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Abstract

Using Kneser’s Theorem [7, 8, 13] from Additive Group Theory we obtain a lower
bound for the degree of the minimal polynomial of the Kronecker product of two
linear operators. Using another result from Additive Group Theory (Kemperman’s
Theorem [6]), we also characterize equality cases of that lower bound, when the
spectrum of the Kronecker product is not a periodic set in the multiplicative group
of the algebraic closure of the underlying field.
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1 Introduction

Let F be an arbitrary field and let p be the characteristic of F in non-zero characteristic
and p = +∞ otherwise. F denotes the algebraic closure of F. If V is a finite dimension
vector space over F and f is a linear operator on V then Pf is the minimal polynomial of
f and σ(f) is the spectrum of f over F, that is, the set of eigenvalues of f over F. For
v ∈ V the f -cyclic subspace of v is

Cf (v) =
〈
f i(v) : i ∈ N0

〉
.

If f is of simple structure then deg(Pf ) = |σ(f)| where, for a polynomial q, deg(q) denotes
its degree and |X| denotes the cardinality of the set X.

∗This research was done within the activities of “Centro de Matemática da Universidade de Coimbra”.
†Tel.: 351-239-791173; E-mail address: caldeira@mat.uc.pt
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Let V and W be two finite dimension vector spaces over F and let f and g be two linear
operators on V and W , respectively. The Kronecker product of f and g is the unique linear
operator on V ⊗W such that

(f ⊗ g)(v ⊗ w) = f(v)⊗ g(w) , ∀v ∈ V , ∀w ∈ W .

The Kronecker sum of f and g is f⊗IW +IV ⊗g. Using the fact that deg (Pf⊗IW +IV ⊗g)
equals the maximum of the dimensions of (f ⊗ IW + IV ⊗g)-cyclic subspaces, Dias da Silva
and Hamidoune proved [5] that

deg (Pf⊗IW +IV ⊗g) ≥ min{p, deg(Pf ) + deg(Pg)− 1} . (1)

Considering simple structure linear operators and since

σ(f ⊗ IW + IV ⊗ g) = σ(f) + σ(g) ,

from (1), Dias da Silva and Hamidoune proved [5] that, for A and B finite non-empty
subsets of F,

|A + B| ≥ min{p, |A|+ |B| − 1} .

When F is the field of integers modulo a prime, p, this result is known as Cauchy-Davenport
Theorem [2, 3, 4].

In order to obtain a lower bound for the degree of the minimal polynomial of the
Kronecker product we use a slightly different method. We use a technique used (when
F = C) by Marcus and Shafqat Ali in [11, 12] to obtain lower bounds for the degrees of
minimal polynomials of additive commutator operators and Jordan operators. A lower
bound for |σ(f ⊗ g)| and information about elementary divisors of f ⊗ g will allow us to
obtain a lower bound for deg(Pf⊗g).

The lower bound for |σ(f ⊗ g)| is obtained from the fact that

σ(f ⊗ g) = σ(f)σ(g)

and from Kneser’s Theorem [7, 8, 13], applied on the multiplicative group of the algebraic
closure of F.

In certain conditions the lower bound we obtain for deg(Pf⊗g) is

deg(Pf⊗g) ≥ deg(Pf ) + deg(Pg)− 1 . (2)

Using Kemperman’s Theorem [6] we characterize the linear operators f and g for which
equality is attained in (2).

2 Auxiliary results on group theory

Let G be an abelian group with multiplicative notation. A finite geometric progression in
G is a subset of G of the form {ad, ad2, . . . , adk}, where k ∈ N, a ∈ G and d ∈ G \ {1}.
Let A and B be two non-empty subsets of G and let g ∈ G. We consider

AB = {ab : a ∈ A and b ∈ B} ,
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A−1 = {a−1 : a ∈ A}

and νg(A, B) = |{(a, b) ∈ A×B : ab = g}| .

Definition 1 Let A be a non-empty subset of G. The stabilizer of A in G is the subgroup
of G,

H(A) = {g ∈ G : gA = A} .

Remark 1

(i) We have AH(A) = A and therefore if A is a finite non-empty subset of G then H(A)
is a finite subgroup;

(ii) If H is a subgroup of G, we have AH = A if and only if A is the union of H-cosets.
Therefore A is the union of H(A)-cosets.

Definition 2 Let A be a non-empty subset of G. A is a periodic set if H(A) 6= {1}.

Remark 2 A non-empty finite subset A of G is periodic if and only if there exists a
subgroup of G, H, such that |H| ≥ 2 and AH = A.

Theorem 1 (Kneser) [7, 8, 13] Let A and B be finite non-empty subsets of the abelian
group G. Let H = H(AB). Then

|AB| ≥ |A|+ |B|

or
|AB|+ |H| = |AH|+ |BH| .

From Kneser’s Theorem it is easy to obtain the following results:

Corollary 1 [13, Theorem 4.3] Let A and B be finite non-empty subsets of the abelian
group G. Let H = H(AB). Then

|AB| ≥ |AH|+ |BH| − |H| .

Corollary 2 Let A and B be non-empty finite subsets of G with |B| ≥ |A| ≥ 2. Then
|AB| = |B| if and only if there exists a finite subgroup of G, H, such that |H| ≥ 2, BH = B
and A ⊆ aH, for all a ∈ A.

Corollary 3 Let A and B be two non-empty finite subsets of the abelian group G such
that |A| ≥ 2, B = C∪̇D, C 6= ∅, D 6= ∅ and

AC = aC , ∀a ∈ A .

If AD is a periodic set and |AD| = |A|+ |D| − 1 then also AB is a periodic set.
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Proof Suppose AD is periodic. Let H = H(AD) 6= {1}. From Remark 1 we have

AD =

n
•⋃

i=1

ciH .

Let d ∈ D. We have dA ⊆ AD and hence

A ⊆

n
•⋃

i=1

d−1ciH .

Then there exist k ∈ {1, . . . , n} and a1, . . . , ak ∈ A such that

A ⊆

k
•⋃

i=1

aiH .

We have also that

AH =

k
•⋃

i=1

aiH .

From the hypothesis and Kneser’s Theorem we obtain

|A|+ |D| − 1 = |AD| = |AH|+ |DH| − |H| .

Since |DH| ≥ |D| we have |AH| ≤ |A|+ |H| − 1. Then

|A| ≥ |AH| − |H|+ 1 = (k − 1)|H|+ 1 .

If k = 1 then A ⊆ a1H. Since |A| ≥ 2 there exists h ∈ H \ {1} such that a1h ∈ A.
If k > 1 then |A| ≥ (k − 1)|H|+ 1 ≥ 2k − 1 > k. Then in this case we have also that,

for some i ∈ {1, . . . , k}, there exists h ∈ H \ {1} such that aih ∈ A.
Next we prove that hAB ⊆ AB. Let x ∈ AB = AC ∪ AD. If x ∈ AD then (H =

H(AD)) hx ∈ AD ⊆ AB.
Suppose that x 6∈ AD. Then x ∈ AC = aiC and there exists c ∈ C such that x = aic.

It follows that
hx = (aih)c ∈ AC ⊆ AB .

Then h ∈ H(AB). Since h 6= 1 we conclude that AB is periodic.

Definition 3 [6, definition on page 78 and remark on page 82] Let (A, B) be a pair of finite
non-empty subsets of the abelian group G. The pair (A, B) is said to be an elementary
pair if it satisfies, at least, one of the following conditions:

(i) |A| = 1 or |B| = 1;
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(ii) A and B are geometric progressions in G of the same rate, d, where d ∈ G has order
(not necessarily finite) greater than or equal to |A|+ |B| − 1;

(iii) A is not periodic and there exist H, finite subgroup of G, c ∈ G and a ∈ A such that
A ⊆ aH and B = c((AH) \ A)−1;

(iv) There exists H 6= {1} finite subgroup of G such that each one of the sets A and B
is a subset of an H-coset, |A| + |B| = |H| + 1 and there exists at least one g ∈ AB
such that νg(A, B) = 1.

Remark 3

(1) If (A, B) satisfies (ii) then AB is a geometric progression with rate d and there exists
g ∈ AB such that νg(A, B) = 1;

(2) If (A, B) satisfies (iii) then AB = (cH) \ {c} [6, Lemma 4.2];

(3) If (A, B) satisfies (iv) then AB is an H-coset [6, Lemma 4.1];

(4) If (A, B) is an elementary pair then |AB| = |A|+ |B| − 1;

(5) If (A, B) satisfies (iii) then B is not periodic, B ⊆ (ca−1)H e A = c((BH) \ B)−1. It
follows that if (A, B) is an elementary pair then also (B, A) is elementary and of the
same type.

Let H be a subgroup of G. We denote by ΠH the canonical surjection of G onto G/H,

ΠH : G 7−→ G/H
g −→ gH .

Remark 4 If H is a finite subgroup of G and A is a finite subset of G then

|ΠH(A)| = |AH|
|H|

.

Theorem 2 (Kemperman)[6, teorema 5.1] Let (G, ·) be an abelian group with, at least,
two elements. Let A and B be two non-empty finite subsets of G. Then

|AB| = |A|+ |B| − 1

and
if AB is a periodic set then there exists g ∈ AB such that νg(A, B) = 1 ,

if and only if there exist A1 and B1 non-empty subsets of A and B, respectively and a
subgroup J of G, with, at least, two elements, satisfying:
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(i) The pair (A1, B1) is elementary and each one of the sets A1, B1 is contained in a
J-coset;

(ii) (A1B1) ∩ ((A \ A1)B) = ∅ and (A1B1) ∩ (A(B \B1)) = ∅;

(iii) The sets A \ A1 and B \B1 are unions of J-cosets;

(iv) |ΠJ(A)ΠJ(B)| = |ΠJ(A)|+ |ΠJ(B)| − 1.

Remark 5 If A1 6= A or B1 6= B then, from (iii), it follows that J is finite.

By F∗
we denote the multiplicative group of the field F. For d ∈ F∗

, 〈d〉 denotes the
cyclic subgroup of F∗

, {di : i ∈ Z}.
We will be interested in applying Kemperman’s Theorem in the group F∗

, so first we
will characterize the finite periodic subsets and the elementary pairs in this group.

Lemma 1 Let J be a finite subgroup of F∗
, with order n. Then

J =
{

x ∈ F∗
: xn = 1

}
= 〈d〉 ,

for some d ∈ F∗
, with finite order n. Moreover, if p is finite then n 6≡ 0 (mod p).

Proof Let J = {a1, a2, . . . , an} with ai 6= aj if i 6= j. For all i, an
i = a

|J |
i = 1 and so

J ⊆
{

x ∈ F∗
: xn = 1

}
.

From ∣∣∣{x ∈ F∗
: xn = 1

}∣∣∣ ≤ n

it follows that
J =

{
x ∈ F∗

: xn = 1
}

.

Suppose p is finite and divides n. Then n = pq for some integer q ≥ 1 and

x ∈ J ⇒ xn = 1

⇒ (xq)p = 1

⇒ (xq − 1)p = 0

⇒ xq − 1 = 0 .

Hence
|J | ≤

∣∣∣{x ∈ F∗
: xq = 1

}∣∣∣ ≤ q < n ,

but this is a contradiction. Then p does not divide n and we can take a primitive n-root
of the unity for d.

From this Lemma and Remark 1 we obtain:
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Lemma 2 Let A be a finite non-empty subset of F∗
. Then A is periodic if and only if A

is of the form

A =

s
•⋃

i=1

ai 〈d〉 =

s
•⋃

i=1

{x ∈ F∗
: xn = an

i } ,

for some s ∈ N, a1, a2, . . . , as ∈ A and d ∈ F∗
with order n ≥ 2 such that n 6≡ 0 (mod p)

(if p is finite).

Lemma 3 Let (A, B) be a pair of finite non-empty subsets of F∗
. The pair (A, B) is an

elementary pair in the group F∗
if and only if it satisfies, at least, one of the following

conditions:

(I) |A| = 1 or |B| = 1;

(II) A and B are geometric progressions in F∗
of the same rate, d, where d ∈ F∗

has order
(not necessarily finite) greater than or equal to |A|+ |B| − 1;

(III) A is not periodic and there exist a ∈ A, d ∈ F∗
with finite order k such that k 6≡ 0

(mod p) (if p is finite) and c ∈ F∗
satisfying

A $ a 〈d〉

and
B = c (a 〈d〉 \ A)−1 ;

(IV) There exist a, a1 ∈ A, d ∈ F∗
with finite order k such that k 6≡ 0 (mod p)(if p is

finite) and c ∈ F∗
satisfying

A ⊆ a 〈d〉
and

B = c (a 〈d〉 \ A)−1 ∪̇{ca−1
1 } .

Proof Using Lemma 1 it is easy to prove that (A, B) is elementary of type (iii) if and only
if (A, B) satisfies (III).

Suppose (A, B) is elementary of type (iv) and let us prove that (A, B) satisfies (IV).
Using Lemma 1 and considering d such that H = {1, d, . . . , dk−1} it is easy to prove that

A = a{di1 , di2 , . . . , dir}

and
B = b{dj1 , dj2 , . . . , djs} ,

where r + s = k + 1, 0 = i1 < i2 < · · · < ir ≤ k − 1 and 0 = j1 < j2 < · · · < js ≤ k − 1.
Let c ∈ AB be such that νc(A, B) = 1. There exist u ∈ {1, 2, . . . , r} and v ∈ {1, 2, . . . , s}
such that

c = (adiu︸︷︷︸
∈A

)(bdjv︸︷︷︸
∈B

) .
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For ` = 1, 2, . . . , s with ` 6= v we have

bdj` = ca−1d−iu−jv+j` .

Since d−iu−jv+j` ∈ H, there exists t ∈ {0, 1, . . . , k − 1} such that bdj` = ca−1dk−t. Suppose
t ∈ {i1, i2, . . . , ir}. Then

c = ( adt︸︷︷︸
∈A

)(bdj`︸︷︷︸
∈B

) .

But this contradicts νc(A, B) = 1, because bdjv 6= bdj` . Then t 6∈ {i1, i2, . . . , ir}. It follows
that

b
{
dj` : ` = 1, 2, . . . , s, ` 6= v

}
= ca−1

{
dk−t : t ∈ {0, 1, . . . , k − 1} \ {i1, . . . , ir}

}
.

Let a1 = adiu . Since bdjv = ca−1dk−iu = ca−1
1 we obtain that B is of the required form.

Now suppose (A, B) satisfies (IV ). Consider the subgroup H = 〈d〉 = {1, d, . . . , dk−1}.
Then A ⊆ aH, B ⊆ ca−1H and

|A|+ |B| = |H|+ 1 .

In order to prove that (A, B) is elementary of type (iv) it remains to prove that νg(A, B) =
1 for some g. We shall prove that νc(A, B) = 1. Let A = a{di1 , di2 , . . . , dir}, where
0 = i1 < i2 < · · · < ir ≤ k − 1. We have

c = a1︸︷︷︸
∈A

(ca−1
1︸︷︷︸

∈B

) .

Suppose
c = ( adt︸︷︷︸

∈A

)b ,

for some t ∈ {i1, . . . , ir} and b ∈ B \{ca−1
1 }. Then b = ca−1dk−j for some j ∈ {0, 1, . . . , k−

1} \ {i1, . . . , ir}. Hence
dt+k−j = 1

and t − j ≡ 0 (mod k). Since t − j ∈ [−k + 1, k − 1], it must be t = j and this is a
contradiction. Then νc(A, B) = 1.

Applying Kemperman’s Theorem in the group F∗
we obtain

Corollary 4 Let A and B be two non-empty finite subsets of F∗
and suppose that AB is

not periodic. Then
|AB| = |A|+ |B| − 1

if and only if

the pair (A, B) is elementary of one of the types (I),(II) or (III) (types considered in
Lemma 3)

8



or

there exist a positive integer n ≥ 2 such that n 6≡ 0 (mod p), d ∈ F∗
with order n,

a1, a2, . . . , ak ∈ A, and b1, b2, . . . , b` ∈ B such that

(i) A = A1

•⋃ 
k
•⋃

i=2

ai 〈d〉

, A1 ⊆ a1 〈d〉,

B = B1

•⋃ 
`
•⋃

j=2

bj 〈d〉

, B1 ⊆ b1 〈d〉,

where (A1, B1) is elementary;

(ii)
(
a1b1a

−1
i b−1

j

)
6= 1 if (i, j) 6= (1, 1);

(iii) |{an
i b

n
j : i = 1, 2, . . . , k , j = 1, 2, . . . , `}| = k + `− 1.

Remark 6 If AB is periodic, conditions given in Corollary 4 are sufficient for |AB| =
|A|+ |B| − 1.

3 Auxiliary results on elementary divisors

Let V 6= {0} and W 6= {0} be two finite dimension vector spaces over F. Let f and g be
two linear operators on V and W , respectively. We consider the elementary divisors of f ,
g and f ⊗ g over F.

If the field F is a field of zero characteristic there is a well-known result [1, 15][10, chapter
7,Theorem 1.4] that characterizes the elementary divisors of the Kronecker product f ⊗ g
in terms of the elementary divisors of f and g. That result is no longer valid over a field
of finite characteristic.

The following Lemma is easily proved by induction on `.

Lemma 4 Let k and q be positive integers and let C and D be square matrices, over F,
of order q that commute. Let F be the square matrix of order kq defined by

F =


C D 0 · · · 0

C D
. . .

...
. . . . . . 0

0
. . . D

C

 .
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For ` ∈ N,

F ` =



F
(`)
1 F

(`)
2 · · · · · · F

(`)
k

F
(`)
1 F

(`)
2

. . .
...

. . . . . .
...

0
. . . F

(`)
2

F
(`)
1


,

where, for j = 1, 2, . . . , k,

F
(`)
j =

{ (
`

j−1

)
C`−j+1Dj−1 if 1 ≤ j ≤ ` + 1

0 if j ≥ ` + 2
.

Lemma 5 If f and g are cyclic linear operators on V and W , respectively, with Pf =
(X − a)k and Pg = (X − b)q (k, q ≥ 1), then

(a) If ab 6= 0, p ≥ k and p ≥ q,

Pf⊗g = (X − ab)min{p,k+q−1} ;

(b) If ab 6= 0 and p < max{k, q}, Pf⊗g = (X − ab)t, where

t = min

{
` ∈ [max{k, q}, k + q − 1] ∩ N :

(
`

j − 1

)
≡ 0 (mod p) ,

∀j ∈ {`− q + 2, . . . , k}
}

> p ;

(c) If a = b = 0, Pf⊗g = Xmin{k,q};

(d) If a 6= 0 e b = 0, Pf⊗g = Xq;

(e) If a = 0 e b 6= 0, Pf⊗g = Xk.

Proof Since σ(f ⊗ g) = {ab}, the minimal polynomial Pf⊗g has the form (X − ab)t, where
t ∈ N. For n ∈ N let Un denote the square matrix of order n with ones in (i, i + 1) entries
and zeros elsewhere.

There exist basis of V and W in respect which f and g have matricial representations
A = aIk +Uk and B = bIq +Uq, respectively. Then there exists a basis of V ⊗W in respect
which f ⊗ g has matricial representation

A⊗B = abIkq + bUk ⊗ Iq + aIk ⊗ Uq + Uk ⊗ Uq .

Suppose ab 6= 0.
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Let C = A⊗B − (ab)Ikq = aIk ⊗ Uq + Uk ⊗B. Then

C =


aUq B 0 · · · 0

aUq B
. . .

...
. . . . . . 0

0
. . . B

aUq

 .

Since B and aUq commute, using the previous Lemma, we know that for ` ∈ N, C` is
of the form

C` =



C
(`)
1 C

(`)
2 · · · · · · C

(`)
k

C
(`)
1 C

(`)
2

. . .
...

. . . . . .
...

0
. . . C

(`)
2

C
(`)
1


, (3)

where, for j = 1, . . . , k,

C
(`)
j =

{ (
`

j−1

)
a`−j+1U `−j+1

q Bj−1 if 1 ≤ j ≤ ` + 1

0 if j ≥ ` + 2
.

Let ` ∈ N. If ` ≤ q − 1, U `
q 6= 0 and (a 6= 0)

C
(`)
1 = a`U `

q 6= 0 .

If ` ≤ k − 1,
C

(`)
`+1 = B` 6= 0 (b 6= 0) .

Hence we have proved that, for ` ∈ {1, . . . , max{k − 1, q − 1}}, C` 6= 0.
Next we prove that Ck+q−1 = 0. For j = 1, . . . , k,

C
(k+q−1)
j =

(
k + q − 1

j − 1

)
ak+q−jUk+q−j

q Bj−1

and this block is zero because k + q − j ≥ q and therefore Uk+q−j
q = 0. From (3) we have

Ck+q−1 = 0.

(a) Suppose p ≥ k and p ≥ q.

For max{k, q} ≤ ` ≤ min{p− 1, k + q − 2},

C
(`)
k =

(
`

k − 1

)
a`−k+1U `−k+1

q Bk−1 .

The (1, `− k + 2)-entry of this matrix is a`−k+1
(

`
k−1

)
bk−1 6= 0. Then C` 6= 0.
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Next we prove that Cp = 0. For j = 1, . . . , k,

C
(p)
j =

(
p

j − 1

)
ap−j+1Up−j+1

q Bj−1 .

For j = 2, . . . , k we have 1 ≤ j − 1 ≤ p − 1 and therefore
(

p
j−1

)
≡ 0 (mod p). For

j = 1 we have C
(p)
1 = apUp

q and this matrix is zero because p ≥ q. Since Cp is of the
form (3) we conclude that Cp = 0.

(b) Suppose p < max{k, q}. We have already proved that

C` 6= 0 , ` = 1, . . . , max{k − 1, q − 1} ,

and that
Ck+q−1 = 0 .

Then max{k, q} ≤ t ≤ k + q − 1.

For ` = max{k, q}, . . . , k + q − 2, C` is of the form (3), where

C
(`)
j =

(
`

j − 1

)
a`−j+1U `−j+1

q Bj−1 , j = 1, . . . , k .

Since U `−j+1
q 6= 0 ⇔ j ≥ `− q + 2 we have

C
(`)
j =

{ (
`

j−1

)
a`−j+1U `−j+1

q Bj−1 if `− q + 2 ≤ j ≤ k

0 if 1 ≤ j ≤ `− q + 1
.

For `−q+2 ≤ j ≤ k, the (1, `−j+1)-entry of matrix a`−j+1U `−j+1
q Bj−1 is a`−j+1bj−1 6=

0. Then, for j ∈ {`− q + 2, . . . , k},

C
(`)
j = 0 ⇔

(
`

j − 1

)
≡ 0 (mod p) .

Hence

C` = 0 ⇔ ∀j ∈ [`− q + 2, k] ∩ N ,

(
`

j − 1

)
≡ 0 (mod p)

and

t = min

{
` ∈ [max{k, q}, k + q − 1] ∩ N :

(
`

j − 1

)
≡ 0 (mod p) ,

∀j ∈ {`− q + 2, . . . , k}
}

.

Proofs of other cases are similar.
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Lemma 6 Let f and g be two linear operators on V and W respectively.

(a) Let (X − a)k and (X − b)q be elementary divisors,over F, of f and g respectively.

If p ≥ k, p ≥ q and ab 6= 0 then

(X − ab)min{p,k+q−1}is an elementary divisor, over F , of f ⊗ g ;

If p < max{k, q} and ab 6= 0 then f ⊗ g has an elementary divisor, over F,of the
form (X − ab)t, where

t = min

{
` ∈ [max{k, q}, k + q − 1] ∩ N :

(
`

j − 1

)
≡ 0 (mod p) ,

∀j ∈ {`− q + 2, . . . , k}
}

> p ;

If a = b = 0 then Xmin{k,q} is an elementary divisor, over F, of f ⊗ g;

If a 6= 0 and b = 0 then Xq is an elementary divisor, over F, of f ⊗ g;

If a = 0 and b 6= 0 then Xk is an elementary divisor, over F, of f ⊗ g;

(b) If c 6= 0, (X − c)tis an elementary divisor, over F, of f ⊗ g and (X − c)t+1 does not
divide Pf⊗g (in F[X]), then there exist (X − a)k and (X − b)q elementary divisors,
over F, of f and g respectively, with ab = c and such that either
p ≥ k , p ≥ q and t = min{p, k + q − 1}
or
p < max{k, q} and

t = min

{
` ∈ [max{k, q}, k + q − 1] ∩ N :

(
`

j − 1

)
≡ 0 (mod p) ,

∀j ∈ {`− q + 2, . . . , k}
}

> p .

Proof This Lemma follows from the previous one since, if A and B are similar, over F, to
r⊕

i=1

(aiIni
+ Uni

) and
s⊕

j=1

(
bjImj

+ Umj

)
,

respectively, then A⊗B is similar, over F, to
r⊕

i=1

s⊕
j=1

(aiIni
+ Uni

)⊗ (bjImj
+ Umj

) ,

and the elementary divisors, over F, of A ⊗ B are obtained considering the elementary
divisors of all matrices

(aiIni
+ Uni

)⊗ (bjImj
+ Umj

) , i = 1, . . . , r, j = 1, . . . , s .
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Lemma 7 Let f and g be two linear operators on V and W respectively. Then Pf⊗g =
Pg⊗f .

Proof It is easy to prove that if q(X) is an annihilating polynomial of f ⊗ g then q(X) is
an annihilating polynomial of g ⊗ f .

4 Lower bound for the degree of the minimal polyno-

mial of the Kronecker product

Assuming that none of the spectra of the linear operators f or g is {0}, we have

Theorem 3 Suppose |σ(f) \ {0}| ≥ 1 and |σ(g) \ {0}| ≥ 1. Let k1, k2 be nonnegative
integers such that Xk1 is the power of X with maximal degree that divides Pf and Xk2 is the
power of X with maximal degree that divides Pg. Let H be the stabilizer of σ(f ⊗ g)\{0}in
the group F∗

. Then

deg(Pf⊗g) ≥ min{p + max{k1, k2}, deg(Pf ) + deg(Pg) + |σ(f) H|+ |σ(g) H| −
|σ(f)| − |σ(g)| − |H| −min{k1, k2}} .

Proof Let a1, a2, . . . , ar ∈ F∗
and b1, b2, . . . , bs ∈ F∗

(where r, s ≥ 1) be the nonzero distinct
eigenvalues of f and g, respectively. For i = 1, 2, . . . , r, let ni be the maximal degree of
the powers of X − ai in the list of elementary divisors, over F, of f . For j = 1, 2, . . . , s,
let mj be the maximal degree of the powers of X − bj in the list of elementary divisors,
over F, of g. Suppose that a1, a2, . . . , ar and b1, b2, . . . , bs are ordered in such way that
n1 ≥ n2 ≥ · · · ≥ nr and m1 ≥ m2 ≥ · · · ≥ ms.

From Lemma 6, part (a), we conclude that Xmax{k1,k2} divides Pf⊗g.
If p < n1 or p < m1 then (Lemma 6, part (a)) f ⊗ g has an elementary divisor of the

form (X − a1b1)
t, where t > p. Since a1b1 6= 0, it follows that

deg(Pf⊗g) ≥ max{k1, k2}+ t > max{k1, k2}+ p ,

which proves the result.
Suppose

p ≥ n1 ≥ n2 ≥ · · · ≥ nr

and
p ≥ m1 ≥ m2 ≥ · · · ≥ ms .

If p ≤ n1 +m1−1, then from Lemma 6, part (a), we have deg(Pf⊗g) ≥ max{k1, k2}+p.
Suppose p > n1 + m1 − 1. Then

p > ni + mj − 1 , i = 1, . . . , r , j = 1, . . . , s .
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Over the field F the minimal polynomials of f and g factorize as

Pf = Xk1

r∏
i=1

(X − ai)
ni and Pg = Xk2

s∏
j=1

(X − bj)
mj .

Without loss of generality assume that s ≥ r.
The elements of F∗

,
a1b1, a1b2, . . . , a1bs

are s distinct eigenvalues of f⊗g and, for j = 1, 2, . . . , s, (X−a1bj)
n1+mj−1 is an elementary

divisor of f ⊗ g over F. Since Xmax{k1,k2} divides Pf⊗g we have

Pf⊗g = Xmax{k1,k2}
s∏

j=1

(X − a1bj)
n1+mj−1q(X) ,

where q(X) is a polynomial with coefficients in F.
From Corollary 1 of Kneser’s Theorem, applied to σ(f) \ {0} and σ(g) \ {0} we obtain

|σ(f ⊗ g) \ {0}| = |(σ(f) \ {0})(σ(g) \ {0})| ≥ |(σ(f) \ {0}) H|+ |(σ(g) \ {0}) H| − |H| ,

where H is the stabilizer of σ(f ⊗ g) \ {0} in F∗
. Therefore q(X) has, at least, |(σ(f) \

{0}) H|+ |(σ(g) \ {0}) H| − |H| − s distinct roots in F∗
and

deg(Pf⊗g) = max{k1, k2}+
s∑

j=1

(n1 + mj − 1) + deg(q(X))

≥ max{k1, k2} − k2 + sn1 + deg(Pg)− 2s + |(σ(f) \ {0}) H|+
|(σ(g) \ {0}) H| − |H|

≥ max{k1, k2} − k2 + rn1 + deg(Pg) + |(σ(f) \ {0}) H|+
|(σ(g) \ {0}) H| − |H| − r − s + (s− r)(n1 − 1)

≥ max{k1, k2} − k1 − k2 + deg(Pf ) + deg(Pg) + |(σ(f) \ {0}) H|+
|(σ(g) \ {0}) H| − |σ(f) \ {0}| − |σ(g) \ {0}| − |H| .

Since
|(σ(f) \ {0}) H| − |σ(f) \ {0}| = |σ(f) H| − |σ(f)| ,
|(σ(g) \ {0}) H| − |σ(g) \ {0}| = |σ(g) H| − |σ(g)|

and max{k1, k2} − k1 − k2 = −min{k1, k2}, the result follows.

In case that 0 6∈ σ(f), 0 6∈ σ(g) and σ(f ⊗ g) = σ(f)σ(g) is not a periodic set in the
group F∗

, the lower bound obtained from Theorem 3 is equal to the lower bound established
in [5] for the Kronecker sum f ⊗ IW + IV ⊗ g:

Corollary 5 Suppose 0 6∈ σ(f), 0 6∈ σ(g) and σ(f ⊗ g) = σ(f)σ(g) is not a periodic set in
the group F∗

. Then

deg(Pf⊗g) ≥ min{p, deg(Pf ) + deg(Pg)− 1} .
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If one of the minimal polynomials Pf or Pg is a power of X then the minimal polynomial
of f ⊗ g can be easily evaluated. Suppose both Pf and Pg are powers of X. If Pf = Xk

and Pg = Xq then (Lemma 6) Xmin{k,q} divides Pf⊗g. But

(f ⊗ g)min{k,q}(v ⊗ w) = fmin{k,q}(v)⊗ gmin{k,q}(w) = 0 , ∀v ∈ V , ∀w ∈ W .

Therefore Pf⊗g = Xmin{k,q}.
Suppose now that Pf is a power of X and Pg is not. Then (Lemma 6) Pf divides Pf⊗g.

Since

(f ⊗ g)deg(Pf )(v ⊗ w) = fdeg(Pf )(v)⊗ gdeg(Pf )(w) = 0 , ∀v ∈ V , ∀w ∈ W ,

we have Pf⊗g = Pf .

5 Equality cases

Next we use Kemperman’s Theorem to characterize equality cases in Corollary 5.
In next Theorem we assume that 0 6∈ σ(f) and 0 6∈ σ(g). By a1, a2, . . . , ar ∈ F∗

and b1, b2, . . . , bs ∈ F∗
(where r, s ≥ 1) we denote the distinct eigenvalues of f and g,

respectively. For i = 1, 2, . . . , r, ni is the maximal degree of the powers of X − ai in the
list of elementary divisors, over F, of f . For j = 1, 2, . . . , s, mj is the maximal degree
of the powers of X − bj in the list of elementary divisors, over F, of g. We suppose that
a1, a2, . . . , ar and b1, b2, . . . , bs are ordered in such way that n1 ≥ n2 ≥ · · · ≥ nr and
m1 ≥ m2 ≥ · · · ≥ ms. Over F we can factorize Pf and Pg as

Pf =
r∏

i=1

(X − ai)
ni and Pg =

s∏
j=1

(X − bj)
mj .

Theorem 4 Suppose σ(f ⊗ g) = σ(f)σ(g) is not a periodic set in the group F∗
and s =

|σ(g)| ≥ |σ(f)| = r. Then

deg(Pf⊗g) = min{p, deg(Pf ) + deg(Pg)− 1} (4)

if and only if all the elementary divisors, over F, of f and g have degrees less than or equal
to p, and one of the following conditions holds:

(a) |σ(f)| = |σ(g)| = 1;

(b) p ≥ deg(Pg) and f is a scalar linear operator;

(c) p ≥ deg(Pf )+deg(Pg)−1, f and g are linear operators of simple structure over F and
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the pair (σ(f), σ(g)) is elementary, in F∗
, of one of the types (I), (II) or (III)

(described in Lemma 3)

or

there exist a positive integer n ≥ 2, such that n 6≡ 0 (mod p), d ∈ F∗
with order

n, λ1, λ2, . . . , λk ∈ σ(f), and µ1, µ2, . . . , µ` ∈ σ(g) such that

(i) σ(f) = A1

•⋃ 
k
•⋃

i=2

λi 〈d〉

, A1 ⊆ λ1 〈d〉,

σ(g) = B1

•⋃ 
`
•⋃

j=2

µj 〈d〉

, B1 ⊆ µ1 〈d〉,

where (A1, B1) is elementary;

(ii)
(
λ1µ1λ

−1
i µ−1

j

)n 6= 1 if (i, j) 6= (1, 1);

(iii) |{λn
i µ

n
j : i = 1, 2, . . . , k , j = 1, 2, . . . `}| = k + `− 1.

(d) p ≥ deg(Pf ) + deg(Pg) − 1, f is a linear operator of simple structure over F, r =
|σ(f)| < |σ(g)| = s and there exist t ∈ {r, r + 1, . . . , s − 1}, an integer m ≥ 2, such
that m 6≡ 0 (mod p), d1 ∈ F∗

with order m, satisfying

(d1)


m1 = m2 = · · · = mr ≥ mr+1 ≥ · · · ≥ mt > 1 = mt+1 = · · · = ms ,
σ(f) ⊆ a 〈d1〉 ,∀a ∈ σ(f) ,
{b1, b2, . . . , bt} is the union of 〈d1〉 -cosets

and

(d2) the pair (σ(f), {bt+1, . . . , bs}) is elementary, in F∗
, of one of the types (I), (II)

or (III)

or

there exist a positive integer n ≥ 2, such that n 6≡ 0, d ∈ F∗
with order n,

λ1, λ2, . . . , λk ∈ σ(f), and µ1, µ2, . . . , µ` ∈ {bt+1, . . . , bs} such that

(i) σ(f) = A1

•⋃ 
k
•⋃

i=2

λi 〈d〉

, A1 ⊆ λ1 〈d〉,

{bt+1, . . . , bs} = B1

•⋃ 
`
•⋃

j=2

µj 〈d〉

, B1 ⊆ µ1 〈d〉,

where (A1, B1) is elementary;
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(ii)
(
λ1µ1λ

−1
i µ−1

j

)n 6= 1 if (i, j) 6= (1, 1);

(iii) |{λn
i µ

n
j : i = 1, 2, . . . , k , j = 1, 2, . . . `}| = k + `− 1.

Remark 7 From Lemma 7 we have Pf⊗g = Pg⊗f . Then in case s = |σ(g)| ≤ |σ(f)| = r
we have a similar result, obtained from Theorem 4 by exchanging the roles of f and g.

Proof
Sufficient condition

(a) Pf = (X−a1)
n1 and Pg = (X−b1)

m1 . There exists t ∈ N such that Pf⊗g = (X−a1b1)
t.

From Lemma 6, part (b), there exist (X − a1)
k and (X − b1)

q elementary divisors
of f and g, respectively, such that t = min{p, k + q − 1}. But (X − a1)

n1 and
(X − b1)

m1 are elementary divisors of f and g, respectively. Then (Lemma 6, part
(a)) (X − a1b1)

min{p,n1+m1−1} is an elementary divisor of f ⊗ g. Since k ≤ n1 and
q ≤ m1, then t = min{p, n1 + m1 − 1} and (4) holds.

(b) Suppose f = a1IV .
Then Pf = X − a1, σ(f ⊗ g) = {a1bj : j = 1, . . . , s} and (Lemma 6, part (a))

s∏
j=1

(X − a1bj)
min{p,mj} =

s∏
j=1

(X − a1bj)
mj

divides Pf⊗g. For j = 1, . . . , s let tj be the maximal degree of the powers of X − a1bj

that divide Pf⊗g. From Lemma 6, part (b), it follows that, for j = 1, . . . , s, there
exists qj ≤ mj such that (X−bj)

qj is an elementary divisor of g and tj = min{p, qj} ≤
mj. Then tj = mj for all j and

deg(Pf⊗g) = deg(Pg) = min{p, deg(Pf ) + deg(Pg)− 1} .

(c) The result follows directly from Corollary 4 since if f and g are of simple structure
over F then f ⊗ g is also of simple structure.

(d) From (d2), Corollary 4 and Remark 6 we have that

|σ(f){bt+1, . . . , bs}| = |σ(f)|+ |{bt+1, . . . , bs}| − 1 = r + s− t− 1 .

From (d1) we have {b1, . . . , bt} 〈d1〉 = {b1, . . . , bt} and therefore

t ≤ |σ(f){b1, . . . , bt}| ≤ |ai{b1, . . . , bt} 〈d1〉 | = t , i = 1, . . . , r.

Then σ(f){b1, . . . , bt} = ai{b1, . . . , bt}, for i = 1, . . . , r.

Suppose σ(f){b1, . . . , bt} ∩ σ(f){bt+1, . . . , bs} 6= ∅. Then, for some i ∈ {1, 2, . . . , r}
and some j ∈ {t + 1, . . . , s}

aibj ∈ σ(f){b1, . . . , bt} = ai{b1, . . . , bt} .
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It follows that bj ∈ {b1, . . . , bt} and this is a contradiction.

Then σ(f){b1, . . . , bt} ∩ σ(f){bt+1, . . . , bs} = ∅ and

σ(f)σ(g) = σ(f){b1, . . . , bt}∪̇σ(f){bt+1, . . . , bs} = a1{b1, . . . , bt}∪̇σ(f){bt+1, . . . , bs} .
(5)

From (d1) we have that ni + mj − 1 = 1, for i = 1, . . . , r and j = t + 1, . . . , s.

Then ((5) and Lemma 6, part (b))

Pf⊗g =
t∏

j=1

(X − a1bj)
mj q(X) ,

where deg(q(X)) = |σ(f){bt+1, . . . , bs}| = r+s− t−1. Then deg(Pf⊗g) =
∑t

j=1 mj +
s− t + r − 1 = deg(Pg) + deg(Pf )− 1.

Necessary condition
Since deg(Pf⊗g) ≤ p, from Lemma 6 we conclude that p ≥ n1 ≥ · · · ≥ nr, p ≥ m1 ≥

· · · ≥ ms and p ≥ ni + mj − 1, for i = 1, . . . , r, j = 1, . . . , s.

• Suppose |σ(f)| = r = 1 and (4) holds. In this case Pf = (X − a1)
n1 and σ(f ⊗ g) =

{a1bj : j = 1, . . . , s}. From Lemma 6 it follows that

s∏
j=1

(X − a1bj)
min{p,n1+mj−1} divides Pf⊗g . (6)

If n1+mj−1 = p, for some j ∈ {1, . . . , s}, from (4) it follows that Pf⊗g = (X−a1bj)
p

and (a) holds.

If n1 + mj − 1 < p for j = 1, . . . , s then, from (6), we have

p ≥ min{p, deg(Pf ) + deg(Pg)− 1} ≥
s∑

j=1

(n1 + mj − 1) , (7)

and p ≥ s(n1 − 1) + deg(Pg) ≥ deg(Pf ) + deg(Pg)− 1. From (7) we have also that

deg(Pf ) + deg(Pg)− 1 ≥ sn1 + deg(Pg)− s
⇒ (s− 1)(n1 − 1) ≤ 0
⇒ s = 1 ∨ n1 = 1 .

If s = 1 (a) holds. If n1 = 1 (b) holds.

• Suppose r ≥ 2. From Corollary 1 it follows that |σ(f ⊗ g)| ≥ r + s−1. From Lemma
6 (part (a)) and from deg(Pf⊗g) ≤ p we have that

p > ni + mj − 1 , i = 1, . . . , r , j = 1, . . . , s .
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Then

Pf⊗g =
s∏

j=1

(X − a1bj)
n1+mj−1q1(X) , (8)

where q1(X) is a polynomial with coefficients in F with, at least, r− 1 distinct roots
in F∗

. Therefore deg(q1(X)) ≥ r − 1 and from (8) we have

deg(Pf⊗g) ≥ sn1 + deg(Pg)− s + r − 1 .

From the hypothesis it follows that

rn1+deg(Pg)−1 ≥ deg(Pf )+deg(Pg)−1 ≥ deg(Pf⊗g) ≥ sn1+deg(Pg)−s+r−1 . (9)

Then (s− r)(n1− 1) ≤ 0 and, from s ≥ r, we conclude that n1 = 1 or s = r. In both
cases, from (9), we have

deg(Pf⊗g) = deg(Pf ) + deg(Pg)− 1

and hence, from (4),
p ≥ deg(Pf ) + deg(Pg)− 1 .

From (8) we have also that

deg(Pf ) + deg(Pg)− 1 = sn1− s + deg(Pg) + deg(q1(x)) ≥ deg(Pg) + sn1− s + r− 1 .

Then (in both cases s = r or n1 = 1) we have

n1 = n2 = · · · = nr (10)

and deg(q1(X)) = r − 1. Therefore, from (8), it follows that

|σ(f)σ(g)| = |σ(f ⊗ g)| = |σ(f)|+ |σ(g)| − 1 . (11)

Suppose s = r. From

Pf⊗g =
r∏

i=1

(X − aib1)
ni+m1−1q(X) ,

where deg(q(X)) ≥ |σ(f ⊗ g)| − |σ(f)| = s− 1, it follows that

deg(Pf ) + deg(Pg)− 1 = deg(Pf⊗g) ≥ deg(Pf ) + rm1 − 1 .

Then (s = r) deg(Pg) = sm1 and

m1 = · · · = mr . (12)
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Since we assumed that r ≥ 2, from (11), we have

|σ(f)σ(g) \ a1σ(g)| = |σ(f)| − 1 = r − 1 ≥ 1 . (13)

Let aibj ∈ σ(f)σ(g) \ a1σ(g). From p > ni + mj − 1, and Lemma 6 we conclude
that (X − aibj)

ni+mj−1 divides Pf⊗g. Then (X − aibj)
ni+mj−1 divides q1(X). Since

deg(q1(X)) = r − 1, from (8) and (13), it follows that all the roots of q1(X) are
simple and therefore ni + mj − 1 = 1. Then ni = mj = 1 and from (10) and (12) we
conclude that f and g are of simple structure over F.

Then ((11) and Corollary 4) (c) holds.

Suppose s > r. Then n1 = n2 = · · · = nr = 1. If m1 = 1 case (c) holds. Suppose
m1 > 1. Let i ∈ {1, 2, . . . , r}. Then

Pf⊗g =
s∏

j=1

(X − aibj)
mjqi(X) , (14)

where qi(X) is a polynomial with coefficients in F with, at least, r− 1 distinct roots
in F∗

. From (14) it follows that deg(qi(X)) = deg(Pf )+deg(Pg)−1−deg(Pg) = r−1.
Hence all the roots of qi(X) are simple.

For ` = 1, 2, . . . , r, (X−a`b1)
m1 divides Pf⊗g. Since m1 > 1, there exists one and only

one j` ∈ {1, 2, . . . , s} such that a`b1 = aibj`
and (X − a`b1)

m1 divides (X − aibj`
)mj` .

Since j` = jk if and only if ` = k, it must be m1 = m2 = · · · = mr > 1. We have also
proved that

σ(f)b1 ⊆ aiσ(g) , for all i ∈ {1, 2, . . . , r} . (15)

From (14) and since r ≥ 2 the polynomial Pf⊗g has, at least, one simple root. Then
ms = 1. Let t ∈ {r, . . . , s− 1} be such that

m1 = m2 = · · · = mr ≥ · · · ≥ mt > 1 = mt+1 = · · · = ms . (16)

Let ` ∈ {2, . . . , r} and j ∈ {1, . . . , t}. The polynomial (X − a`bj)
mj divides Pf⊗g.

Since mj > 1, from (14) with i = 1, we have that a`bj ∈ a1{b1, . . . , bt}. Then

σ(f){b1, . . . , bt} = a1{b1, . . . , bt} . (17)

From (17) we conclude that

σ(f){b1, . . . , bt} = ai{b1, . . . , bt} , i = 1, . . . , r . (18)

From Corollary 2 and Remark 1, there exist a positive integer m ≥ 2 and d1 ∈ F∗

with order m, such that (d1) holds.

Suppose that
σ(f){b1, . . . , bt} ∩ σ(f){bt+1, . . . , bs} 6= ∅ .
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Then, for some j ∈ {1, 2, . . . , t}, i ∈ {1, 2, . . . , r} and k ∈ {t + 1, . . . , s}, we have
a1bj = aibk. From (17) it follows that a−1

1 ai ∈ H({b1, . . . , bt}). Then bk = a−1
i a1bj ∈

{b1, . . . , bt} and this is a contradiction. Then

σ(f){b1, . . . , bt} ∩ σ(f){bt+1, . . . , bs} = ∅

and

|σ(f){bt+1, . . . , bs}| = |σ(f) σ(g)| − |σ(f){b1, . . . , bt}|
= r + s− 1− t

= |σ(f)|+ |{bt+1, . . . , bs}| − 1 . (19)

Equalities (18) and (19) allow us to apply Corollary 3 with A = σ(f), B = σ(g),
C = {b1, . . . , bt} and D = {bt+1, . . . , bs}. Since σ(f) σ(g) is not periodic then also
σ(f){b1, . . . , bt} is not periodic and (Corollary 4) (d) holds.
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