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Abstract. In this paper we investigate effective descent morphisms in cat-

egories of reflexive and transitive lax algebras. We show in particular that

open and proper maps are effective descent, result that extends the corre-

sponding results for the category of topological spaces and continuous maps.

Introduction

A morphism p : E → B in a category C with pullbacks is called effective
descent if it allows a description of structures over the base B as algebras on
structures over the extension E of B. Here the meaning of “structure over B”
might depend on the category C; however, in this paper we define it simply to
be a morphism with codomain B. In that particular case p : E → B is effective
descent if and only if the pullback functor p∗ : (C ↓ B) → (C ↓ E) is monadic.
In locally cartesian closed categories effective descent morphisms are easy to
describe: they are exactly the regular epimorphisms. Such a characterization
is far from being true in an arbitrary category; in general it can be quite a
hard problem to find necessary and sufficient conditions for a morphism to be
effective descent (see, for instance, [12] for the topological case). In order to
obtain such conditions, it is often useful to embed our category into a category
which has an easy description of effective descent morphisms, and then apply
the pullback criterion of Theorem 1.1 below; this will be the basic technique of
this paper.

Following a suggestion of George Janelidze, we investigate effective descent
morphisms in categories of reflexive and transitive lax algebras Alg(T;V) when
V is a lattice, providing this way a unified treatment of descent theory for
various categories. In particular, we characterize effective descent morphisms
between quasi-metric spaces and, moreover, show that (suitably defined) open
and proper maps are effective descent in Alg(T;V), encompassing the results
for topological spaces obtained by Moerdijk [10, 11] and Sobral [13].
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1. Preliminaries

Throughout we will be working in the setting described in [5], restricted to
the case of a non-degenerated lattice V. More precisely,

• V is a complete symmetric monoidal closed (non-degenerated) lattice,
with tensor product ⊗ and unit I, and

• T = (T, e,m) is a monad on Set lax-extended to Mat(V).
We recall that Mat(V) is the bicategory with sets as objects, with 1-cells

r : X 9 Y given by X × Y V-matrices (that is, r is a map X × Y → V), and
with 2-cells determined by the componentwise lattice-order:

(r : X 9 Y ) ≤ (s : X 9 Y ) if ∀(x, y) ∈ X × Y r(x, y) ≤ s(x, y) in V.

Composition of 1-cells is given by matrix multiplication, so that, for r : X 9 Y

and s : Y 9 Z,
(s · r)(x, z) =

∨
y∈Y

r(x, y)⊗ s(y, z).

Mat(V) has a natural pseudo-involution, given by matrix transposition:

for r : X 9 Y , r◦ : Y 9 X is defined by r◦(y, x) := r(x, y).

The category Set can be naturally embedded into Mat(V), assigning to
each map f : X → Y the matrix with (x, y)-entry I in case y = f(x) and
0 otherwise. By a lax-extension of the monad T into Mat(V) we mean a lax
functor T : Mat(V) → Mat(V) that extends the endofunctor T of Set and such
that the natural transformations e and m become op-lax; this means that:

• Ts · Tr ≤ T (s · r),
• eY · r ≤ Tr · eX and
• mY · T 2r ≤ Tr ·mX

for all r : X 9 Y and s : Y 9 Z in Mat(V). In addition we require that T

preserves the pseudo-involution. As it is observed in [3], from this property it
follows that T is functorial with respect to composition with maps on the right.
We refer to this situation as our basic setting.

We say that a diagram

W
h //

k
��

Y

g

��
X

f
// Z

(1)

in Set has the Beck-Chevalley Property (BCP) if

g◦ · f = h · k◦.

Beck-Chevalley Property of T : Set → Set means that, whenever diagram (1)
is a pullback, its image by T has (BCP), i.e.

Tg◦ · Tf = Th · Tk◦.
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In order to describe (classes of) effective descent morphisms in Alg(T;V),
we intend to apply the following

Theorem 1.1 (Janelidze and Tholen, [8]). Let A and B be categories satisfying
(a) B has pullbacks and coequalizers and A is a full subcategory of B closed

under pullbacks, and
(b) every regular epimorphism in B is an effective descent morphism.

Then a morphism p : E → B in A, which is effective descent in B, is an
effective descent morphism in A if and only if

E ×B A ∈ A ⇒ A ∈ A

holds for every pullback

E ×B A
π1 //

π2

��

A

f

��
E p

// B

in B.

In our situation A will be the category Alg(T;V) of reflexive and transitive
lax algebras and lax homomorphisms, and B = Alg(T, e;V) the category of
reflexive lax algebras and lax homomorphisms. That is, objects of B are pairs
(X, a) where X is a set and a : TX 9 X is a 1-cell in Mat(V) such that

X
eX //

idX !!CC
CC

CC
CC

TX
≤ Ua

��
X,

and morphisms (X, a) → (Y, b) are maps f : X → Y such that

TX
Tf //

Ua

��
≤

TY

Ub
��

X
f

// Y.

The category A is the full subcategory of B whose objects (X, a) satisfy in
addition

TX

Ua

��
≤

T 2X�
Taoo

mX

��
X TX.�

a
oo

In order to apply Theorem 1.1 we have to analyse its hypotheses:
(a) is obviously fulfilled: both Alg(T, e;V) and Alg(T;V) are complete cate-

gories and, moreover, Alg(T;V) is a reflective subcategory of Alg(T, e;V)
(see [3] for details).



4 MARIA MANUEL CLEMENTINO AND DIRK HOFMANN

(b) holds if, for instance, Alg(T, e;V) is locally cartesian closed. It is shown
in [4] that local cartesian closedness of Alg(T, e;V) is guaranteed by

– V is an Heyting algebra1 and
– the functor T : Set → Set has the Beck-Chevalley Property.

We remark that Theorem 1.1 implies

Corollary 1.2. Assume that in our basic situation V is an Heyting algebra and
T : Set → Set has (BCP), and let E be a class of morphisms in Alg(T, e;V).
Then E ∩Alg(T;V) is a class of effective descent morphisms in Alg(T;V) pro-
vided that

(1) each f in E ∩Alg(T;V) is a regular epimorphism in Alg(T, e;V);
(2) E is stable under pullbacks, and
(3) E-morphisms preserve transitivity; that is, with f : (X, a) → (Y, b) in E

and (X, a) transitive, also (Y, b) is transitive.

Finally, we recall that regular epimorphisms in Alg(T, e;V) were described
in [3] as those morphisms f : (X, a) → (Y, b) such that

∀y ∈ TY ∀y ∈ Y b(y, y) = f · a · (Tf)◦(y, y) =
∨

x∈Tf−1(y)
x∈f−1(y)

a(x, x).

2. The Identity monad

Our first aim is to study effective descent morphisms in categories of the
form Alg(Id;V), for Id the identity monad; that is, in categories of V-enriched
categories (see [9]). Note that the identity functor has obviously (BCP); hence
we only need to assume that, in our basic setting, V is a Heyting algebra. We
are going to show that for every effective descent morphism f : (X, a) → (Y, b)
in Alg(Id;V),

∀y2, y1, y0 ∈ Y b(y2, y1)⊗ b(y1, y0) =
∨

xi∈f−1(yi)
i=0,1,2

a(x2, x1)⊗ a(x1, x0). (*)

Moreover, we will establish conditions under which this equality is also sufficient
for a morphism in Alg(Id;V) to be effective descent. Throughout the text, for
simplicity, we will omit “i = . . .” whenever it is clear from the context which
indexing set is meant.

Following [12], a surjective morphism in Alg(Id, id;V) is called a *-quotient
map if it satisfies condition (*).

Lemma 2.1. Every effective descent morphism f : (X, a) → (Y, b) in Alg(Id;V)
is a regular epimorphism in Alg(Id, id;V).

1We point out that a complete lattice is locally cartesian closed if and only if it is cartesian

closed.
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Proof. Let f : (X, a) → (Y, b) be effective descent in Alg(Id;V). Recall that,
being effective descent, f is necessarily a pullback stable regular epimorphism
in Alg(Id;V). Let y1, y0 ∈ Y be given. Since f is a lax homomorphism, we have

α :=
∨

xi∈f−1(yi)

a(x1, x0) ≤ b(y1, y0) =: β.

We define reflexive and transitive structures bα and bβ on 2 = {0, 1} as follows:

bα(1, 0) = α, bβ(1, 0) = β, bα(1, 1) = bβ(1, 1) = I = bα(0, 0) = bβ(0, 0).

For g : 2 → Y with g(i) = yi (i = 0, 1), consider the pullback

(X ′, a′)
f ′ //

g′

��

(2, bβ)

g

��
(X, a)

f
// (Y, b)

in Alg(T;V). Since g′ : (X ′, a′) → (X, a) is a lax homomorphism it holds∨
x′i:f

′(x′i)=i

a′(x′1, x
′
0) ≤

∨
xi:f(xi)=yi

a(x1, x0) = α.

Therefore the underlying map of f ′ defines a lax homomorphism f ′′ : (X ′, a′) →
(2, bα). But, as a pullback of f , f ′ : (X ′, a′) → (2, bβ) is a regular epimorphism,
and so id2 : (2, bβ) → (2, bα) is a lax homomorphism which implies that β ≤ α.
Hence f is a regular epimorphism in Alg(Id, id;V) as claimed. �

Proposition 2.2. Every effective descent morphism in Alg(Id;V) is a *-quotient.

Proof. Let f : (X, a) → (Y, b) be effective descent in Alg(Id;V). From the
lemma above we know that f is a regular epimorphism and hence effective
descent in Alg(Id, id;V). Given elements y2, y1 ∈ Y , it holds (with y0 := y1)

b(y2, y1)⊗ b(y1, y1) = b(y2, y1)

=
∨

xi∈f−1(yi)

a(x2, x1)

=
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x1)

≤
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0),

where in the first equality “≤” follows from transitivity and “≥” from reflexivity
of b. In a similar way we obtain

b(y1, y1)⊗ b(y1, y0) ≤
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0)
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for any y1, y0 ∈ Y and y2 := y1.
Assume now that there exist three elements y2, y1, y0 ∈ Y such that

α :=
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0) < b(y2, y1)⊗ b(y1, y0) ≤ b(y2, y0).

We define the following reflexive and non-transitive structure b0 on Y :

• ∀ y ∈ Y b0(y, y) := I,
• b0(y2, y1) := b(y2, y1), b0(y1, y0) := b(y1, y0), b0(y2, y0) := α and
• b0(y, y′) := 0 otherwise.

Then the identity map i0 : (Y, b0) → (Y, b) is a lax homomorphism. Regarding
Theorem 1.1, in the pullback in Alg(Id, id;V)

(X, a0)
f //

j0
��

(Y, b0)

i0
��

(X, a)
f

// (Y, b)

(X, a0) is not transitive. Hence there exist elements x2, x1, x0 ∈ X such that

a0(x2, x1)⊗ a0(x1, x0) � a0(x2, x0),

which is only possible if xi ∈ f−1(yi) (i = 0, 1, 2). Since

a0(x2, x0) = a(x2, x0) ∧ b0(y2, y0) = a(x2, x0) ∧ α

and

a0(x2, x1)⊗ a0(x1, x0) ≤ a(x2, x1)⊗ a(x1, x0),

we have

a(x2, x1)⊗ a(x1, x0) � a(x2, x0) ∧ α.

From the transitivity of a we obtain a(x2, x1)⊗ a(x1, x0) � α, a contradiction.
�

Lemma 2.3. Let f : (X, a) → (Y, b) be a *-quotient map in Alg(Id, id;V)
and assume that I is terminal in V or b is transitive. Then f is a regular
epimorphism.
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Proof. Obviously, any *-quotient map in Alg(Id, id;V) must be surjective. Given
y1, y0 in Y :

b(y1, y0) = b(y1, y1)⊗ b(y1, y0)

=
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0)

≤
∨

x2∈f−1(y2)

∨
xi∈f−1(yi)

I ⊗ a(x1, x0)

≤
∨

xi∈f−1(yi)

a(x1, x0).

�

Lemma 2.4. Every *-quotient map preserves transitivity.

Proof. Given a *-quotient map f : (X, a) → (Y, b) in Alg(Id, id;V) with a

transitive and y2, y1, y0 ∈ Y :

b(y2, y1)⊗ b(y1, y0) =
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0)

≤
∨

xi∈f−1(yi)

a(x2, x0)

≤ b(y2, y0).

�

Lemma 2.5. If ⊗ = ∧ then the class of *-quotient maps is stable under pull-
backs in Alg(Id, id;V).

Proof. Let

(X ×Z Y, d)
πf //

πg

��

(Y, b)

g

��
(X, a)

f
// (Z, c)

be a pullback in Alg(Id, id;V) with f a *-quotient map. For y2, y1, y0 ∈ Y , we
have

b(y2, y1) ∧ b(y1, y0) ≤ c(g(y2), g(y1)) ∧ c(g(y1), g(y0))

=
∨

xi:f(xi)=g(yi)

a(x2, x1) ∧ a(x1, x0)
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and therefore

b(y2, y1) ∧ b(y1, y0) =

 ∨
xi:f(xi)=g(yi)

a(x2, x1) ∧ a(x1, x0)

 ∧ (b(y2, y1) ∧ b(y1, y0))

=
∨

xi:f(xi)=g(yi)

a(x2, x1) ∧ b(y2, y1) ∧ a(x1, x0) ∧ b(y1, y0) (�)

=
∨

(xi,yi)∈π−1
f (yi)

d((x2, y2), (x1, y1)) ∧ d((x1, y1), (x0, y0)).

�

Remark 2.6. The only place where we make use of the hypothesis ⊗ = ∧ is
(�). Hence it would have been enough to assume

(α1 ∧ β1)⊗ (α2 ∧ β2) = (α1 ⊗ α2) ∧ (β1 ⊗ β2)

for all α1, α2, β1, β2 ∈ V; however, a tensor ⊗ with this property must be equal
to ∧.

So far we have seen that, in case ⊗ = ∧, the class of *-quotient maps satisfies
the hypotheses of Corollary 1.2 and we obtain

Theorem 2.7. If V is a complete Heyting algebra and ⊗ = ∧, then a morphim
f : (X, a) → (Y, b) in Alg(Id;V) is effective descent if and only if

∀y2, y1, y0 ∈ Y b(y2, y1)⊗ b(y1, y0) =
∨

xi∈f−1(yi)

a(x2, x1)⊗ a(x1, x0).

One important example beyond the scope of the theorem above is V = [0,∞]
with the order given by “greater or equal” and the monoidal structure given
by addition, where we obtain the category QMet of quasi-metric spaces and
non-expansive maps as Alg(Id; [0,∞]) (see [9]). Nevertheless, effective descent
morphisms in this category can still be characterized as exactly the *-quotient
maps, as we will show below. Observe that a non-expansive map f : (X, a) →
(Y, b) in QMet is a *-quotient map if and only if

∀y2, y1, y0 ∈ Y b(y2, y1) + b(y1, y0) = inf
xi∈f−1(yi)

a(x2, x1) + a(x1, x0).

In order to apply Corollary 1.2, the only missing property is the pullback sta-
bility of *-quotient maps.

Lemma 2.8. Let f : (X, a) → (Y, b) be a non-expansive map in Alg(Id, id; [0,∞]).
For all y2, y1, y0 ∈ Y with b(y2, y1) 6= ∞ 6= b(y1, y0), the following conditions
are equivalent:

(1) b(y2, y1) + b(y1, y0) = inf
xi∈f−1(yi)

a(x2, x1) + a(x1, x0).

(2) ∀ε > 0 ∀i = 0, 1, 2 ∃xi ∈ f−1(yi) :

{
a(x2, x1) ≤ b(y2, y1) + ε and

a(x1, x0) ≤ b(y1, y0) + ε.
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Proof. Obviously, condition (2) implies (1). Assume now that (1) holds and let
ε > 0. Hence there exist xi ∈ f−1(yi) (i = 0, 1, 2) such that

b(y2, y1) + b(y1, y0) + ε ≥ a(x2, x1) + a(x1, x0).

Therefore,

a(x2, x1) ≤ b(y2, y1) + (b(y1, y0)− a(x1, x0)) + ε ≤ b(y2, y1) + ε

and

a(x1, x0) ≤ b(y1, y0) + (b(y2, y1)− a(x2, x1)) + ε ≤ b(y1, y0) + ε.

�

Lemma 2.9. The class of *-quotient maps in Alg(Id, id; [0,∞]) is stable under
pullbacks.

Proof. Let

(X ×Z Y, d)
πf //

πg

��

(Y, b)

g

��
(X, a)

f
// (Z, c)

be a pullback in Alg(Id, id; [0,∞]) where f is *-quotient and let y2, y1, y0 ∈ Y .
The equality of condition (*) is obviously satisfied if one of the distances b(y2, y1)
and b(y1, y0) is infinite, so we assume b(y2, y1) 6= ∞ 6= b(y1, y0). Let ε > 0. Since
f is *-quotient, by the lemma above there exist xi ∈ f−1(yi) (i = 0, 1, 2) such
that

a(x2, x1) ≤ c(g(y2), g(y1)) + ε ≤ b(y2, y1) + ε

and

a(x1, x0) ≤ c(g(y1), g(y0)) + ε ≤ b(y1, y0) + ε.

This implies

d((x2, y2), (x1, y1)) = max{a(x2, x1), b(y2, y1)} ≤ b(y2, y1) + ε

and

d((x1, y1), (x0, y0)) = max{a(x1, x0), b(y1, y0)} ≤ b(y1, y0) + ε.

�

Theorem 2.10. A morphism f : (X, a) → (Y, b) in QMet is effective descent
if and only if

∀y2, y1, y0 ∈ Y b(y2, y1) + b(y1, y0) = inf
xi∈f−1(yi)

a(x2, x1) + a(x1, x0).
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Remark 2.11. Recall that a quasi-metric a : X × X → [0,∞] is a metric
if a is symmetric, a does not admit the distance ∞ and different points have
non-zero distance. It is not too hard to see that we can also apply Theorem
1.1 to B = Alg(Id, id; [0,∞]) and A = Met, the category of metric spaces and
non-expansive maps. Moreover, a *-quotient map f : (X, a) → (Y, b) carries
the additional properties of a metric from (X, a) to (Y, b). Therefore in Met
we obtain the same characterization of effective descent maps as in QMet:

Corollary 2.12. A morphism f : (X, a) → (Y, b) in Met is effective descent
if and only if

∀y2, y1, y0 ∈ Y b(y2, y1) + b(y1, y0) = inf
xi∈f−1(yi)

a(x2, x1) + a(x1, x0).

3. Open and proper surjections are effective descent

In this section we turn to the case of an arbitrary monad, aiming to prove that
open and proper surjections are effective descent in Alg(T;V). Before doing
this, we must of course define what open and proper means in our context.
Looking first to topological spaces, we recall that a continuous map f : X → Y

is proper if and only if, for each ultrafilter x on X and each y ∈ Y with f(x) → y,
there exists x ∈ X such that f(x) = y and x → x; dually, f is open if and only
if, for each x ∈ X and each y ∈ Y , there exists an ultrafilter x on X such that
f(x) = y and x → x ([1, 6], see also [2]).

X

f proper:
��

x //____ x

�
�
�

Y f(x) // y

X

f open:
��

x

�
�
�

//____ x

Y y // f(x)

Sobral showed that every open map in Top is effective descent [13]. This
result can also be deduced from Moerdijk’s axioms [10] as well as the fact that
every proper map is effective descent in Top [11].

The characterizations above lead naturally to

Definition 3.1. A lax homomorphism f : (X, a) → (Y, b) is called proper
(open) if the diagram

TX
Tf //

Ua

��

TY

Ub
��

X
f

// Y

commutes (satisfies the Beck-Chevalley Property).

Explicitely, a morphism f : (X, a) → (Y, b) is proper if

b(Tf(x), y) =
∨

x∈f−1(y)

a(x, x),
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for each x ∈ TX and y ∈ Y ; and open if

b(y, f(x)) =
∨

x∈Tf−1(y)

a(x, x),

for each y ∈ TY and x ∈ X. From both equations above we obtain the equality

∀y ∈ TY ∀y ∈ Y b(y, y) =
∨

x∈Tf−1(y)
x∈f−1(y)

a(x, x)

in case f is surjective, hence open and proper surjections are regular epimor-
phisms in Alg(T, e;V).

Lemma 3.2. Assume that V is a Heyting algebra. Then the class of proper
morphisms is pullback stable. If, in addition, T has (BCP), then also the class
of open morphisms is pullback stable.

Proof. Let

(X ×Z Y, d)
πf //

πg

��

(Y, b)

g

��
(X, a)

f
// (Z, c)

be a pullback in Alg(T, e;V). Assume first that f is proper and let y ∈ Y and
w ∈ T (X ×Z Y ). It holds

b(Tπf (w), y) ≤ c(T (g · πf )(w), g(y))

= c(Tf(Tπg(w)), g(y))

=
∨

x:f(x)=g(y)

a(Tπg(w), x) (f is proper)

and therefore∨
x:f(x)=g(y)

d(w, (x, y)) =
∨

x:f(x)=g(y)

a(Tπg(w), x) ∧ b(Tπf (w), y)

=

 ∨
x:f(x)=g(y)

a(Tπg(w), x)

 ∧ b(Tπf (w), y) (V is l.c.c.)

= b(Tπf (w), y).

If f is open, we obtain analogously, for any (x, y) ∈ X ×Z Y and y ∈ TY ,

b(y, y) ≤
∨

x:Tf(x)=Tg(y)

a(x, x)
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and ∨
w:Tπf (w)=y

d(w, (x, y)) =
∨

w:Tπf (w)=y

a(Tπg(w), x) ∧ b(y, y)

=

 ∨
w:Tπf (w)=y

a(Tπg(w), x)

 ∧ b(y, y) (V is l.c.c.)

=

 ∨
x:Tf(x)=Tg(y)

a(x, x)

 ∧ b(y, y) (T has (BCP))

= b(y, y).

�

Lemma 3.3. Assume that T (f · r) = Tf · Tr for any map f . Then
(1) with f : (X, a) → (Y, b) also Tf : (TX, Ta) → (TY, Tb) is proper

(open), and
(2) proper and open surjections preserve transitivity.

Proof. The first statement of the lemma is clear. Regarding the second state-
ment, we only present the proof for a proper map f : (X, a) → (Y, b); the “open
case” is similar. Let Y ∈ T 2Y , y ∈ TY and y ∈ Y be given. Since T 2f is
surjective, there exists X ∈ T 2X with T 2f(X) = Y. Hence

Tb(Y, y)⊗ b(y, y) = b(T 2f(X), y)⊗ b(y, y)

=
∨

x:Tf(x)=y

Ta(X, x)⊗ b(Tf(x), y) (Tf is proper)

=
∨

x:Tf(x)=y

∨
x:f(x)=y

Ta(X, x)⊗ a(x, x) (f is proper)

≤
∨

x:Tf(x)=y

∨
x:f(x)=y

a(mX(X), x) (a is transitive)

≤ b(mY (Y), y).

�

Recall that, since T preserves the pseudo-involution ◦, T preserves composition
with maps on the right. Hence the hypothesis of the lemma above implies that
T is functorial regarding composition with maps (on the left and on the right),
as well as regarding composition with map transposes. In particular, T has
(BCP).

Combining our results we obtain

Theorem 3.4. Assume that V is a complete Heyting algebra, equipped with a
tensor product so that V becomes a symmetric-monoidal closed category. Let T

be a monad in Set lax-extended to Mat(V) and such that

T (r◦) = (Tr)◦ and T (f · r) = Tf · Tr
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for every r and every map f . Then open and proper surjections are effective
descent morphisms in Alg(T;V).
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