mathsf{Top}(2^{\mathrm{op}}, \mathbb{P}) \cap [0, 10]^2$ 

## Some spectra VI

Spec<sub>3</sub>(Top(ℙ, 3)) ≃ Top(2, ℙ)
 Proof: Define a 3-frame isomorphism

 $\theta : \mathsf{Top}(\mathbb{P}, \mathbf{3}) \to \mathsf{Top}(\mathbf{2}, \mathbb{P}_{\perp})^{\mathrm{op}} : f \mapsto (j_0(f), j_1(f))$ 

where  $j_i(f) = \sup\{\alpha \in \mathbb{P} \mid f(\alpha) \le i\}$ . Define

 $\Phi:\mathsf{Top}(\mathbf{2},\mathbb{P})\to\mathsf{Frm}_{\mathbf{3}}(\mathsf{Top}(\mathbf{2},\mathbb{P}_{\bot})^{\mathrm{op}},\mathbf{3}):(\alpha,\beta)\mapsto\varphi^{\alpha,\beta}$ 

with

$$\varphi^{\alpha,\beta} : \mathsf{Top}(\mathbf{2}, \mathbb{P}_{\perp})^{\mathrm{op}} \to \mathbf{3} : (x, y) \mapsto \begin{cases} 0 & \beta \leq x \\ 1 & x < \beta \text{ and } \alpha \leq y \\ 2 & y < \alpha \end{cases}$$

# Some spectra VII

Then  $\Phi$  is well-defined and injective. To prove that it is onto, take  $\varphi \in \operatorname{Frm}_3(\operatorname{Top}(2, \mathbb{P}_{\perp})^{\operatorname{op}}, 3)$  and define

$$\beta := \inf\{x \in \mathbb{P} \mid \varphi(x, x) \le 0\}, \quad \alpha = \inf\{x \in \mathbb{P} \mid \varphi(x, x) \le 1\}.$$

Since  $(x, y) = ((y, y) \lor' (\bot, \infty)) \land' (x, x)$  and  $\varphi(\bot, \infty) = 1$ , we have that

$$\varphi(x,y) = (\varphi(y,y) \lor 1) \land \varphi(x,x)$$

for all  $(x, y) \in \text{Top}(2, \mathbb{P}_{\perp})^{\text{op}}$ . It can be easily verified that  $\varphi = \varphi^{\alpha, \beta}$ .

#### Some spectra VIII



Figure:  $\varphi^{4,6}$  with  $(x,y)\in\mathsf{Top}(\mathbf{2},\mathbb{P})^{\mathrm{op}}\cap [0,10]^2$ 



### Open questions

For 𝔽<sub>1</sub>, 𝔽<sub>2</sub> in a class of topological frames with additional properties, can we find a general description for Spec<sub>𝔅2</sub>(Top(X,𝔅<sub>1</sub>))? Or just for 𝔅<sub>1</sub> = 𝔅<sub>2</sub>?



# Open questions

- For 𝔽<sub>1</sub>, 𝔽<sub>2</sub> in a class of topological frames with additional properties, can we find a general description for Spec<sub>𝔅2</sub>(Top(X, 𝔅<sub>1</sub>))? Or just for 𝔅<sub>1</sub> = 𝔅<sub>2</sub>?
- For what conditions on  $\mathbb{F}_1, \mathbb{F}_2$  does

 $X \text{ Hausdorff} \Rightarrow X \mathbb{F}_1\text{-sober} \Rightarrow X \mathbb{F}_2\text{-sober} \Rightarrow X \text{ sober}$ 

hold?



# Open questions

- For 𝔽<sub>1</sub>, 𝔽<sub>2</sub> in a class of topological frames with additional properties, can we find a general description for Spec<sub>𝔅2</sub>(Top(X, 𝔅<sub>1</sub>))? Or just for 𝔅<sub>1</sub> = 𝔅<sub>2</sub>?
- For what conditions on  $\mathbb{F}_1, \mathbb{F}_2$  does

 $X \text{ Hausdorff} \Rightarrow X \mathbb{F}_1\text{-sober} \Rightarrow X \mathbb{F}_2\text{-sober} \Rightarrow X \text{ sober}$ 

#### hold?

 $\blacktriangleright$  What can be said about the forgetful functors  $Frm_{\mathbb F}\to Frm$  and  $Frm_{\mathbb F}\to Set?$ 



### References

- Gategory theory at work, ch. Algebra Union Topology, Heldermann Verlag, 1991.
- **Category theory at work**, ch. On the Existence and Structure of Free Topological Groups, Heldermann Verlag, 1991.
- J. Adamek, H. Herrlich, and G. Strecker, *Abstract and concrete categories: the joy of cats*, katmat.math.uni-bremen.de/acc/acc.pdf, 2005.
- Y. H. Hong, *Studies on categories of universal topological algebras*, Ph.D. thesis, McMaster University, 1974.
- **R**. Lowen, *Index analysis: Approach theory at work*, Springer Monographs in Mathematics, Springer London, 2015.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in mathematics, Springer Basel AG, 2012.
- A. Pultr, Frames, Handbook of algebra, Vol. 3, North-Holland, Amsterdam, 2003, pp. 791–857. MR 2035108 (2004j:06009)