Optimization with Differential Equations:

Where many large scale optimization problems come from

Georg Stadler

CMUC

Estúdio, Abril 21, 2006

Outline

- Examples with potatoes
- 2 The discrete problem
- 3 Application without potatoes
- 4 Optimal control Summary

How to boil a potato by heating its boundary in an optimal way.

How to boil a potato by heating its boundary in an optimal way.

- Ω... potato
- Γ its boundary
- u(x) heat source onΓ
- y(x) temp. in Ω

How to boil a potato by heating its boundary in an optimal way.

- Ω... potato
- Γ its boundary
- u(x) heat source on
- y(x) temp. in Ω

Problem:

Choose u(x) ("control variable") on the boundary Γ such that the heat inside the potato y(x) ("state variable") gets close to a desired function $y_d(x)$.

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$\begin{split} -\Delta y &= 0 & \text{in } \Omega, \\ \frac{\partial y}{\partial n} &= \alpha (u - y) & \text{on } \Gamma. \end{split}$$

To express our objective we formulate $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

To express our objective we formulate $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on $\Gamma(u_a, u_b \text{ are given })$

Problem structure:

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

To express our objective we formulate $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on $\Gamma(u_a, u_b \text{ are given })$

Problem structure:

Objective functional

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

To express our objective we formulate $(\gamma>0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on $\Gamma(u_a, u_b \text{ are given })$

Problem structure:

- Objective functional
- Differential equation

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

To express our objective we formulate $(\gamma>0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on $\Gamma(u_a, u_b \text{ are given })$

Problem structure:

- Objective functional
- Differential equation
- Inequality constraints

Control u and state y satisfy the stationary heat equation $(\alpha > 0)$:

$$-\Delta y = 0$$
 in Ω , $\frac{\partial y}{\partial n} = \alpha(u - y)$ on Γ .

To express our objective we formulate $(\gamma>0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Gamma} u(x)^2 ds(x)$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on $\Gamma(u_a, u_b \text{ are given })$

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on Ω

Problem structure:

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on Ω

Problem structure:

Objective functional

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on Ω

Problem structure:

- Objective functional
- Differential equation

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on Ω

Problem structure:

- Objective functional
- Differential equation
- Inequality constraints

Distributed control u, that is, heating insinde Ω by microwaves or electromagnetic induction $(\beta(x) \text{ given})$:

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 0 \quad \text{on } \Gamma.$$

Objective functional $(\gamma > 0)$

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$u_a(x) \le u(x) \le u_b(x)$$
 on Ω

The discrete problem can be obtained using finite differences or finite elements (FEM).

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

Typical properties of the discrete problems:

• they are very large

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- they are very large
- the matrices A_h , B_b are sparse (i.e., contain many zeros)

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- they are very large
- the matrices A_h , B_b are sparse (i.e., contain many zeros)
- A_h may be positive definite and have smoothing properties

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \frac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- they are very large
- the matrices A_h , B_b are sparse (i.e., contain many zeros)
- A_h may be positive definite and have smoothing properties
- A_h is usually invertible, that is, $Y = A_h^{-1}B_hU$.

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

Solution methods contain:

• Steepest descent, conjugate/Projected gradient methods

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- Steepest descent, conjugate/Projected gradient methods
- Newton, Quasi-Newton and Semi-smooth Newton methods

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- Steepest descent, conjugate/Projected gradient methods
- Newton, Quasi-Newton and Semi-smooth Newton methods
- Line search, trust region methods...

The discrete problem can be obtained using finite differences or finite elements (FEM).

$$\begin{aligned} \min_{Y,U} \tfrac{1}{2} \sum_{i=1}^{N} \{ (y_i - y_{d,i})^2 + \gamma u_i^2 \} \\ \text{subject to } A_h Y = B_h U \\ \text{and } U_a \leq U \leq U_b, \end{aligned}$$

- Discrete objective functional
- Discretized differential equation
- Discrete inequality constraint

where $Y, U \in \mathbb{R}^N$ and $A_h, B_h \in \mathbb{R}^{N \times N}$.

- Steepest descent, conjugate/Projected gradient methods
- Newton, Quasi-Newton and Semi-smooth Newton methods
- Line search, trust region methods...
- Multigrid methods, preconditioning...

Cancer treatment

Application of distributed heating in medicine: Objective: Heat a tumor (up to maybe 42-45 degree) without damaging the tissue around it (compare with Potato II)

Fig. 2 Cross-section Ω of the pelvic region with different tissue types (left) and adaptively refined mesh (right).

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$-\Delta y = \beta u \quad \text{in } \Omega,$$
$$y = 25 \quad \text{on } \Gamma.$$

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

with the heat equation

$$-\Delta y = \beta u$$
 in Ω ,
 $y = 25$ on Γ .

and the biological constraints $y(x) \leq 40$ on $\Omega \setminus \Omega'$

Problem structure:

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

with the heat equation

$$-\Delta y = \beta u$$
 in Ω ,
 $y = 25$ on Γ .

and the biological constraints $y(x) \leq 40$ on $\Omega \setminus \Omega'$

Problem structure:

Objective functional

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$-\Delta y = \beta u$$
 in Ω ,
 $y = 25$ on Γ .

Problem structure:

- Objective functional
- Differential equation

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$-\Delta y = \beta u$$
 in Ω ,
 $y = 25$ on Γ .

Problem structure:

- Objective functional
- Differential equation
- Inequality constraints

Mathematical formulation (body region Ω , tumor region $\Omega' \subset \Omega$)

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{\Omega'} (y(x) - 45)^2 dx + \frac{\gamma}{2} \int_{\Omega} u(x)^2 dx$$

$$-\Delta y = \beta u$$
 in Ω ,
 $y = 25$ on Γ .

Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

 Objective: Cool it down fast and uniformly

Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

- Objective: Cool it down fast and uniformly
- Differential equation: Heat equation with boundary control

Optimal Cooling

Optimal cooling of a hot tool (compare with Potato I):

- Objective: Cool it down fast and uniformly
- Differential equation: Heat equation with boundary control
- Constraints: temperature and amount of water,...

The behavior of fluids can be described by the instationary Navier-Stokes equations:

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

The behavior of fluids can be described by the instationary Navier-Stokes equations:

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

An optimal control problem is given by

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{Q} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{Q} u(x)^2 dx$$

eventually plus constraints.

The behavior of fluids can be described by the instationary Navier-Stokes equations:

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

An optimal control problem is given by

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{Q} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{Q} u(x)^2 dx$$

eventually plus constraints. Here again:

Problem structure:

The behavior of fluids can be described by the instationary Navier-Stokes equations:

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

An optimal control problem is given by

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{Q} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{Q} u(x)^2 dx$$

eventually plus constraints. Here again:

Problem structure:

Objective functional

The behavior of fluids can be described by the instationary

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

An optimal control problem is given by

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{Q} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{Q} u(x)^2 dx$$

eventually plus constraints. Here again:

Problem structure:

- Objective functional
- Differential equation

The behavior of fluids can be described by the instationary Navier-Stokes equations:

Navier-Stokes equations:
$$y_t - \frac{1}{Re} \Delta y + (y \cdot \nabla) y + \nabla p = u \quad \text{in } Q := \Omega \times [0, T]$$

$$\text{div } y = 0 \quad \text{in } Q$$

$$y = 0 \quad \text{in } \partial \Omega \times [0, T]$$

$$y(0) = y_0 \quad \text{in } \Omega.$$

An optimal control problem is given by

$$\min_{y,u} J(y,u) = \frac{1}{2} \int_{Q} (y(x) - y_d(x))^2 dx + \frac{\gamma}{2} \int_{Q} u(x)^2 dx$$

eventually plus constraints. Here again:

Problem structure:

- Objective functional
- Differential equation
- Inequality constraints

Control of Fluids (continued)

Example (by J.C. de los Reyes), stationary flow.

Control of Fluids (continued)

Example (by J.C. de los Reyes), stationary flow.

Uncontrolled flow:

Control of Fluids (continued)

Example (by J.C. de los Reyes), stationary flow.

• Uncontrolled flow:

Controlled flow:

Summary

Summary

