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Abstract. An important requirement on numerical methods for
the integration of nonlinear stiff initial value problems is B-stability.
In many applications it is also convenient to use splitting methods
to take advantage of the special structure of the differential opera-
tor that define the model. The purpose of this paper is to provide
a necessary and sufficient condition for the B-stability of additive
Runge-Kutta methods. We also present a family of B-stable frac-
tional step Runge-Kutta methods.

1. Introducion

In the recent literature much interest has been devoted to numerical
integration of nonlinear stiff problems defined by operators that may
be decompose on a sum of two or more parts. Several physical phe-
nomena are described by these problems. We mention, for instance,
reactive flow processes and combustion theory [13], multi-pahse flow
in heterogeneous porous media [9], chemical reaction problems, atmo-
spheric circulation problems [11], air pollution [14], etc. To obtain
accurate numerical solutions for these problems, it is desirable to use
numerical methods with good stability properties and, in addition, that
take into account the special structure of the equations.

We focus our atenttion in the numerical solution of nonlinear stiff
systems of ODE’s, that may be viewed as a semi-discrete version of a
stiff PDE’s. For the time integration of these problems, the concept of
B-stability, introduced by J.C. Butcher [6] for standard Runge-Kutta
schemes, turned out to be crucial in the analysis of the numerical meth-
ods. A commonly used approach to the solution of these problems is
based on splitting methods [12]. In the last decades, the emergence
of new methods for special problems, leads us to the class of additive
methods, which contain, as particular case, the class of alternating di-
rection and fractional step schemes [4]. This work is devoted to the
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study of the B-stability properties for the class of Additive Runge-
Kutta methods.

The paper is organized as follows. We start, in the next section, by
presenting the motivation for the definition of additive Runge-Kutta
methods. Then, after that definition, we introduce, as a particular
case, the subclass of fractional step Runge-Kutta methods. In Section
3 we present the concepts of B-stability and algebraic stability. The
main result of this paper is the necessary and sufficient condition for
the B-stability of additive Runge-Kutta methods. Also in this section,
we introduce the notion of AN-stability for linear non-autonomous stiff
problems and B-stability for nonlinear ones. Section 4 is devoted to
fractional step Runge-Kutta methods. In this section we particularize
the main result of this paper to this class of methods. A class of B-
stable fractional step Runge-Kutta methods is also presented.

2. Additive Runge-Kutta methods

Let us consider an initial value problem

(2.1)

{
y′ = f [1](t, y) + · · ·+ f [N ](t, y),
y(0) = y0,

where f [ν] : R+
0 × RD −→ RD, ν = 1, . . . , N , are vectorial functions

with components f [ν]i, i = 1, ..., D.
If, in (2.1), N = 2 and f [1] is stiff while f [2] is not, then it is common

to combine an implicit integrator for f [1] with an explicit integrator for
f [2]. For instance, in a reaction-diffusion partial differential problem
we may combine an implicit method for the diffusion with an explicit
one for the reaction [2].

In this paper, we are special interested in the case where each part
f [ν], ν = 1, ..., N , is stiff. This situation occurs, for instance, in molec-
ular dynamics applications where the different f [ν] may correspond to
forces of different stiffness. Is is sometimes inappropriate to sample the
net force f ; one may wish to sample the stiffer parts more frequently
than the softer parts. This leads to the idea of multiple time-step meth-
ods [3]. An example, with N = 2, of a multiple time-step method is
given by the time-symmetric concatenation

(2.2) ψMP
h,αf [1] ◦ ψMP

h,(1−2α)f [1]+f [2] ◦ ψMP
h,αf [1] ,

where α is a real constant and ψMP
h,g denotes a step of length h of the

implicit midpoint rule applied to the differential system with right-
hand side g. Clearly (2.2) is a multiple time-step method that uses f [2]

less frequently than f [1].
To take into account the special structure of the right hand side of the

equation, let us consider the class of Additive Runge-Kutta methods
defined in the following way [7].
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Definition 2.1. An Additive Runge-Kutta (ARK) method of s stages
and N levels is a one-step numerical method which, for a known ap-
proximation yn to y(tn), obtain the approximation yn+1 to y(tn+1), with
tn+1 = tn + h, where h is called the step size, according to the process

(2.3)


Yn,i = yn + h

N∑
ν=1

s∑
j=1

a
[ν]
ij f

[ν](tn + cjh, Yn,j)

yn+1 = yn + h

N∑
ν=1

s∑
i=1

b
[ν]
i f

[ν](tn + cih, Yn,i).

The coefficients of the method may be organized in the Butcher tableau

(2.4)
c A[1] A[2] · · · A[N ]

b[1]
T

b[2]
T · · · b[N ]T

,

where c = [c1, ..., cs]
T and, for ν = 1, ..., N , b[ν] = [b

[ν]
1 , ..., b

[ν]
s ]T and

A[ν] =
(
a

[ν]
ij

)s

i,j=1
.

Note that the multiple time-step method (2.2) is also an ARK method
(2.3), with N = 2. In fact, if the differential system (2.1) is au-
tonomous, (2.2) is the ARK method with tableau

(2.5)

α
2

0 0 0 0 0
α 1−2α

2
0 0 1

2
0

α 1− 2α α
2

0 1 0

α 1− 2α α 0 1 0

.

An important subclass of the ARK methods is class of fractional step
Runge-Kutta methods defined as follows [4].

Definition 2.2. A Fractional Step Runge-Kutta (FSRK) method is
an ARK method (2.3) which verifies:

(1) a
[ν]
ii ≥ 0, for i = 1, ..., s, and ν = 1, ..., N , and a

[ν]
ij = 0, for all

j > i;

(2)
∣∣∣b[ν]

j

∣∣∣ + s∑
i=1

∣∣∣a[ν]
ij

∣∣∣ = 0 ⇒
∣∣∣b[µ]

j

∣∣∣+ s∑
i=1

∣∣∣a[µ]
ij

∣∣∣ 6= 0, for ν, µ = 1, ..., N

such that µ 6= ν, and i, j = 1, ..., s;

(3) a
[µ]
ii a

[ν]
ii = 0, for ν, µ = 1, ..., N such that µ 6= ν, and i = 1, ..., s.

According to the property (2) of the previous definition, a FSRK
method given by (2.3) can be expressed in a condensed way in the
form
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(2.6)

θT

c A

bT
,

with the vector b given by

b =
(
b
[θj ]
j

)s

j=1
=

N∑
ν=1

b[ν],

the matrix A by

A =
(
a

[θj ]
ij

)s

i,j=1
=

N∑
ν=1

A[ν]

and θ = [θ1, ..., θs]
T where θj ∈ {1, ..., N} satisfy

N∑
ν=1
ν 6=θj

(∣∣∣b[ν]
j

∣∣∣+ s∑
i=1

∣∣∣a[ν]
ij

∣∣∣) = 0, for j = 1, ..., s.

With this notation, a FSRK method may be written in the form

(2.7)


Yn,i = yn + h

s∑
j=1

a
[θj ]
ij f

[θj ](tn + cjh, Yn,j)

yn+1 = yn + h
s∑

i=1

b
[θi]
i f [θi](tn + cih, Yn,i).

3. B-stable additive Runge-Kutta methods

It is well known that when solving stiff ODE’s is important to con-
sider A-stable methods. This stability property belong to the so-called
linear stability theory. When we deal with non-linear problems this
theory is lacking rigor. A more convenient stability concept is the
notion of B-stability which theory is well known for standard Runge-
Kutta methods [6], [5], [8]. We now generalize this notion to the class
of ARK methods.

Definition 3.1. An ARK method (2.3) is called B-satble if, for ν =
1, ..., N , the contractivity condition

(3.1) < f [ν](t, y)− f [ν](t, z), y − z >≤ 0, t ≥ 0, ∀y, z ∈ RD,

implies for all h ≤ 0

(3.2) ‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ ,

where yn and ỹn and ỹn+1 are the numerical solutions defined by the
method from yn and ỹn, respectively.
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Our goal is to find methods with the same contractivity property.
To characterize stable methods, let us introduce the notion of algebraic
stability for the class of ARK methods (2.3).

Definition 3.2. If an ARK method (2.3) is such that the matrices

(i) B[ν] := diag
(
b
[ν]
1 , . . . , b

[ν]
s

)
, ν = 1, ..., N , and

(ii) M [νµ] := B[ν]A[µ] + A[ν]TB[µ] − b[ν]b[µ]T , ν, µ = 1, ..., N ,

are non-negative is said to be algebraically stable.

We may now state the following result that is a generalization of the
corresponded one for the standard Runge-Kutta case [10].

Theorem 3.3. A sufficient condition for an ARK method (2.3) to be
B-stable is to be algebraically stable.

Proof: Let us consider

v0 = yn − ỹn, vi = Yn,i − Ỹn,i, v = yn+1 − ỹn+1

and

w
[ν]
i = h

[
f [ν](tn + cih, Yn,i)− f [ν](tn + cih, Ỹn,i)

]
.

With this notation we have

‖v‖2 = ‖v0‖2 + 2
N∑

ν=1

s∑
i=1

b
[ν]
i < v0, w

[ν]
i > +

N∑
ν,µ=1

s∑
i,j=1

b
[ν]
i b

[µ]
j < w

[ν]
i , w

[µ]
j >

= ‖v0‖2 + 2
N∑

ν=1

s∑
i=1

b
[ν]
i < vi, w

[ν]
i > −

N∑
ν,µ=1

s∑
i,j=1

m
[ηµ]
i,j < w

[ν]
i , w

[µ]
j > .

If the matrices B[ν] and M [νµ], ν, µ = 1, ..., N , are non-negative, then

‖v‖2 ≤ ‖v0‖2, because, by hypothesis < vi, w
[ν]
i >≤ 0.

Before proving the converse result, we introduce the notion of AN-
stability. In order to define this concept, let us consider the non-
autonomous linear test problem

(3.3) y′ =
N∑

ν=1

λ[ν](t)y(t), λ[ν](t) ∈ C, t ≥ 0, y(0) = y0.

If we apply the ARK method (2.3) to this problem we obtain

(3.4)


Yn = eyn +

N∑
ν=1

A[ν]ξ[ν]Yn

yn+1 = yn +
N∑

ν=1

b[ν]ξ[ν]Yne.
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where Yn = [Yn,1, ..., Yn,s]
T , e = [1, ..., 1]T and, for ν = 1, ..., N ,

(3.5) ξ[ν] = diag
(
ξ

[ν]
1 , ..., ξ[ν]

s

)
,

with
ξ

[ν]
i = hλ[ν](tn + cih), i = 1, ..., s.

If the matrix

(3.6) Ξ = I −
N∑

µ=1

A[µ]ξ[µ]

is regular the ARK method (3.4) may be written in the form

yn+1 = R(ξ)yn,

with

(3.7) R(ξ) := R(ξ[1], ..., ξ[N ]) = 1 +
N∑

ν=1

b[ν]T ξ[ν]Ξ−1e.

Definition 3.4. The ARK method (2.3) is called AN-stable if

(3.8) |R(ξ)| ≤ 1,

for all ξ[ν] given by (3.5) with ξ
[ν]
i 6= ξ

[ν]
i whenever ci 6= cj and such that

Re(ξ
[ν]
i ) ≤ 0, for i = 1, ..., s.

Note that, according to this definition, we may easily conclude, as
for the standard Runge-Kutta case [10], that B-stability implies AN-
stability (which also implies A-stability).

We are now in position to prove the converse result of the previous
theorem.

Theorem 3.5. Let us consider a non-confluent ARK method (2.3)
(where ci 6= cj for i 6= j). Then the concepts of AN-stability, B-stability
and algebraic stability are equivalent.

Proof: According to the previous results, we only need to prove that
AN-stability implies algebraic stability.

Let us first note that, if we consider, in the proof of Theorem 3.3,

v0 = 1 and w
[ν]
i = ξ

[ν]
i vi we have v = R(ξ). Then, following the same

steps of that proof, and noticing that ξ
[ν]
i could not be real, we may

conclude that
(3.9)

|R(ξ)|2 = 1 + 2
N∑

ν=1

s∑
i=1

b
[ν]
i Re(ξ

[ν]
i )|Yn,i|2 −

N∑
ν,µ=1

s∑
i,j=1

m
[νµ]
ij ξ

[ν]
i Yn,iξ

[µ]
j Yn,j,

where Yn,i is the solution of the algebraic equations in (3.4) with yn = 1.
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The method is non-confluent and so ξ
[ν]
i , i = 1, ..., s, ν = 1, ..., N ,

can be choose arbitrarily in C−
0 . Let us consider ξ

[ν]
i = −ε and ξ

[µ]
j = 0,

for j 6= i, µ = 1, ..., N , so that the matrix Ξ given in (3.6) is regular.
If we substitute these values in (3.9) we obtain

|Re(ξ)|2 − 1 = −2εb
[ν]
i |Yn,i|2 −m

[νν]
ii ε2|Yn,i|2.

Choosing an ε sufficiently small we conclude that AN-stability implies

b
[ν]
i ≥ 0. With the same arguments we prove that AN-stability is a

sufficient condition to B[ν] ≥ 0, ν = 1, ..., N .

To prove the non-negativity of M [νµ], let us consider η
[ν]
j , j = 1, ..., s,

ν = 1, ..., N , arbitrary real numbers and ξ
[ν]
j = εη

[ν]
j pure imaginary

numbers. If we substitute in (3.9) we obtain

|Re(ξ)|2 − 1 = −ε2
N∑

ν,µ=1

s∑
i,j=1

m
[νµ]
ij η

[µ]
i η

[ν]
j Yn,i Yn,j.

It is also possible to choose ξ
[ν]
j so that Yn,j = 1 +O(ε), as ε → 0, for

all j and ν. By hypothesis, and taking ε small enough, we conclude
that M [νµ] must be non-negative.

Note that B-stable ARK methods suffer a serious practical disadvan-
tage. In fact, as we may easily see, these methods are always implicit,
which means that we cannot find any B-stable Implicit-Explicit method
[2].

In the next section we will present a class of B-stable fractional step
Runge-Kutta methods of order 2. These methods are a particular case
of B-stable ARK methods and have some good numerical features.

4. A class B-stable fractional step Runge-Kutta methods

The notion of algebraic stability can be adapted to FSRK methods
in the following way.

Definition 4.1. If an FSRK method (2.7) is such that the matrices

(i) B := diag
(
b
[θ1]
1 , . . . , b

[θs]
s

)
and

(ii) M := BA+ ATB − bbT

are non-negative then the method is said to be algebraically stable.

Taking into account the special structure of these methods, the fol-
lowing corollary results immediately from Theorem 3.3 and Theorem
3.5.

Corollary 4.2. A sufficient condition for an FSRK method (2.3) to
be B-stable is to be algebraically stable. For non-confluent methods, the
converse result is also true.
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Let us now find a class of B-stable FSRK methods (2.7) of order 2
with s = 3 and such that the corresponding ARK method has N = 2
levels. Without loss of generality we may consider θ = [1, 2, 1]T . The
order conditions are the following [1].

Order 1: For the consistency of the method we must impose∑
i:θi=ν

b
[θi]
i = 1, ν = 1, 2.

In our case these conditions correspond to

b
[1]
3 = 1− b

[1]
1 , b

[2]
2 = 1.

Order 2: To obtain FSRK methods of order 2 the coefficients of
the method must satisfy∑

i:θi=ν

∑
j:j≤i
θj=µ

b
[θi]
i a

[θj ]
ij =

1

2
, ν, µ = 1, 2.

We may easily conclude that these conditions imply that

a
[2]
21 = a

[2]
22 =

1

2
, a

[2]
32 =

1

2(1− b
[1]
1 )
, a

[1]
31 = a

[2]
32(1− 2a

[1]
11b

[1]
1 )− a

[1]
33.

Thus, in a FSRK method (2.7) of order 2 with s = 3 and θ =

[1, 2, 1]T , the coefficients a
[1]
11, a

[1]
33 and b

[1]
1 remain as free parameters.

For the method to be B-stable, we must also impose the the condi-
tions given in the Definition 4.1. We may easily prove that these two

conditions imply that b
[1]
1 = 1

2
and that a

[1]
11 = a

[1]
33 = c, with c a free

parameter such that c ≥ 1
4
. So, the class of FSRK methods (2.7) of

order 2 with s = 3 and θ = [1, 2, 1]T is of the form

1 2 1

c 0 0
1
2

1
2

0

1− 2c 1 c
1
2

1 1
2

, c ≥ 1
4

We denote the methods of this class by FSRKh[c], with c ≥ 1/4 and
h ∈ R.

Using composition methods, we may describe a procedure that en-
ables us to construct higher order B-stable numerical methods. Let us
consider c = 1/4. Then we obtain the numerical method FSRKh[1/4]
which is of the form (2.2), with α = 1/2, i.e.

FSRKh[1/4] = ψMP
h/2,f [1] ◦ ψMP

h,f [2] ◦ ψMP
h/2,f [1] .
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Note that this method is a symmetric method of order two. According
to [12, Theorem 22], the composition

(ψw1h)
m1 ◦ (ψw2h)

m2 ◦ (ψw1h)
m1 ,

of a symmetric method ψh of order 2k is symmetric and has has order
2k + 2 , provided that

w1 = (2m1 − (2m1m
2k
2 )1/(2k+1))−1, w2 = (1− 2m1w1)/m2.

In our case, the method

FSRKw2h[1/4] ◦ FSRKw1h[1/4] ◦ FSRKw2h[1/4],

with w1 = (2−21/3)−1, w2 = 1−2w1, is symmetric and has order 4 and
is B-stable, since the composition of B-stable methods is a B-stable
method.

In spite of the fact that B-stable FSRK methods are (diagonally)
implicit, if the splitting (2.1) is done in an appropriate manner, the
resulting method could have great computational advantages. In some
special cases we may obtain an ”almost explicit” B-stable method,
i.e. a B-stable method with the computational efficiency similar to
an explicit solver. To give an example, let us consider the Robertson
chemical reaction equation [10] y′1 = −0.04y1 + 104y2y3,

y′2 = 0.04y1 − 104y2y3 − 3× 107y2
2,

y′3 = 3× 107y2
2.

.

If we consider this system in the form (2.1) where

f [1](y) =

 −0.04y1

0.04y1 − 3× 107y2
2

3× 107y2
2


and

f [2](y) = 104

 y2y3

− y2y3

0

 ,
and integrate this problem using the FSRKh[1/4] method we do not
need to use any Newton iterations. In fact, the non-linear equation can
be explicitly solved.
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