Algoritmos de Encaminhamento Dinâmico e Atribuição do Comprimento de Onda em Redes WDM

Teresa Gomes^{1,3} Carlos Simões^{2,3}

¹Departamento de Engenharia Electrotécnica e de Computadores, FCTUC – Universidade de Coimbra ²Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu ³INESC Coimbra - Instituto de Engenharia de Sistemas e Computadores

•teresa@deec.uc.pt, csimoes@ipv.pt

Introdução

- O problema do Encaminhamento e Atribuição do comprimento de onda em redes ópticas (RWA – Routing and Wavelength Assignment)
- Encaminhamento
- Atribuição do comprimento de onda (λ)

- TSA, BasicLink Method, Bypass Method, Graph transformation technique, KSP, JPS, ITSA.
- Conclusões

Introdução O Problema RWA

- A rede óptica
 - Rede orientada à ligação
 - Caminhos ópticos

Ligação A-B bloqueada

- O problema do RWA
 - Sem conversores de comprimento de onda: a restrição da continuidade do comprimento de onda.

Ligação A-B bem sucedida

3

 Com conversores de comprimento de onda. λ2 λ3 Conversor de λ

Introdução O Problema RWA

- Existem duas variantes do problema RWA:
 - Estático é previamente conhecido o conjunto global das ligações que se deseja estabelecer.
 - static lightpath establishment (SLE).
 - Dinâmico os pedidos de ligação chegam segundo um processo estocástico e os caminhos ópticos são libertados ao fim de algum tempo:
 - dynamic lightpath establishment (DLE).

 SLE pode ser formulado como um problema de programação linear inteira-mista – mixed-integer linear program - (MILP), o qual é NP-completo. Por exemplo (minimizar o nº de λs usados):

 $\lambda_{sdw} = 0.1$: n° de ligações de *s* para *d* no comprimento de onda *w*

 $F_{ij}^{sdw} = 0,1: n^o$ de ligações de s para d no arco ij no comprimento de onda w

 Λ_{sd} : n° de ligações requeridas de s para d

Minimizar: F_{max} , tal que

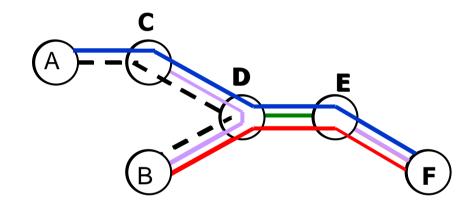
$$F_{\text{max}} \ge \sum_{s,d,w} F_{ij}^{\text{sdw}}, \forall_{ij}$$

$$\sum_{i} F_{ij}^{\text{sdw}} - \sum_{k} F_{jk}^{\text{sdw}} = \begin{cases} -\lambda_{sdw} & \text{se } s = j \\ \lambda_{sdw} & \text{se } d = j \\ 0 & \text{caso contrário} \end{cases}$$

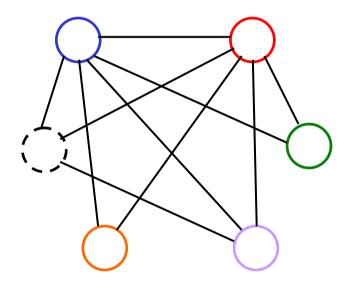
$$\sum_{w} \lambda_{sdw} = \Lambda_{sd} ; \qquad F_{ij}^{sdw} = 0,1; \qquad \sum_{s,d} F_{ij}^{sdw} \le 1$$

Dado um W, resolve-se o problema ILP. Se não tem solução, toma-se W=W+1. E tenta-se novamente...

- Devido a ser um problema que requer solução em tempo real, o problema DLE é mais difícil de resolver que o SLE.
- Estratégia O problema RWA pode ser divido em dois sub-problemas,
 - (1) Encaminhamento e
 - (2) Atribuição do comprimento de onda os quais são resolvidos separadamente.


Introdução Encaminhamento

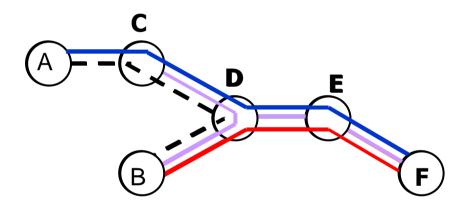
- Encaminhamento Estático:
 - Encaminhamento fixo
 - Encaminhamento alternativo
 - Tabela de caminhos alternativos (disjuntos nos arcos)
- Encaminhamento Dinâmico
 - Os caminhos são escolhidos com base no estado da rede
 - Uma escolha adequada do custo dos nós (com conversores) pode reduzir a necessidade de fazer conversões de comprimento de onda


- Estabelecimento de caminhos ópticos estáticos (SLE)
 - Objectivos: Minimização do número de λs usados satisfazendo a restrição da continuidade do comprimento de onda
 - Coloração de grafos: problema NP-Completo
 - Existem no entanto algoritmos sequenciais bastante eficientes
- Heurísticas para o Estabelecimento de caminhos ópticos dinâmicos (DLE)
 - O objectivo mais comum é a minimização da probabilidade de bloqueio.

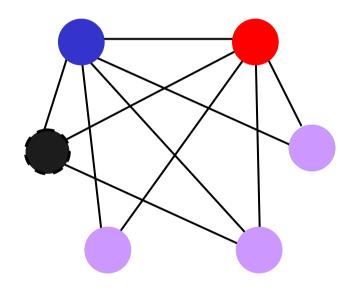
Introdução Atribuição de λ

Caminhos topológicos

```
A,C,D,E,F;
A,C,D,B
C,D,B;
B,D,E,F;
D,E;
E,F
```



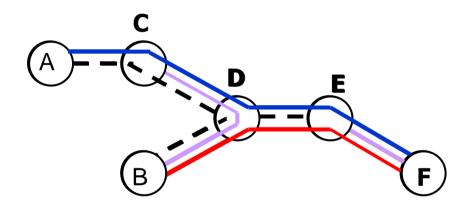
Grafo Auxiliar


4

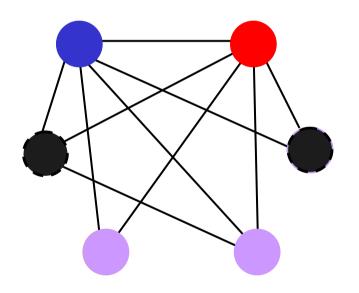
Introdução Atribuição de λ

Min λs: 4 (nº cromático do grafo)

Caminhos ópticos



Grafo Auxiliar


4

Introdução Atribuição de λ

Min λs: 4 (nº cromático do grafo)

Caminhos ópticos

Grafo Auxiliar

Introdução Atribuição de λ

- Heurísticas para a atribuição de λ, DLE:
 - R (Random)
 - FF (First Fit)
 - LU (Least Used) z
 - MU (Most Used, pack)
 - MP (Min-Product)

- LL (Least-Loaded)
- M∑ (Max-Sum)
- RCL (Relative Capacity Loss)
- Rsv (Wavelength Reservation)

. . .

Introdução Atribuição de λ

Algumas Heurísticas para a atribuição de λ,
 DLE (redes multi-fibra):

MP (Min-Product):

Calcula
$$\prod_{l \in \pi(p)} D_{lw}$$

para cada $w (1 \le w \le W)$

Seja X o conjunto dos λ que minimizam o valor anterior. MP escolhe o λ de menor ordem

LL (Least Loaded):

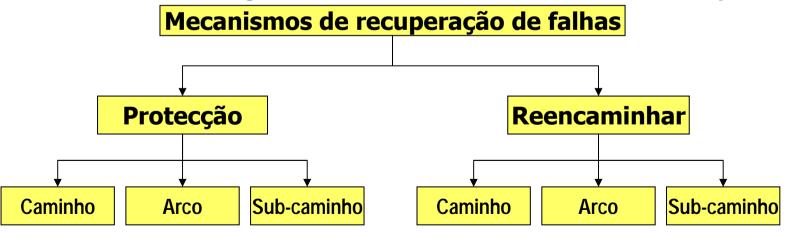
$$L: n^{\circ} de arcos$$

 M_l : n° de fibras no arco l

 $W: n^{\circ} de \lambda s por fibra$

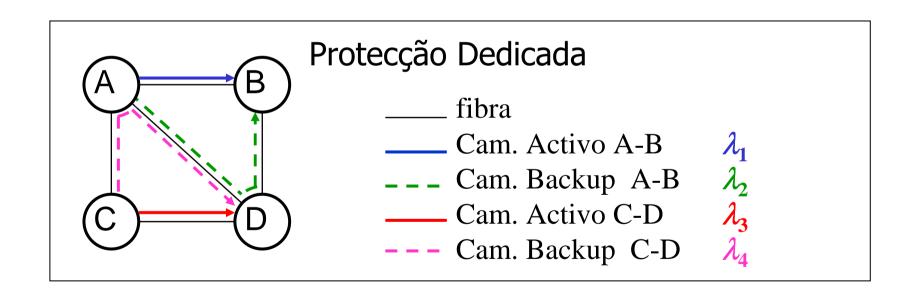
 $\pi(p)$: conjunto de arcos do caminho p

 S_p : Conjunto de λ s disponíveis em p

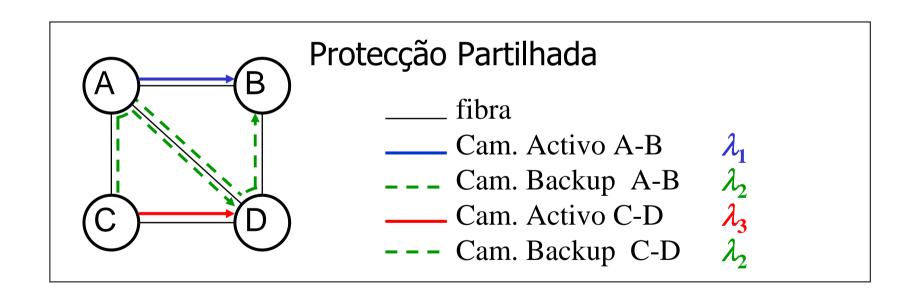

D: matriz $(L \times W)$

 D_{lw} : n° de fibras usadas no arco l e no $\lambda = w$

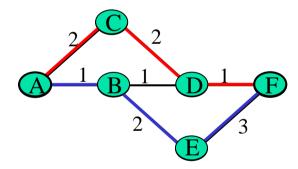
$$\max_{w \in S_p} \min_{l \in \pi(p)} (M_l - D_{lw})$$



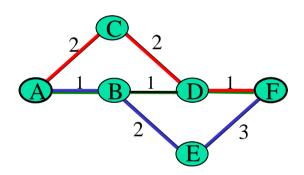
- Vantagens dos mecanismos de recuperação na camada óptica:
 - Recuperação rápida de fluxos de tráfego
 - Protecção de protocolos de camadas elevadas que não possuem mecanismos de recuperação
- Classificação dos mecanismos de recuperação:

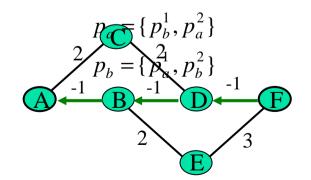


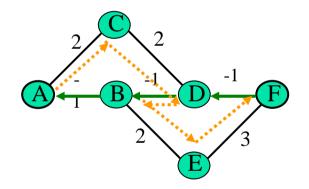
Protecção Dedicada versus Partilhada



Protecção Dedicada versus Partilhada


- Protecção de caminho Dedicada
- Two Step Approach (TSA)
 - Difficuldade: Trap topology problem




- Par de caminhos disjuntos mais curtos
 - (Suurballe & Tarjan, 84), problema "Min-Sum"
 - (Bhandari, 1998), problema "Min-Sum"

- Par de caminhos disjuntos mais curtos
 - (Bhandari, 1998), problema "Min-Sum"

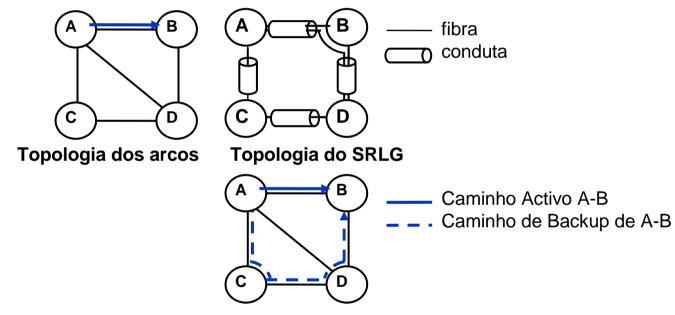
$$\begin{aligned} p_a &= \{ (A,B), (B,D), (D,F) \} \\ p_b &= \{ (A,C), (C,D), (D,B), (B,E), (E,F) \} \\ s &= \{ (B,D) \} \\ p_a &= \{ p_a^1, s, p_a^2 \} \\ p_b &= \{ p_b^1, s, p_b^2 \} \\ s &= \{ (B,D) \} \end{aligned}$$

- Protecção de caminho
 - Considera-se que o custo do caminho activo (AP) é superior ao custo do caminho de protecção (BP): $\min(\alpha C(AP) + C(BP))$
 - Resulta no problema Min-Sum com custos duais ordenados (MSOD) – NP-Completo
 - O algoritmo de Suurballe & Tarjan não é aplicável
 - A Protecção Partilhada resulta em MSOD, com a dificuldade adicional do custo do caminho de protecção depender da escolha do caminho activo: C(AP)+C'(BP).

Complexidade dos problemas subjacentes

Problema	Protecção Dedicada	Protecção Partilhada
Min-Min	NP-Completo [1]	NP-Completo [1]
Min-Sum	Polinomial [2]	NP-Completo [1]
Min-Max	NP-Completo [3] [4]	NP-Completo [3] [4]

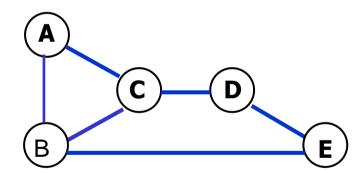
^[1] Dahai Xu, et al., "On Finding Disjoint Paths in Single and Dual Link Cost Networks," INFOCOM'04, March 2004.

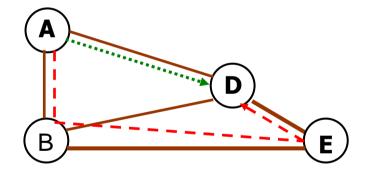

^[2] J. W. Surballe, et al., "A Quick Method for Finding Shortest Pairs of Disjoint Paths," Networks, 14:325–336, 1984.

^[3] Arunabha Sen, et al., "Survivability of Lightwave Networks - Path Lengths in WDM Protection Scheme," Journal of High Speed Networks, 10(4):303-315, 2001.

^[4] Li, et al., "The Complexity of Finding Two Disjoint Paths with Min-Max Objective Function," Discrete Applied Mathematics, 26(1):105–115, Jan. 1990.

Shared Risk Link Group (SRLG)




- Encontrar um par de caminhos disjuntos no SRLG: NP-Completo
- Assim, qualquer problema de optimização ...
- Encaminhamento com a restrição da continuidade do λ é NP-Completo!

Encaminhamento Resiliente SRGL – um exemplo

Troços de Fibra(s)

Cada troço de fibra define um grupo de risco f_{AB} , f_{AC} , f_{BC} , f_{BE} , f_{CD} , f_{DE} Os arcos AD e BD pertencem ambos ao grupo de risco f_{CD} Logo o caminho (A,D) não pode ser protegido por (A,B,D)!

Encaminhamento Resiliente BasicLink Method [Li02]

- Arco básico (Basic Link):
 - Um arco que atravessa apenas um troço de fibra (fiber span).
 - Um arco que atravessa múltiplos troços de fibra, mas é o único arco nesses troços.
- Construa uma topologia de rede apenas com arcos básicos.
- Encontre um par de caminhos disjuntos nos arcos (Suurballe).
- Escolha o mais curto para AP. O segundo caminho é disjunto no SRLG e pode ser o BP.

Encaminhamento Resiliente Basic Link Method cont.

- Pode existir um outro BP, eventualmente mais curto, que pode ser obtido da seguinte forma:
 - Elimine os arcos do AP no grafo original e
 - Procure nesse grafo o caminho mais curto
 - \rightarrow utilize-o como BP.

Problemas

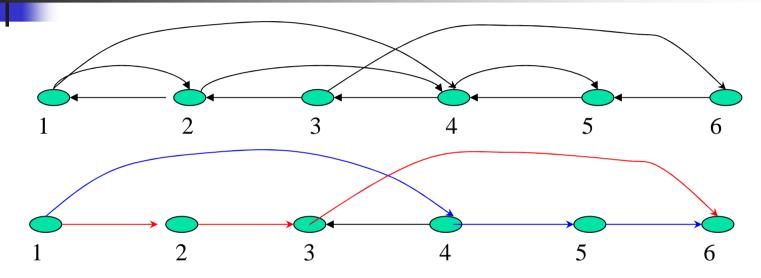
- Usa apenas arcos básicos na escolha do AP.
- Pode falhar (tal como o TSA) mesmo na presença de dois caminhos disjuntos no SRLG.

Encaminhamento Resiliente Bypass Method [Li02]

A ideia base é a construção de uma sub-rede, mono-camada, sobre a rede óptica original, e seguidamente encontrar dois caminhos disjuntos nos arcos nessa sub-rede:

•Calcule o caminho mais curto p de s para d:

$$p = (s=a_1, a_2, ..., a_k=d)$$

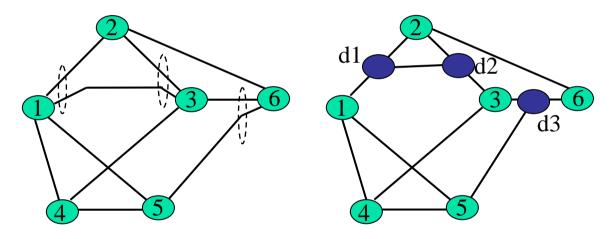

- Se não consegue encontrar um segundo caminho, disjunto com p, construa um grafo dirigido auxiliar, H, com k nós, (etiquetados 1,...,k).
- •Elimine todos os arcos ao longo de p no grafo original e todos os arcos que pertencem aos mesmos SRLGs.

Encaminhamento Resiliente Bypass Method cont.

- Se existe um caminho de a_i para a_j então adicione um arco directo de i para j em H
- Adicione arcos inversos de i para i -1 (i=2,..., k)
- Execute o algoritmo de *Dijkstra* em *H*.
- Se encontrar um caminho em H de 1 para k então é possível encontrar dois caminhos disjuntos nos arcos em H, sem levar em conta a direcção dos arcos.

Encaminhamento Resiliente Bypass Method cont.

 Superior ao Basic Link Method – permite que ambos os caminhos usem arcos não básicos.


Problemas

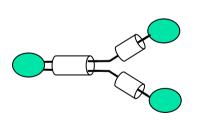
Os dois caminhos poderão não ser disjuntos no SRLG (os arcos 1-4 e 3-6 poderão pertencer ao mesmo SRLG).

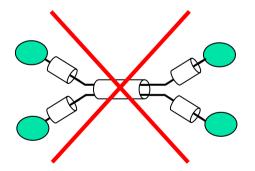
Encaminhamento Resiliente [Datta04] Graph Transformation Technique

 Acrescenta nós auxiliares (um por SRLG), remove os arcos que pertencem a algum SRLG, e acrescenta novos arcos...

- Aplica o algoritmo Edge Disjoint Shortest pair (Bhandari) a H.
- Os dois caminhos resultantes em H são dois caminhos disjuntos no SRLG.

[Datta04] Pallab Datta *et al.*, "Diverse Routing for Shared Risk Resource Groups (SRRG) Failures in WDM Optical Networks," First International Conference on Broadband Networks, BROADNETS'04, 2004.




Encaminhamento Resiliente Graph Transformation Technique

Limitações

Apenas pode ser usado se:

- Cada SRLG é menor do que o grau do nó no qual esse grupo é incidente.
- Um arco for partilhado no máximo por dois SRLGs.

Encaminhamento Resiliente KSP - K Shortest Paths

É uma extensão natural do TSA (Two Step Approach).

- Calcula K caminhos mais curtos como APs candidatos.
- Avalia cada um deles por ordem não decrescente do seu custo, até obter um caminho disjunto no SRLG (ou até esgotar o conjunto de caminhos candidatos).

Problemas:

- Se o candidato corrente a AP falha o teste, o caminho candidato seguinte é seleccionado com base apenas no seu custo, sem levar em conta quais os arcos nesse AP que provocaram armadilha (trap).
- Muitos candidatos a AP precisam de ser testados.
- O par de caminhos obtidos não é óptimo.

Encaminhamento Resiliente JPS-Joint Path Selection [Xin02]

- Calcula k caminhos mais curtos, os caminhos candidatos a APs $(AP_i, i=1,..., k, with cost <math>CAP_i)$.
- Para cada AP_i calcula o caminho mais curto disjunto no SRLG, BP_i (com custo CBP_i).
- Encontra h tal que $CAP_h + CBP_h = \min(CAP_i + CBP_i), 1 \le i \le k$.
- Selecciona AP_h para caminho activo e BP_h como caminho de protecção.

Função de Custo dos Arcos:

Função de custo nos arcos é integrada e aditiva,

 n^o de saltos e λ 's disponíveis:

custo do arco
$$c_l = p_1 \times f(\lambda_l^u, \lambda_l^T) + p_2 \times 1$$

 λ_l^u – número de λ 's usados no arco l

 λ_l^T – número total de λ 's no arco l

$$p_1, p_2$$
 – pesos

"1"—representa o custo do número de saltos Approach in Survivable Optical

[Xin02] Chunsheng Xin, et al., "A Joint Lightpath Routing Approach in Survivable Optical Networks," Optical Networks Magazine, 3(3):13-20, 2002.

Encaminhamento Resiliente JPS-Joint Path Selection cont.

Função do custo do caminho

• Custo do caminho activo: $CAP_i = \sum c_i$

$$CAP_i = \sum_{l \in AP_i} c_l$$

Custo do caminho de protecção:

• Protecção Dedicada: $|CBP_i| = \sum c_i$

$$CBP_i = \sum_{l \in BP_i} c_l$$

• Protecção Partilhada: $|CBP_i| = \sum g(c_l, l)$

$$CBP_i = \sum_{l \in BP_i} g(c_l, l)$$

$$g(c_l, l) = \begin{cases} \alpha \times c_l, & \text{se } l \text{ \'e um arco partilhado} \\ c_l, & \text{caso contrário} \end{cases}$$

 α – peso de controlo da partilha

Encaminhamento Resiliente ITSA-Iterative Two-Step Approach

Melhora o TSA.

Repete o TSA iterativamente, tomando para AP cada um dos k-caminho mais curtos obtidos.

- Na primeira iteração, o caminho mais curto é o AP candidato.
- Repete até satisfazer condição de paragem:
 - Calcula a capacidade de reserva (partilhável ou não) dos arcos, a qual depende de AP.
 - Calcula BP, com base na capacidade de reserva (arcos).
 - Actualiza o melhor par.
 - Calcula o próximo AP candidato (cam. mais curto seg.)

- A condição de paragem utiliza dois critérios:
 - Encontrou o caminho óptimo
 - Atingiu um número pré-definido de iterações
- Teste de Optimalidade
 - Se o custo do caminho candidato a AP é superior ao custo do melhor par de caminhos corrente...

Vantagem:

Garante a obtenção do melhor par (AP,BP) dado o estado corrente do estado dos arcos, se for utilizado tempo suficiente.

Desvantagem:

O número de APs que precisa de ser explorado cresce exponencialmente com a dimensão da rede.

Conclusões

- O problema de RWA em redes resilientes é um problema difícil
- Têm sido propostas muitas heurísticas
- Propor novas aproximações que explorem:
 - Probabilidade de bloqueio
 - Equidade
 - Impacto de aceitação de uma ligação em pedidos futuros