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On polynomial numerical hulls of matrices

H. R. AFSHIN, Vali-asr University of Rafsanjan, Iran
afshin@vru.ac.ir

(Joint work with Abbas Salemi)

Let A ∈ Mn(C) be a normal matrix. Chandler Davis and A. Salemi (in 2002) characterized
polynomial numerical hull of all n × n normal matrices whose spectrum contains 3 points.
Also they determined polynomial numerical hull of order 2 of matrices A = A1 ⊕ iA2, where
A1, A2 are Hermitian. In this note we determine polynomial numerical hull of order three of
matrices A = A1 ⊕ iA2.

On the convexity of Sampflis numerical range

John AGURE, Maseno University, Private Bag, Kenya
johnagure@hotmail.com

(Joint work with Sadia Hassan)

This paper investigates a certain type of Numerical Range introduced by Stampfli. In
particular we demonstrate the convexity of this set of elements of operators on Hilbert spaces
and its relationship to the algebra Numerical Range implemented by elements of a W*-
algebra.

To be announced

Natália Bebiano, University of Coimbra, Portugal
bebiano@mat.uc.pt
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When the numerical range goes flat

Ethan BROWN, M.I.T, USA
esbrown@mit.edu

(Joint work with Ilya Spitkovsky)

The talk is devoted to matrices with flat portions on the boundary of their numerical
range. A constructive criterion for such portions to exist is obtained in the case of tridiagonal
matrices, and a particular case of continuant matrices is considered. As an application, the
cases of (arbitrary) 3-by-3 and 4-by-4 matrices are treated. In particular, the sharp bound
for the number of flat portions on the boundary of the numerical range for 4-by-4 matrices
is established.

The q-numerical range of normal operators

Mao-Ting CHIEN, Soochow University, Taiwan
mtchien@scu.edu.tw

(Joint work with Hiroshi Nakazato)

Let T be a bounded linear operator on a complex Hilbert space H with inner product
〈·, ·〉. For a real number q ∈ [0, 1], the q-numerical range of T is defined by

Fq(T ) = { 〈Ty, x〉 ∈ C : x, y ∈ H, 〈x, x〉 = 〈y, y〉 = 1, 〈y, x〉 = q} .

If T is normal then

closure(Fq(T )) = {q z +
√

1− q2w
√

h(z)− |z|2 : z ∈ closure(W (T )),

w ∈ C, |w| ≤ 1}.

We characterize fundamental properties of the function h which give the equation of the
boundary of closure(Fq(T )).

The numerical ranges of powers of a matrix

Mao-Ting CHOI, University of Toronto, Canada
choi@math.toronto.edu

(Joint work with Chi-Kwong Li)
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How are the numerical ranges of different integer powers of a single n x n complex matrix
related? There arise some sort of intrinsic inequalities in matrix analysis..

Title to be announced

Chandler DAVIS, University of Toronto, Canada
davis@math.toronto.edu
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(1 + r)q ≥ p + r and its applications (Survey talk)

Takayuki FURUTA, Tokyo University of Science, Japan
furuta@rs.kagu.tus.ac.jp

A capital letter means a bounded linear operator on a Hilbert space H. Löwner-Heinz
inequality established in 1934 asserts that A ≥ B ≥ 0 ensures Aα ≥ Bα for any α ∈ [0, 1] and
Aα ≥ Bα does not hold for any α > 1 even if A ≥ B ≥ 0. Löwner-Heinz inequality is very
useful, but the condition “ α ∈ [0, 1] ” is too restrictive to calculate operator inequalities, so
that the following result has been obtained from this point of view.

Theorem F (Furuta 1987).

If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q

and

(ii) (A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1 with (1 + r)q ≥ p + r.
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q = 1 p = q

(1 + r)q = p + r

Figure 1

Consider two magic boxes: f(¤) = (B
r
2 ¤B

r
2 ) and g(¤) = (A

r
2 ¤A

r
2 ). Theorem F can

be regarded as follows. Although A ≥ B ≥ 0 does not always ensure Ap ≥ Bp for p > 1 in
general, but Theorem F asserts the following “ two order preserving operator inequalities”
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f(Ap) ≥ f(Bp) and g(Ap) ≥ g(Bp) hold whenever A ≥ B ≥ 0 under the condition p , q and
r in FIGURE 1.

We would like to talk about some of applications of Theorem F.

The equivalence on Kantorovich type inequalities

Mariko GIGA, Nippon Medical School, Japan
mariko@nms.ac.jp

We consider Kantorovich type inequalities between (Tx, x)q and B(T px, x) for bounded
strictly positive operator on a Hilbert space. We recently extended it to the three cases (a)
p > 1, q > 1, (b) p < 0, q < 0 and (c) 0 < p < 1, 0 < q < 1, respectively. We show the
equivalence of Kantorovich type inequalities among these three cases.

Furuta inequality, operator mean and chaotic order

Eizaburo KAMEI, Maebashi Institute of Technology, Japan
kamei@maebashi-it.ac.jp

Let A, B be positive operators on a Hilbert space. The operator mean A ]α B =
A

1
2 (A−

1
2 BA−

1
2 )αA

1
2 for 0 ≤ α ≤ 1, we call this α-power mean, is introduced by Kubo-Ando.

By using this operator mean, we define the relative operator mean and introduce the chaotic
order A À B, ie. log A ≥ log B. We show the Furuta inequality can be described by the
form of the α-power mean and show the essential part of the inequality is obtainable under
the assumption A À B.

An eigenvalue criterion for the convexity of the joint numerical range of

several hermitian matrices

Michael KAROW, Technische Universität, Germany
karow@math.tu-berlin.de

(Joint work with Eugene Gutkin and Edmond Jonckheere)
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The joint numerical range of a family A = (A1, . . . , Am) of hermitan matrices Ak ∈ Cn×n

is defined as
W (A) = { (x∗A1x, . . . , x∗Amx) | x ∈ Cn, ‖x‖2 = 1 }.

It is well known that W (A) is convex if m = 2 and if m = 3 and n > 2. We give the
following criterion for the convexity of W (A) if m ≥ 4. Suppose the largest eigenvalue of
A(x) =

∑m
k=1 xkAk, has constant multiplicity for all 0 6= x ∈ Rm. Then either W (A) is a

smooth convex body or W (A) is a smooth convex surface. Furthermore, if W (A) is convex
though the eigenvalue condition fails then the convexity can be destroyed by an arbitrarily
small perturbation of A. The results are obtained using methods from differential topology.

Remark: The results are published in Gutkin, Eugene; Jonckheere, Edmond A.; Karow,
Michael, Convexity of the joint numerical range: Topological and differential geometric view-
points, Linear Algebra Appl., 376, 143-171 (2004)

The best of OMC

Alexander KOVAČEC, University of Coimbra, Portugal
kovacec@mat.uc.pt

Numerical ranges, numerical radii, and multiplicative preservers

Chi-Kwong LI, The College of William and Mary, USA
ckli@math.wm.edu

Let S be a (semi)group of n × n complex matrices. We discuss some recent results and
open problems on the characterizations of multiplicative maps L : S → Mn such that

W(L(A)) = W(A) for all A ∈ S

for the classical and various kinds of generalized numerical ranges and numerical radii W(A).
The talk is based on some recent work with Wai-Shun Cheung, Antonia Duffner, Shaun
Fallat, Robert Guralnick, and Leiba Rodman.
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Matrices with elliptical c-numerical ranges

Rute LEMOS, University of Aveiro, Portugal
rute@mat.ua.pt

(Joint work with N. Bebiano, J. da Providência and G. Soares)

Classes of tridiagonal matrices with elliptical c-numerical ranges are described, c ∈ Rn.
Some results of Chien, Brown and Spitkovsky for the classical numerical range are generalized.

k-numerical range and the structure performance of a building

Hiroshi NAKAZATO, Hirosaki University,
nakahr@cc.hirosaki-u.ac.jp

(Joint work with Kozo Tsumura)

The boundary of the polar set E∧ of the sum of k elliptical discs E1, . . . , Ek with centers
at the origin lies on an algebraic curve C of degree 2k. We give an algorithm to compute the
defining polynomial of C and apply it to k-numerical range and a problem in Architecture.

On numerical approximation of the numerical range of matrix polynomials

Panayiotis PSARRAKOS, National Technical University, Athens, Greece
ppsarr@math.ntua.gr

(Joint work with M.-T. Chien, P. Lancaster, J. Maroulas and H. Nakazato.)

Consider a matrix polynomial P (λ) = Amλm + · · · + A1λ + A0, where Aj ∈ Cn×n

(j = 0, 1, . . . , m) and λ is a complex variable. A scalar λ0 ∈ C is an eigenvalue of P (λ) if
the system P (λ0)x = 0 has a nonzero solution x0 ∈ Cn. This solution x0 is known as an
eigenvector of P (λ) corresponding to λ0, and the set of all eigenvalues of P (λ) is the spectrum
of P (λ), namely, σ(P ) = {λ ∈ C : detP (λ) = 0}.

The numerical range of P (λ) is defined and denoted by

W (P ) = {λ ∈ C : x∗P (λ)x = 0, x ∈ Cn, x∗x = 1}.

Evidently, W (P ) is always closed and contains the spectrum of P (λ), and for P (λ) = Iλ−A,

W (P ) coincides with the numerical range of matrix A, that is, F (A) = {x∗Ax : x ∈
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Cn, x∗x = 1}. The last decade, the numerical range W (P ) has attracted attention, and
several results have been obtained. These results are helpful in investigating and understand-
ing matrix polynomials, and lead to interesting applications of the numerical range on the
spectral analysis, the factorization and the stability of matrix polynomials. A straightforward
procedure for the estimation of W (P ) (based on the definition) would be to plot the roots of
the polynomial x∗P (λ)x for lots and randomly chosen unit vectors x ∈ Cn. But that would
be too costly, and it would probably not accurately depict the boundary of W (P ).

The numerical approximation of W (P ) is still an open and challenging problem. Here,
we review three currently in use techniques, which are based on recent theoretical results. In
particular, we describe:

• an algorithm for plotting accurately the boundary of the numerical range of Q(λ) =
Iλ2 + Bλ + C when the coefficients B and C are hermitian,

• an inclusion-exclusion methodology for the estimation of W (P ) when Am = I, i.e., for
the monic case, and

• an algorithm for the approximation of an algebraic curve that contains the boundary
of W (P ).

Finally, illustrative examples are given to demonstrate the feasibility of the methods.

On polynomial numerical hulls of normal matrices

Abbas SALEMI, Shahid Bahonar University of Kerman, Iran
salemi@mail.uk.ac.ir

(Joint work with Chandler Davis)

The notion of polynomial numerical hull was introduced by O. Nevanlinna in 1993. In
this note we determine the polynomial numerical hulls of matrices of the form A = A1⊕ iA2,
where A1, A2 are hermitian matrices. Also we study the relationship between rectangular
hyperbolas and polynomial numerical hulls of order two for normal matrices. The polynomial
numerical hulls of order two for some special matrices is studied.

Norm inequalities involving matrix monotone functions
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Mandeep SINGH, Sant Harchand Singh Longowal Central Institute of Engineering and
Technology, India

msrawla@yahoo.com

Let A, B, X be complex matrices with A, B Hermitian positive definite and let f :
(0,∞) → (0,∞) be matrix monotone increasing. We prove

(2 + t) ||| A 1
2 (f(A)Xf⊥(B) + f⊥(A)Xf(B))B

1
2 |||≤ 2 ||| A2X + tAXB + XB2 |||

and

(2 + t) ||| f(A)X + Xf(B) |||≤ 2
f(λ)

λ
||| A 3

2 XB− 1
2 + tA

1
2 XB

1
2 + A−

1
2 XB

3
2 |||

where f⊥(x) = x(f(x))−1, t ∈ [−2, 2] and λ = min{σ(A), σ(B)}; σ(A), σ(B) being the
spectrum of A,B respectively and ||| . ||| any unitarily invariant norm. These inequalities
generalize Zhan’s inequalities.
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On the Geometry of Numerical Ranges in Krein Spaces

Graça SOARES, University of Trás-os-Montes and Alto Douro, Portugal
gsoares@utad.pt

(Joint work with N. Bebiano, R. Lemos and J. da Providência)

Geometric properties of the numerical ranges of operators in Krein spaces are investigated.
In particular, classes of matrices are presented such that the boundary generating curves of the
J-numerical range are hyperbolical. For A a J-normal matrix, such that A + A[∗] has simple
eigenvalues, the generalization to an indefinite inner product space of the Davis-Wiedlant
shell of A is also investigated. The curvature of the J-numerical range at a boundary point
is studied, generalizing results of Fiedler on the classical numerical range.

Inclusion regions for numerical ranges and linear preservers

Nung-Sing SZE, University of Hong-Kong, Hong-Kong
nungsingsze@graduate.hku.hk

(Joint work with Chi-Kwong Li)

Let R be a proper subset of the complex plane, and let SR be the set of n × n complex
matrices A such that the numerical range W (A) satisfies W (A) ⊆ R. Linear maps φ on
matrices satisfying φ(SR) = SR are characterized. Denote by S̃R the set of n × n complex
matrices A such that the numerical radius r(A) satisfies r(A) ⊆ R for a proper subset R

of nonnegative real numbers. Linear maps φ on matrices satisfying φ(S̃R) = S̃R are also
characterized. Analogous results on Hermitian matrices are obtained.
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