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How to boil a potato by heating its boundary in an optimal way.
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Optimization with differential equations
Examples with potatoes

The Potato Example |

How to boil a potato by heating its boundary in an optimal way.

\l/ % u(x) .. .control
\ y y t

@ ()... potato Y

o [ its boundary

@ u(x) heat source on
r

@ y(x) temp. in Q X

X1




Optimization with differential equations
Examples with potatoes

The Potato Example |

How to boil a potato by heating its boundary in an optimal way.

\l/ % u(x) . ..control
\ y y t

@ (... potato
o [ its boundary

@ u(x) heat source on
r

@ y(x) temp. in Q

Problem:

Choose u(x) (“control variable”) on the boundary I' such that the
heat inside the potato y(x) ( “state variable”) gets close to a
desired function yy(x).
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Optimization with differential equations
Examples with potatoes

The Potato Example | (continued)

\ \l/ % y u(x) . . .control Control u and state y
/ p satisfy the stationary
heat equation (o > 0):
r —Ay =0 in €,
dy

i B afu—y) onT.



Optimization with differential equations
Examples with potatoes

The Potato Example | (continued)

\ \l/ % y u(x) . . .control Control u and state y
/ satisfy the stationary

4 heat equation (« > 0):
r —Ay =0 in €,
dy

i B afu—y) onT.

X1

To express our objective we formulate (v > 0)

minJ(y.0) = 5 [ 00 = va e+ ][ uto2es()

y,U 2 r



Optimization with differential equations
Examples with potatoes

The Potato Example | (continued)

\ \l/ % y u(x) . . .control Control u and state y
/ satisfy the stationary

4 heat equation (« > 0):
r —Ay =0 in €,
dy

i B afu—y) onT.

X1

To express our objective we formulate (v > 0)

minJ(y.0) = 5 [ 00 = va e+ ][ uto2es()

}’»U 2 r
and we impose the (inequality) constraints

ua(x) < u(x) < up(x) on T (u,, up are given )



Optimization with differential equations
Examples with potatoes

The Potato Example | (continued)

Control u and state y
satisfy the stationary
heat equation (a > 0):

—Ay =0 in Q,

Iy _
on

Problem structure:

alu—y) onT.

To express our objective we formulate (v > 0)

minJ(y,u) = 5 [ 000 = vl P+ ] [ ulxPas

y,U 2 r
and we impose the (inequality) constraints

ua(x) < u(x) < up(x) on T (u,, up are given )



Optimization with differential equations
Examples with potatoes

The Potato Example | (continued)

Control u and state y
satisfy the stationary
heat equation (o > 0):

—Ay =0 in Q,

Iy _
on

Problem structure:

@ Objective functional

alu—y) onT.

To express our objective we formulate (v > 0)

min (v, u) = 5 [ 000 = ya) P+ ] [ ulxPas

y,u 2.
and we impose the (inequality) constraints

ua(x) < u(x) < up(x) on T (u,, up are given )
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Examples with potatoes

The Potato Example | (continued)

Control u and state y
satisfy the stationary
heat equation (« > 0):

—Ay =0 in Q
9y _
on

Problem structure:
@ Objective functional
@ Differential equation

a(u—y) onT.

To express our objective we formulate (y > 0)

minJ(y,u) = 5 [ 00 = v P+ ][ ulxPas

y,U 2 r
and we impose the (inequality) constraints

ua(x) < u(x) < up(x) on T (u,, up are given )
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Examples with potatoes

The Potato Example | (continued)

Control u and state y
satisfy the stationary
heat equation (o > 0):

—Ay =0 in Q,

Iy _
on

Problem structure:
@ Objective functional
@ Differential equation

@ Inequality constraints alu—y) onT.

To express our objective we formulate (v > 0)

minJ(y,u) = 5 [ 000 = vl P+ ] [ ulxPas

y,U 2 r
and we impose the (inequality) constraints

us(x) < u(x) < up(x) on I (u,, up are given )
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Optimization with differential equations
Examples with potatoes

The Potato Example Il

u(x) ... control
(e.g., microwaves)

Distributed control u,
that is, heating insinde
Q by microwaves or elec-
tromagnetic  induction
(B(x) given):
—Ay =pu inQ,
y=0 on .
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The Potato Example Il

Distributed control u,
u(x). . . control that is, heating insinde
(e-g., microwaves) Q by microwaves or elec-

tromagnetic  induction
(B(x) given):
—Ay =pu inQ,
y=20 onl.

L

X1

Objective functional (v > 0)

1

minJ(y0) = 5 | 000 = vaGF b ] [ u? o
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Examples with potatoes

The Potato Example Il

Distributed control u,
u(x). . . control that is, heating insinde
(e-g., microwaves) Q by microwaves or elec-

tromagnetic  induction

(B(x) given):

—Ay =pu inQ,

o y=0 onl.

Objective functional (v > 0)
1

min J(y,u) = = / (y(x) = ya(x))? dx + 7/ u(x)? dx

y,u 2 Q 2 Q

constraints
us(x) < u(x) < up(x) on Q
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Examples with potatoes

The Potato Example Il

Problem structure:

Objective functional (y > 0)
1

Distributed control u,
that is, heating insinde
Q by microwaves or elec-
tromagnetic  induction
(B(x) given):
—Ay =pu inQ,
y=0 on .

minJ0y0) = 5 [ 000 = vaGF e ] [ u? o

2

constraints

us(x) < u(x) < up(x) on Q



Optimization with differential equations
Examples with potatoes

The Potato Example Il

Problem structure:
@ Objective functional

Objective functional (v > 0)
1
2

Distributed control u,
that is, heating insinde
Q by microwaves or elec-
tromagnetic  induction
(B(x) given):
—Ay =u in€,
y=0 on .

min () = 5 [ (/0 = yaG o+ 3 [ ale)?

constraints

us(x) < u(x) < up(x) on Q



Optimization with differential equations
Examples with potatoes

The Potato Example Il

Problem structure:
@ Objective functional

o Differential equation

Objective functional (y > 0)
1
2

Distributed control u,
that is, heating insinde
Q by microwaves or elec-
tromagnetic  induction
(B(x) given):
—Ay =Fu inQ,
y=20 on .

minJ0y0) = 5 | 000 = vaGF e ] [ u? o

constraints

us(x) < u(x) < up(x) on Q



Optimization with differential equations
Examples with potatoes

The Potato Example Il

Problem structure:
@ Objective functional
o Differential equation

@ Inequality constraints

Objective functional (v > 0)
1
2

Distributed control u,
that is, heating insinde
Q by microwaves or elec-
tromagnetic  induction
(B(x) given):
—Ay =pu inQ,
y=0 on .

minJ(y0) = 5 | 000 = vaGF b ] [ u? o

constraints

ua(x) < u(x) < up(x) on Q



finite elements (FEM).
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Optimization with differential equations
The discrete problem

The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

miny,u 3 SN 1 {(yi — ya,i)? + yu?}
subject to AyY = BpU
and U, < U < Uy,

where Y, U € RN and Ay, B, € RVXN,



Optimization with differential equations
The discrete problem

The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

. 1 N 2 2
miny u 5 > i 1(Vi — Ya,i)” +yur)
SUb.JeCt to AhY = BhU @ Discretized differential equation

and Ua S U S Uba @ Discrete inequality constraint

@ Discrete objective functional

where Y, U € RN and Ay, B, € RVXN,



Optimization with differential equations
The discrete problem

The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

i 15N v, )2 2y
mInY:U 2 Zi=1{(y’ ydv’) + ﬁyul' J @ Discrete objective functional
subject to ApY = ByU
and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and A, B, € RNV,

Typical properties of the discrete problems:
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The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

i 15N v, )2 2y
mInY:U 2 Zi=1{(y’ ydv’) + ﬁyul' J @ Discrete objective functional
subject to ApY = ByU
and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and A, B, € RNV,

Typical properties of the discrete problems:

@ they are very large
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The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

i 15N v, )2 2y
mInY:U 2 Zi=1{(y’ ydv’) + ﬁyul' J @ Discrete objective functional
subject to ApY = ByU
and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and A, B, € RNV,

Typical properties of the discrete problems:
@ they are very large

@ the matrices Ap, By, are sparse (i.e., contain many zeros)



Optimization with differential equations
The discrete problem

The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

i 15N v, )2 2y
mInY:U 2 Zi=1{(y’ ydv’) + ﬁyul' J @ Discrete objective functional
subject to ApY = ByU
and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and A, B, € RNV,

Typical properties of the discrete problems:
@ they are very large
@ the matrices Ap, By, are sparse (i.e., contain many zeros)

@ A, may be positive definite and have smoothing properties



Optimization with differential equations
The discrete problem

The Discrete Problem
The discrete problem can be obtained using finite differences or
finite elements (FEM).

i 15N v, )2 2y
mInY:U 2 Zi=1{(y’ ydv’) + ﬁyul' J @ Discrete objective functional
subject to ApY = ByU
and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and A, B, € RNV,

Typical properties of the discrete problems:
@ they are very large
@ the matrices Ap, By, are sparse (i.e., contain many zeros)
@ Aj, may be positive definite and have smoothing properties
o Ay is usually invertible, that is, Y = A, 'B,U.



Optimization with differential equations
The discrete problem

The Discrete Problem

The discrete problem can be obtained using finite differences or
finite elements (FEM).

miny,y 3 S0 {(yi — va,i)? + yu?)
subject to AyY = ByU
and U, < U < U,

@ Discrete objective functional
@ Discretized differential equation

@ Discrete inequality constraint

where Y, U € RN and Ay, B, € RVXN,

Solution methods contain:
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The discrete problem

The Discrete Problem

The discrete problem can be obtained using finite differences or
finite elements (FEM).

. 1 N . )2 27
mInY,U 5 lel{(y’ - -ydv’) + '}/Ul J @ Discrete objective functional
subject to ApY = BU

and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and Ay, B, € RVXN,

Solution methods contain:

@ Steepest descent, conjugate/Projected gradient methods
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The Discrete Problem

The discrete problem can be obtained using finite differences or
finite elements (FEM).

. 1 N . )2 27
mInY,U 5 lel{(y’ - -ydv’) + '}/Ul J @ Discrete objective functional
subject to ApY = BU

and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and Ay, B, € RVXN,

Solution methods contain:
@ Steepest descent, conjugate/Projected gradient methods

@ Newton, Quasi-Newton and Semi-smooth Newton methods



Optimization with differential equations
The discrete problem

The Discrete Problem

The discrete problem can be obtained using finite differences or
finite elements (FEM).

. 1 N . )2 27
mInY,U 5 lel{(y’ - -ydv’) + '}/Ul J @ Discrete objective functional
subject to ApY = BU

and Ua S U S Ub7 @ Discrete inequality constraint

@ Discretized differential equation

where Y, U € RN and Ay, B, € RVXN,

Solution methods contain:
@ Steepest descent, conjugate/Projected gradient methods
@ Newton, Quasi-Newton and Semi-smooth Newton methods

@ Line search, trust region methods. . .



Optimization with differential equations
The discrete problem

The Discrete Problem

The discrete problem can be obtained using finite differences or
finite elements (FEM).

. 1 N 2 2
mInY,U 5 lel{(y’ - -ydv’) + '}/Ul } @ Discrete objective functional
subject to ApY = BU
and Ua < U < Ub7

@ Discretized differential equation

@ Discrete inequality constraint

where Y, U € RN and Ay, B, € RVXN,

Solution methods contain:

@ Steepest descent, conjugate/Projected gradient methods
@ Newton, Quasi-Newton and Semi-smooth Newton methods
@ Line search, trust region methods. . .

@ Multigrid methods, preconditioning. ..



Optimization with differential equations
Application without potatoes

Cancer treatment

Application of distributed heating in medicine: Objective: Heat a

tumor (up to maybe 42-45 degree) without damaging the tissue
around it (compare with Potato II)

Tumor

Cross-section Q2 of the pelvic region with different tissue types (left) and adaptively refined mesh (right)
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Mathematical formulation (body region €, tumor region Q' C Q)
y

m,il? J(y,u)= %/Q/(y(x) — 45)? dx + 7 /Q u(x)? dx
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Optimization with differential equations
Application without potatoes

Cancer Treatment (continued)

Mathematical formulation (body region Q, tumor region Q' C Q)

min J(y, u) = ;/Q/(y(x)—45)2 dx—kg/ﬂu(x)2 dx

.y7u
with the heat equation

—Ay =fu inQ,
y=25 onT.



Optimization with differential equations
Application without potatoes

Cancer Treatment (continued)

L S

l\/IathematfcaI formulation (body region Q, tumor region Q' C Q)

min J(y, u) = ;/Q/(y(x)—45)2 dx—kz/ﬂu(x)2 dx

.y7u

with the heat equation

—Ay =fu inQ,
y=25 onT.

and the biological constraints y(x) < 40 on Q\ €/,



Optimization with differential equations
Application without potatoes

Cancer Treatment (continued)

Problem structure:

: R
3 & $¢

Mathematical formulation (body region Q, tumor region Q' C Q)

min J(y, u) = ;/Q/(y(x)—45)2 dx—kz/ﬂu(x)2 dx

.y7u

with the heat equation

—Ay =fu inQ,
y=25 onT.

and the biological constraints y(x) < 40 on Q\ €/,



Optimization with differential equations
Application without potatoes

Cancer Treatment (continued)

Problem structure:

@ Objective functional

Mathematical formulation (body region Q, tumor region Q' C Q)

T,ij] J(y,u) = 5 /,(y(x) — 45)? dx + % /Q u(x)? dx

with the heat equation

—Ay =fu inQ,
y=25 onT.

and the biological constraints y(x) < 40 on Q\ €/,
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Application without potatoes

Cancer Treatment (continued)

Problem structure:

@ Objective functional

@ Differential equation

Mathematical formulation (body region Q, tumor region Q' C Q)

r}r)’i[p J(y,u)= ;/Q/(y(x) — 45)? dx + % /Q u(x)? dx

with the heat equation

—Ay =fu inQ,
y=25 onl.

and the biological constraints y(x) < 40 on Q\ €/,



Optimization with differential equations
Application without potatoes

Cancer Treatment (continued)

Problem structure:

@ Objective functional

@ Differential equation

@ Inequality constraints

Mathematical formulation (body region Q, tumor region Q' C Q)

n}j’i[p J(y,u)= ;/Q/(y(x) — 45)? dx + % /Q u(x)? dx

with the heat equation

—Ay =fu inQ,
y=25 onT.

and the biological constraints y(x) < 40 on Q \ .



Optimization with differential equations
Application without potatoes

Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

@ Objective: Cool it down fast
and uniformly
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Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

@ Objective: Cool it down fast
and uniformly

@ Differential equation: Heat
equation with boundary control




Optimization with differential equations
Application without potatoes

Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

@ Objective: Cool it down fast
and uniformly

@ Differential equation: Heat
equation with boundary control

@ Constraints: temperature and
amount of water,. ..




The behavior of fluids can be described by the instationary
Navier—Stolkes equations:

yt—R—eA}’+(Y'V)Y+VP = u inQ@:=Qx][0,T]
divy = 0 inQ

y = 0 inoQx][0,T]
y(0) = yo inQ.
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Optimization with differential equations
Application without potatoes

Control of Fluids

The behavior of fluids can be described by the instationary
Navier—Stcikes equations:
yt—%Ay%—(y-V)y—FVp = u InQ:=Qx][0,T]
divy = 0 in Q
y = 0 indQx]0,T]
y(0) = y inQ
An optimal control problem is given by

. 1 vy
min J(y, u) = = /Q (v(x) ~ yalx) 2 o + 1 /Q u(x)? dx

y,u 2

eventually plus constraints.
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Control of Fluids

The behavior of fluids can be described by the instationary
Navier—Stcikes equations:
yt—%Ayﬂ—(y-V)y—FVp = u InQ:=Qx][0,T]
divy = 0 in Q
y = 0 indQx]0,T]
y(0) = yo inQ.

An optimal control problem is given by

1
min J(y,u) = = / (y(x) — yg(x))? dx + 7/ u(x)? dx

y,u 2 Q 2 Q
eventually plus constraints. Here again:

Problem structure:



Optimization with differential equations
Application without potatoes

Control of Fluids

The behavior of fluids can be described by the instationary
Navier—Sthkes equations:
yt—%Ay%—(y-V)y—FVp = u InQ:=Qx][0,T]
divy = 0 in Q
y = 0 indQx]0,T]
y(0) = yo inQ.

An optimal control problem is given by

17 L
min J(y, u) = / (y(x) — yg(x))? dx + 7/ u(x)? dx
y,u 2 Q 2 Q
eventually plus constraints. Here again:

Problem structure:

@ Objective functional
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Control of Fluids

The behavior of fluids can be described by the instationary
Navier—Stolkes equations:
yt—%Ay+(y'V)y+Vp = u inQ:=0x]0,T]
divy = 0 in Q
y =0 in 02 x [0, T]
y(0) = » inQ
An optimal control problem is given by
min () = 5 [ (0 = ya() o+ 7 [ u(x o
y,u 2 Q 2 Q
eventually plus constraints. Here again:

Problem structure:
@ Objective functional
@ Differential equation
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Control of Fluids

The behavior of fluids can be described by the instationary
Navier—Stcikes equations:
yt—%Ay%—(y-V)y—FVp = u InQ:=Qx][0,T]
divy = 0 in Q
y = 0 indQx]0,T]
y(0) = yo inQ.
An optimal control problem is given by
min () = 5 [ (0 = ya() o+ 7 [ u(x o
y,u 2 Q 2 Q
eventually plus constraints. Here again:

Problem structure:
@ Objective functional
@ Differential equation

@ Inequality constraints



Example (by J.C. de los Reyes), stationary flow.
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Optimization with differential equations
Application without potatoes

Control of Fluids (continued)

Example (by J.C. de los Reyes), stationary flow.

o Uncontrolled flow:
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Control of Fluids (continued)

Example (by J.C. de los Reyes), stationary flow.

o Uncontrolled flow:

@ Controlled flow:
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