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37.1 Introduction
Derivative-Free Optimization (DFO) methods [53] are typically considered for the
minimization/maximization of functions for which the corresponding derivatives are
neither available for use, nor can be directly approximated by numerical techniques.
Constraints may be part of the problem definition but, similar to the objective
function, it is possible that their derivatives are not available. Problems of this
type are common in engineering optimization, where the value of the functions is
often computed by simulation and may be subject to statistical noise or other forms
of inaccuracy. In fact, expensive function evaluations would prevent approximation
to derivatives and, even when computed, noise would make such approximations
less reliable. In the past couple of decades, intense research has resulted in robust
and efficient DFO methods, accompanied by convergence theory and numerical
implementations.

The purpose of the present work is to provide an overview of the main classes
of state-of-the-art DFO methods, with a focus on the underlying ideas and on the
respective classes of problems to which these methods are applicable. Only short
descriptions of the methods and algorithms will be given, highlighting the moti-
vational aspects that lead to their rigorous properties. We provide references to
detailed algorithmic descriptions, theoretical results, and available software pack-
ages.

This chapter is structured around different problem features, rather than around
classes of DFO methods as it was the case in [53]. Such a structure is more accessible
to users of DFO as it directs the reader to the appropriate DFO algorithm suited
for a given problem at hand.

Little notation or terminology needs to be introduced as the contents are given
at a general level. However, we point out that by global convergence one means
convergence to some form of stationarity regardless of the starting point. The vector
norms will be ℓ2 ones. The symbol Ck denotes the space of real n-dimensional func-
tions whose derivatives are continuous up to the order k. The notation O(A) will
mean a scalar times A, where the scalar does not depend on the iteration counter of
the method under analysis (thus depending only on the problem or on algorithmic
constants). The dependence of A on the dimension n of the problem will be made
explicit whenever appropriate. The chapter is organized as follows. Section 37.2
covers unconstrained optimization. Bound and linearly constrained problems are
addressed in Section 37.3. Section 37.4 is devoted to other types of problem con-
straints. Extensions to global optimization, multiobjective optimization, mixed
integer problems, and some additional practical issues are briefly surveyed in Sec-
tion 37.5.

37.2 Unconstrained optimization

37.2.1 Smooth functions

In this subsection we consider the unconstrained minimization of an objective func-
tion f : Rn → R, at least once continuously differentiable and bounded from below
(for which gradients are neither available for use, nor can be accurately approxi-
mated).

Sampling and modeling. At each iteration of a trust-region method [46], one
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typically considers the minimization of a modelmk(xk+s) = f(xk)+s⊤gk+
1
2s

⊤Hks,
in a region around the current iterate xk, to obtain a trial point xk+sk. The region
is frequently defined as a ball of the type B(xk;∆k) = {xk + s ∈ Rn : ∥s∥ ≤
∆k}, where ∆k denotes the trust-region radius. The model mk serves as a local
approximation of the function, in particular of its curvature. The vector gk can be
set to ∇f(xk) in the presence of first-order derivatives (similarly for Hk), but DFO
trust-region methods are based on models built from sampling and some form of
interpolation [133, 114, 47].

How well the model approximates the function is reflected by the ratio ρk =
[f(xk)− f(xk + sk)] / [mk(xk)−mk(xk + sk)]. The algorithm proceeds by accept-
ing the trial point xk + sk when ρk ≥ η0 for some η0 > 0. If ρk < η1, with η1 ≥ η0,
then the quality of the model may be improved if not deemed sufficiently good, or,
if the quality of the model is believed to be good, the trust-region radius is reduced
since the step is then deemed to be too large. If xk is non-stationary and mk has
good quality, the algorithm succeeds in accepting a trial point xk + sk as a new
iterate (at which the function value is improved) in a finite number of reductions of
the trust-region radius ∆k (see [53, Lemmas 10.6 and 10.17]).

In first-order approaches, the quality of a model is measured by its ability to
provide accuracy similar to a first-order Taylor expansion:

|f(y)−mk(y)| ≤ κf ∆
2

∥∇f(y)−∇mk(y)∥ ≤ κg ∆ ∀y ∈ B(xk;∆),

where κf and κg are positive constants. Models that are C1 (with a Lipschitz
continuous gradient) and satisfy the above bounds are called fully linear [50]. It
was shown in [48] that a subsequence of the iterates generated by a model-based
trust-region method drives the gradient to zero, under the condition that fully linear
models are available when necessary. This result was further improved in [52] for
the whole sequence of iterates, including the case where η0 = 0, which means that
any decrease in the function value is sufficient to accept a new point.

If convergence to second-order stationarity points is desired, then fully quadratic
models [50] need to be considered. In this case the models should be C2 (with a
Lipschitz continuous Hessian) and satisfy:

|f(y)−m(y)| ≤ κf ∆
3

∥∇f(y)−∇m(y)∥ ≤ κg ∆
2

∥∇2f(y)−∇2m(y)∥ ≤ κh ∆ ∀y ∈ B(x;∆).

Convergence to second-order stationary points is established in [52].
Building a (fully linear or fully quadratic) model based on a sample set raises

questions related to the choice of the basis functions used in the model definition
and to the geometry of the sample set. The use of polynomial models is quite attrac-
tive due to its simplicity, and in [50, 51] a first systematic approach to the subject
of sampling geometry when using this class of functions was proposed (introducing
the notion of Λ-poised sets, which is related to Lagrange polynomials and ensures
fully linear or fully quadratic models). The strict need of controlling geometry or
considering model-improvement steps was questioned in [70], where good numerical
results were reported for an interpolation-based trust-region method (using com-
plete quadratic models) which ignores the geometry of the sample sets. In [123] an
example was given showing that geometry cannot be totally ignored and that some
form of model improvement is necessary, at least when the size of the model gradient
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becomes small (a procedure known as the criticality step, which then ensures that
the trust-region radius converges to zero). In [123] an interpolation-based trust-
region method was proposed which resorts to geometry-improving steps only when
the model gradient is small. Global convergence for this method is the result of a
self-correction property inherent in the combination of trust regions and polynomial
interpolation models.

Quadratic functions are particularly well suited to capture curvature [53]. In
a context of expensive function evaluation, construction of a complete quadratic
model, which requires (n+1)(n+2)/2 functions evaluations, could be unaffordable.
A typical approach is to consider minimum Frobenius norm models, which are
commonly built when at least n+ 1 sampling points are available for use, allowing
at least to compute a fully linear model. Some variants minimize the Frobenius norm
of the model Hessian [49], since the norm of the model Hessian is connected with the
accuracy of the model. Other approaches, inspired by quasi-Newton methods, use
a least updating minimum Frobenius norm strategy, by minimizing the difference
between the current and the previous model Hessians [117]. The minimization of the
ℓ1-norm of the model Hessian has also been proposed to build accurate models from
relatively small sample sets [30]. Inspired by the sparse solution recovery theory
developed in compressed sensing, the underlying idea is to take advantage of the
sparsity of the Hessian in cases where the sparsity structure is not known in advance.
Algorithms to compute fully linear and fully quadratic models, in the context of
polynomial interpolation or regression, can be found in [50, 51] (see also [53]).

An alternative to polynomial bases are radial basis functions (RBFs) [39, 115].
An RBF is defined by the composition of an univariate function and a function
measuring the distance to a sample point. Thus, it is constant on a sphere and has a
structure different from polynomials (more nonlinear; potentially more nonconvex).
Models based on RBFs typically involve a linear polynomial tail and can be made
fully linear. The use of RBFs in model-based trust-region methods was analyzed
in [132].

Currently, several solvers implementing interpolation-based trust-region meth-
ods are available to the community. Quadratic polynomial models are in the heart
of DFO [2] and NEWUOA [118] computational codes. In the first case, when
the size of the sampling set is not large enough to build a complete quadratic in-
terpolation model, minimum Frobenius norm models are computed. In contrast,
NEWUOA [118] uses the least updating minimum Frobenius norm strategy, de-
scribed above. Good numerical results on unconstrained problems were also re-
ported for the BC-DFO code [76], an interpolation based trust-region method de-
veloped for bound constrained optimization (see Section 37.3 below). Models based
on RBFs are implemented in ORBIT [131].

Sampling using simplex sets. In turn, direct-search methods use function val-
ues from sampling only to make algorithmic decisions, without explicit or implicit
modeling of the function. However, the geometry of the sample sets continues to
play a crucial role in the algorithmic design and convergence properties.

One possibility is to sample at the vertices of a simplex set, which are in num-
ber n + 1, exactly as many points as required to build a fully linear model. The
goal of each iteration in the well known Nelder-Mead algorithm [111] is to improve
the worst vertex of a simplex, and for this purpose a number of operations are per-
formed (reflection, expansion, outside contraction, inside contraction, and shrink).
The various simplex operations allow the method to follow the curvature of the
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function which explains its good performance in many problems.
However, all simplex operations but shrinks can deteriorate the simplex geome-

try (an evident example are the expansions), thus it becomes difficult to establish
convergence for the original algorithm. In fact, a C2 strictly convex function has
been constructed in [110] for n = 2 showing that the algorithm [111] fails to con-
verge to the minimizer (by generating an infinite sequence of inside contractions).
Convergence can be established for n = 1 (see [96] or Exercice 7 of Chapter 8
of [53]) and for n = 2 for functions where the Hessian is always positive definite
and when no simplex expansions are allowed [95]. Modified variants have been pro-
posed, yielding global convergence in Rn, by including strategies like monitoring
the simplex geometry and then possibly attempting a poll-type step (see below)
together with using a sufficient decrease condition for accepting new points [127]
(see the survey in [53]).

Numerical implementations of variants of the Nelder-Mead method can be found
in [8] or in the Matrix Computation Toolbox [9] (see the function NMSMAX).

Sampling using positive spanning sets. Direct-search methods can also be
of directional type, where the function is evaluated along directions in positive
spanning sets [61]. (A positive spanning set (PSS) is a set of vectors that spans Rn

with nonnegative coefficients.)
Typically, these methods evaluate the objective function at points of the form

xk + αkd, d ∈ Dk, where xk represents the current iterate, αk the current step size
parameter, andDk denotes a PSS. This procedure (called polling) is attempted with
the goal of decreasing the current best function value. When only simple decrease
is required, polling is successful if f(xk +αkd) < f(xk), for some d ∈ Dk. Similarly
to trust-region methods, several authors proposed the use of sufficient decrease
strategies [105, 93], where success requires f(xk + αkd) < f(xk) − ρ(αk), for some
d ∈ Dk, and where ρ(·) represents a forcing function (namely a non-negative, non-
decreasing function satisfying ρ(t)/t → 0 when t → 0). When no improvement is
found, αk is decreased. When polling is successful, αk is kept constant or increased.

A property of a PSS essential for the minimization of a smooth function is
that at least one of its vectors is a descent direction, regardless where the negative
gradient is [55, 93]. Thus, unless the current iterate is already a first-order stationary
point, the algorithm will succeed in finding a better point in a finite number of
reductions of the step size. As in model-based trust-region methods, where the
trust-region radius is guaranteed to converge to zero, in direct search a subsequence
of step sizes will also converge to zero. In fact, imposing sufficient decrease promotes
unsuccessful iterations with consequent reductions of the step size, and using the
boundedness from below of the function, one can easily ensure convergence to zero
for a subsequence of step sizes [93]. When only simple decrease is required, one has
to implicitly keep a distance of the order of the step size among all iterates, and
the typical way to achieve it is by generating PSSs such that all trial points lie in
underlying integer lattices [64, 125, 22].

Using simple decrease and a finite number of PSSs through the iterations, it was
proved in [125] that the gradient is driven to zero for a subsequence of the iterates.
Such an algorithmic framework was improved, generalized, and analyzed in [22] and
coined generalized pattern search (see also [13]). It was shown in [93] that an infinite
number of PSSs can be used when sufficient decrease is imposed (an approach known
as generating set search), as long as they are uniformly non-degenerate (meaning
that their cosine measure [93] is bounded away from zero).
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Polling can be opportunistic (when moving to the first point xk + αkd yielding
the desired decrease) or complete (when the best of the points xk + αkd is taken
in Dk and then compared with xk). Doing complete polling leads to the convergence
of the whole sequence of gradients to zero [93] (under the additional condition that
the step size converges to zero, which occurs naturally when imposing sufficient
decrease or if the step size is never increased). When polling is not complete,
for instance when the first poll direction leading to descent is taken, the order of
the poll directions has some influence in the numerical performance of the method
(see [24, 60]).

Nowadays, several implementations of direct-search methods of directional type
are available, such as DFL [1], HOPSPACK [5], NOMAD [10], and SID-PSM [12].
Even if most of these solvers offer additional features, polling is common to all of
them.

37.2.2 Non-smooth functions

In the presence of non-smoothness, the cone of descent directions can be arbitrarily
narrow (see the example provided in [93, Page 441]). Thus, the use of a finite
number of PSSs may not guarantee the existence of a descent direction among the
poll vectors, and can cause stagnation of the optimization process. This fact was the
main motivation for considering more general sets of directions [54] (see also [18],
where the motivation arose from a practical context).

To rigorously avoid stagnation and guarantee some form of convergence (as
defined below), poll vectors must therefore be asymptotically dense in the unit
sphere. When simple decrease is used, all the generated trial points are required
to belong to integer lattices and Mesh Adaptive Direct Search (MADS) [24] offers
a framework to do so while using infinitely many directions (and taking them from
PSSs if desired). If sufficient decrease is imposed, then the computation of new
points is free of rules, and the set of poll directions could be simply randomly
generated in the unit sphere [130] (an approach here denoted by RdDS).

In the absence of smoothness, convergence can be established by proving the
non-negativity of some form of generalized directional derivatives at a limit point of
the sequence of iterates and along all normalized directions. To do so, the authors
in [22, 24] proposed the use of Clarke [44] analysis for locally Lipschitz continuous
functions. As a consequence of using asymptotically dense sets of directions, a
hierarchy of convergence results was derived in [24], depending on the level of non-
smoothness present in the function. More recently, using Rockafellar generalized
directional derivatives [121], the convergence results were extended to discontinuous
functions [130]. Second-order results can be found in [14].

Simplex gradients [90] have been suggested as a possibility to define directions
of potential descent. A simplex gradient can be regarded as the gradient of a
particular linear interpolation model, requiring the evaluation of the function in
a simplex (and its quality as an approximation to the gradient in the continuous
differentiable case is analyzed in [90, 53]). Simplex gradients are also a possibility
to approximate a direction in the Clarke subdifferential [44], defined for Lipschitz
continuous functions as the set ∂f(x) = {ζ ∈ Rn : f◦(x; d) ≥ ζ⊤d for all d ∈ Rn},
where f◦(x; d) represents the Clarke generalized directional derivative at x along
d (and its quality as an approximation to such generalized gradients was analyzed
in [56]).

In practice, non-smooth functions are frequently non-smooth compositions of
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smooth functions. Lower-Ck functions [122], for instance, are characterized by being
locally given as a maximum of Ck functions. Convex functions are lower-C2 [122].
Trivially, f = max{f1, . . . , fm} is a lower-Ck function, provided that each fi is Ck.
In [85] (see references therein) minmax problems of this form have been addressed,
when the fi’s are C1 functions, by considering simplex gradients as approximations
to generalized gradients in a line search approach. The general lower-C2 case was
considered in [32], adapting ideas from convex non-smooth optimization.

Another possibility for optimizing a non-smooth function without derivatives is
by approximating it by a family of smoothing functions (see [74, 92, 113]). The
smoothing functions typically depend on a parameter, which must be then driven
asymptotically, and may require prior knowledge of the non-smooth structure of the
function.

Regarding numerical implementations, NOMAD [10, 97] is a reference for non-
smooth unconstrained DFO using direct search. In this solver, two different in-
stances are available to build the asymptotically dense sets of directions in the
unit sphere fulfilling the integer lattice requirements, namely the probabilistic LT-
MADS [24] and the deterministic ORTHOMADS [16].

37.2.3 Noisy functions

Simplex gradients are also used as search directions for the optimization of noisy
functions. In implicit filtering [36], a (not too refined) line search is performed along
a negative simplex gradient. A quasi-Newton scheme is then used for curvature
approximation. Such ingredients equip the method in [36] to noisy problems in
the hope that it can escape from spurious minimizers. A detailed description of
the algorithm and corresponding convergence results can be found in the recent
book [91]. A numerical implementation, called IFFCO, is available at [6].

In the presence of noise it is natural to consider least-squares regression tech-
niques (see Chapter 4 in [53]) and use them in trust-region methods. However,
when the level of noise is large, this type of models may over-fit the available data.
In [89], assuming the knowledge of an upper bound for the level of noise present
in function evaluations, it was suggested to relax the interpolation conditions using
the corresponding bound. In [34] it was suggested instead to incorporate the knowl-
edge about the noise level from each function evaluation in a weighted regression.
When the level of noise is sufficiently small relatively to the trust radius, trust-
regions methods based on weighted regression models retain global convergence to
stationary points [34].

If the noise present in the function evaluation has a stochastic nature, then a
simple possible approach would be to replicate function evaluations performed at
each point, conferring accuracy to the estimation of the real corresponding function
value. This procedure as been followed to adapt simplex type methods [20] and
interpolation-based trust-region methods [62] to noisy optimization. Recently, in the
context of direct search using PSSs [43], replication techniques were also applied to
smooth and non-smooth functions computed by Monte Carlo simulation. Statistical
based approaches, namely by using hypotheses tests, have also been suggested for
providing confidence to the decision of accepting a new point, when using direct
search in the presence of stochastic noise [126, 124].
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37.2.4 Worst case complexity and global rates

The analysis of global convergence of algorithms can be complemented or refined
by deriving worst case complexity (WCC) bounds for the number of iterations or
function evaluations, an information which may be valuable in many practical in-
stances. Derivative-free or zero-order methods have also been recently analyzed
with the purpose of establishing their WCC bounds. As in gradient-based methods
(see [112, 78, 40]), it was shown in [129] a WCC bound of O(ϵ−2) for the number of
iterations of direct-search methods (using PSSs and imposing sufficient decrease),
when applied to a smooth, possibly non-convex function. Such type of bound trans-
lates into a sublinear global rate of 1/

√
k for the decay of the norm of the gradient.

Note that these rates are called global since they are obtained independently of the
starting point. In DFO it becomes also important to measure the effort in terms of
the number of function evaluations: the corresponding WCC bound for direct search
is O(n2ϵ−2). DFO trust-region methods achieve similar bounds and rates [73]. The
authors in [41] have derived a better WCC bound of O(n2ϵ−3/2) for their adaptive
cubic overestimation algorithm but using finite differences to approximate deriva-
tives.

In the non-smooth case, using smoothing techniques, it was established a WCC
bound of O

(
(− log(ϵ))ϵ−3

)
iterations (and O

(
n3(− log(ϵ))ϵ−3

)
function evalua-

tions) for the zero-order methods in [73, 74, 113], where the threshold ϵ refers
now to the gradient of a smoothed version of the original function and the size of
the smoothing parameter. Composite DFO trust-region methods [73] can achieve
O(ϵ−2) when the non-smooth part of the composite function is known.

In [112, Section 2.1.5] it is also shown that the gradient method achieves an
improved WCC bound of O(ϵ−1) if the function is convex and the solutions set is
nonempty. Correspondingly, the global decaying rate for the gradient is improved to
1/k. Due to convexity, the rate 1/k holds also for the error in function values. For
derivative-free optimization, direct search [67] attains the O(ϵ−1) bound (O(n2ϵ−1)
for function evaluations) and the global rate of 1/k in the convex (smooth) case.
As in the gradient method, direct search achieves an r-linear rate of convergence
in the strongly convex case [67]. The analysis can be substantially simplified when
direct search does not allow an increase in the step size (see [94]).

The factor of n2 has been proved to be approximately optimal, in a certain sense,
in the WCC bounds for the number of function evaluations attained by direct search
(see [68]).

37.2.5 Models and descent of probabilistic type

The development of probabilistic models in [30] for DFO and the benefits of ran-
domization for deterministic first-order optimization, led to the consideration of
trust-region methods where the accuracy of the models is given with some posi-
tive probability [31]. It has been shown that provided the models are fully linear
with a certain probability, conditioned to the prior iteration history, the gradient of
the objective function converges to zero with probability one. In this trust-region
framework, if ρk ≥ η0 > 0 and the trust-region radius is sufficiently small relatively
to the size of the model gradient gk, then the step is taken and the trust-region ra-
dius is possibly increased. Otherwise the step is rejected and the trust-region radius
is decreased. It is shown in [31] that global convergence to second-order stationary
points is also attainable almost surely.
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Not surprisingly, one can define descent in a probabilistic way similarly as for
fully linear models. A set of directions is probabilistically descent if at least one of
them makes an acute angle with the negative gradient with a certain probability.
Direct search based on probabilistic descent has been proved globally convergent
with probability one [77]. Polling based on a reduced number of randomly generated
directions (which can go down to two) satisfies the theoretical requirements [77] and
can provide numerical results that compare favorable to the traditional use of PSSs.

It has been proved in [77] that both probabilistic approaches (for trust regions
and direct search) enjoy, with overwhelmingly high probability, a gradient decaying
rate of 1/

√
k or, equivalently, that the number of iterations taken to reach a gradient

of size ϵ is O(ϵ−2). Interestingly, the WCC bound in terms of function evaluations
for direct search based on probabilistic descent is reduced to O(nmϵ−2), where m
is the number of random poll directions [77].

Recently, in [42], it was proposed and analyzed a trust-region model-based al-
gorithm for solving unconstrained stochastic optimization problems, using random
models obtained from stochastic observations of the objective function or its gradi-
ent.

37.3 Bound and linearly constrained optimization
We now turn our attention to linearly constrained optimization problems in which
f(x) is minimized subject to b ≤ Ax ≤ c, where A is a m×n matrix and b and c are
m-dimensional vectors. The inequalities are understood componentwise. In partic-
ular, if A is the identity matrix, then we have a bound constrained optimization
problem. Again, we consider the derivative-free context, where it is not possible to
evaluate derivatives of f .

Sampling along directions. In a feasible method, where all iterates satisfy the
constraints, the geometry of the boundary near the current iterate should be taken
into account when computing search directions (to allow for sufficiently long fea-
sible displacements). In direct search this can be accomplished by computing sets
of positive generators for tangent cones of nearby points, and then using them for
polling. (A set of positive generators of a convex cone is a set of vectors that spans
the cone with nonnegative coefficients.) If there are only bounds on the variables,
such a scheme is ensured simply by considering all the coordinate directions [98].
For general non-degenerate linear constraints, there are schemes to compute such
positive generators [100] (for the degenerate case see [17]). If the objective function
is continuously differentiable, the resulting direct-search methods are globally con-
vergent to first-order stationary points [100] (see also [93]), in other words, to points
where the gradient is in the polar of the tangent cone, implying that the directional
derivative is nonnegative for all directions in the tangent cone. Implementations
are given in HOPSPACK [5] and PSwarm [11].

If the objective function is non-smooth, one has to use polling directions asymp-
totically dense in the unit sphere (for which there are two main techniques, either
MADS [24] or RdDS [130]). We have seen that in unconstrained optimization
global convergence is attained by proving that the Clarke generalized derivative is
nonnegative at a limit point for all directions in Rn — which, in the presence of
bounds/linear constraints, trivially includes all the directions of the tangent cone at
the limit point. One can also think of hybrid strategies, combining positive gener-
ators and dense generation (see the algorithm CS-DFN [69] for bound constrained
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optimization where the coordinate directions are enriched by densely generated ones
when judged efficient).

Sampling and modeling. Active-set type approaches have also been considered
in the context of trust-region methods for derivative-free bound constrained opti-
mization. One difficulty is that the set of interpolation points may get aligned at one
or more active bounds and deteriorate the quality of the interpolation set. In [76]
an active-set strategy is considered by pursuing minimization in the subspace of
the free (non-active) variables, circumventing such a difficulty and saving function
evaluations from optimization in lower dimensional subspaces. The respective code
is called BC-DFO [76].

In other strategies, all the constraints are included in the trust-region subprob-
lem. This type of trust-region methods was implemented in the codes
BOBYQA [119] (a generalization of NEWUOA [118] for bound constrained opti-
mization) and DFO [2] (which also considers feasible regions defined by continuously
differentiable functions for which gradients can be computed). Recently, extensions
to linearly constrained problems have been provided in the codes LINCOA [120]
and LCOBYQA [83].

37.4 Nonlinearly constrained optimization
Consider now the more general constrained problem

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr.
(37.1)

The feasible region of this problem is defined by relaxable and/or unrelaxable con-
straints. The non-relaxable constraints correspond to Ωnr ⊆ Rn. Such constraints
have to be satisfied at all iterations in an algorithmic framework for which the
objective function is evaluated. Often they are bounds or linear constraints, as con-
sidered above, but they can also include hidden constraints (constraints which are
not part of the problem specification/formulation and their manifestation comes in
the form of some indication that the objective function could not be evaluated). In
contrast, relaxable constraints, corresponding to Ωr ⊆ Rn, need only to be satis-
fied approximately or asymptotically, and are often defined by algebraic inequality
constraints.

Most of the globally convergent derivative-free approaches for handling nonlin-
early constrained problems have been of direct search or line search type, and we
summarize such activity next.

Unrelaxable constraints. Feasible methods may be the only option when all the
constraints are unrelaxable (Ωr = Rn). In addition they generate a sequence of
feasible points, thus allowing the iterative process to be terminated prematurely
with a guarantee of feasibility for the best point tested so far. This is an important
feature in engineering design problems because the engineer does not want to spend
a large amount of computing time and have nothing useful (i.e., feasible) to show
for it. One way of designing feasible methods is by means of the barrier function
(coined extreme barrier in [24])

fΩnr (x) =

{
f(x) if x ∈ Ωnr,
+∞ otherwise.
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It is not necessary to evaluate f at infeasible points where the value of the extreme
barrier function can be set directly to +∞. Hidden constraints are fundamentally
different because it is not known a priori if the point is feasible. Direct-search meth-
ods take action solely based on function value comparisons and are thus appropriate
to use in conjunction with an extreme barrier function. In the context of direct-
search methods of directional type for non-smooth functions, we have seen that
there are two known ways of designing globally convergent algorithms (MADS [24]
and RdDS [130]). In each case, one must use sets of directions whose union (after
normalization if needed) is asymptotically dense in the unit sphere of Rn. The
resulting approaches are then globally convergent to points where the Clarke direc-
tional derivative is nonnegative along all directions in the (now unknown) tangent
cone. An alternative to extreme barrier when designing feasible methods is the use
of projections onto the feasible set, although this might require the knowledge of
the derivatives of the constraints and be expensive or unpractical in many instances
(see [106] for such an approach).

Relaxable constraints. In the case where there are no unrelaxable constraints
(rather than those of the type b ≤ Ax ≤ c), one can use a penalty term by adding
to the objective function a measure of constraint violation multiplied by a penalty
parameter, thus allowing starting points that are infeasible with respect to the re-
laxable constraints. In this vein, an approach based on an augmented Lagrangian
method was suggested (see [99]), considering the solution of a sequence of sub-
problems where the augmented Lagrangian function takes into account only the
nonlinear constraints and is minimized subject to the remaining ones (of the type
b ≤ Ax ≤ c). Each problem can then be approximately solved using an appropri-
ate DFO method such as a (directional) direct-search method. This application of
augmented Lagrangian methods yields global convergence results to first-order sta-
tionary points of the same type of those obtained under the presence of derivatives.
In [65] a more general augmented Lagrangian setting is studied, where the problem
constraints imposed in the subproblems are not necessarily of linear type.

In turn, algorithms for inequality constrained problems, based on smooth and
non-smooth penalty functions were developed and analyzed in [101, 103, 69], im-
posing sufficient decrease and handling bound/linear constraints separately, proving
that a subset of the set of limit points of the sequence of iterates satisfy the first-
order necessary conditions of the original problem. Numerical implementations can
be found in the DFL library [1].

Filter methods from derivative-based optimization [72] have also been used in
the context of relaxable constraints in DFO. In a simplified way, these methods
treat a constrained problem as a bi-objective unconstrained one, considering as
goals the objective function and a measure of the constraints violation, but giving
priority to the latter one. Typically a restoration procedure is considered to com-
pute nearly feasible points. A first step along this direction in DFO was suggested
in [23], for direct-search methods using a finite number of PSSs. The filter ap-
proach in [63] (where an envelope around the filter is used as a measure of sufficient
decrease) guarantees global convergence to a first-order stationary point. Inexact
restoration methods from derivative-based optimization [107] have also been ap-
plied to DFO, again algorithms alternating between restoration and minimization
steps. In [108] an algorithm is proposed for problems with ‘thin’ constraints, based
on relaxing feasibility and performing a subproblem restoration procedure. Inexact
restoration has been applied in [38] to optimization problems where derivatives of
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the constraints are available for use, thus allowing derivative-based methods in the
restoration phase.

Relaxable and unrelaxable constraints. The first general approach to consider
both relaxable and unrelaxable constraints is called progressive barrier [25]. It allows
the handling of both types of constraints, by combining MADS for unrelaxable
constraints with non-dominance filter-type concepts for the relaxable constraints
(see the consequent developments in [27]). An alternative to progressive barrier
has been proposed in [79], handling the relaxable constraints by means of a merit
function instead of a filter, and using RdDS for the unrelaxable ones. The merit
function and the corresponding penalty parameter are only used in the evaluation
of an already computed step. An interesting feature of these two approaches is that
constraints can be considered relaxable until they become feasible whereupon they
can be transferred to the set of unrelaxable constraints. Both of them exhibit global
convergence properties.

Model-based trust-region methods. On the model-based trust-region side of
optimization without derivatives, nonlinear constraints have been considered mostly
in implementations and in a relaxable mode.

Two longstanding software approaches are COBYLA [116] (where all the func-
tions are modeled linearly by interpolation), see also [37], and DFO [49] (where all
the functions are modeled quadratically by interpolation).

Another development avenue has been along composite-step based SQP [46,
Section 15.4]. Here one models the objective function by quadratic functions and
the constraints by linear ones. The first approach has been proposed in [45] and [33],
using, respectively, filters and merit functions for step evaluation.

More recently, a trust-funnel method (where the iterates can be thought as
flowing towards a critical point through a funnel centered on the feasible set; see [75])
was proposed in [109] for the particular equality constrained case. Another approach
(and implementation code NOWPAC) has been proposed in [29] for equalities and
inequalities and inexact function evaluations.

37.5 General extensions
In real life applications, it is often the case that the user can supply a starting point
for the optimization process and that some (local) improvement over the provided
initialization may already fulfill the original goals. Nevertheless, there are situations
where global minimizers are requested and/or good initial guesses are unknown. Ex-
tensions of DFO to global optimization try to cope with such additional difficulties.
One possibility is to partition the feasible region into subdomains, which are locally
explored by a DFO procedure in an attempt to identify the most promising ones.
DIRECT [88] and MCS [87] follow this approach being the latter enhanced by local
optimization based on quadratic polynomial interpolation (see the corresponding
codes in [71] and [7]). An alternative is to multistart different instances of a DFO
algorithm from distinct feasible points. Recently, in the context of direct search, it
was proposed to merge the different starting instances when sufficiently close to each
other [57] (see the corresponding code GLODS [4]). Heuristics have been tailored
to global optimization without derivatives, and an example providing interesting
numerical results are evolution strategies like CMA-ES [84] (for which a modified
version is capable of globally converging to stationary points [66]).
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DFO algorithms can be equipped with a search step for the purpose of improving
their local or global performance (such type of steps are called magical in [46]). The
paper [35] proposed a search-poll framework for direct search, where a search step
is attempted before the poll step. A similar idea can be applied to model-based
trust-region algorithms [80]. The search step is optional and does not interfere in
the global convergence properties of the underlying methods. Surrogate models
(see [104, Section 3.2] and [53, Section 12]) can be built and optimized in a search
step such as in [59] for quadratics or in [19] for RBFs. Other possibilities for its use
include the application of global optimization heuristics [128, 21]. See the various
solvers [10, 11, 12].

Parallelizing DFO methods is desirable in the presence of expensive function
evaluations. The poll step of direct search offers a natural parallelization by dis-
tributing the poll directions among processors [86]. Asynchronous versions of this
procedure [82] are relevant in the presence of considerably different function evalu-
ation times. Several codes [5, 10, 11] offer parallel modes. Subspace decomposition
in DFO is also attractive for parallelization and surrogate building [26, 81].

The extension of DFO methods to problems involving integer or categorical
variables has also been considered. The methodologies alternate between a local
search in the continuous space and some finite exploration of discrete sets for the
integer variables. Such discrete sets or structures could be fixed in advance [15]
or be adaptively defined [102]. Implementations are available in NOMAD [10] and
DFL library [1], respectively.

Multiobjective optimization has also been the subject of DFO. A common ap-
proach to compute Pareto fronts consists of aggregating all the functions into a
single parameterized one, and it has been done in DFO (see [28] and references
therein). In [58] the concept of Pareto dominance was used to generalize direct
search to multiobjective DFO without aggregation. Implementations are available
in the codes NOMAD [10] and DMS [3], respectively.
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[130] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous
functions. Math. Program., 133:299–325, 2012.

[131] S. M. Wild, R. G. Regis, and C. A. Shoemaker. ORBIT: Optimization by radial
basis function interpolation in trust-regions. SIAM J. Sci. Comput., 30:3197–3219,
2008.

[132] S. M. Wild and C. Shoemaker. Global convergence of radial basis function trust
region derivative-free algorithms. SIAM J. Optim., 21:761–781, 2011.

[133] D. Winfield. Function and Functional Optimization by Interpolation in Data Tables.
PhD thesis, Harvard University, USA, 1969.


