On projective \mathcal{E} -generators and premonadic functors

Lurdes Sousa*

Abstract

It is shown that a well behaved category is premonadic over **Set** if it has a projective \mathcal{E} -generator, for a convenient class \mathcal{E} of epimorphisms. A variety of examples is provided.

Introduction

A functor $U : \mathbf{A} \to \mathbf{Set}$ is said to be *premonadic* provided that it is a right-adjoint and \mathbf{A} is equivalent to a full subcategory of the corresponding category of Eilenberg-Moore algebras. If \mathbf{A} is a category with coequalizers, then the premonadicity of U means that \mathbf{A} is equivalent to a reflective subcategory of the category of algebras.

Of course every monadic functor is premonadic. Concerning monadicity, it is known that a category \mathbf{A} is monadic over **Set** if and only if \mathbf{A} is an exact category, has a regular projective generator P and arbitrary copowers of P. The aim of this paper is to analyze what part of the above monadicity characterizing properties is relevant for a characterization of premonadicity over **Set**. In particular, we show that an enough well behaved category is premonadic over **Set** if it has a projective \mathcal{E} -generator P, for a convenient "coreflective" class \mathcal{E} of \mathbf{A} -epimorphisms. A kind of partial converse of this is also achieved. A significant role is played by the stabilization of \mathcal{E} which is shown to be often of the form $\operatorname{Proj}(P)$, for some object P, that is, it consists of exactly those morphisms to which P is projective.

1 Projective *E*-generators

Definition 1.1 A class \mathcal{E} of epimorphisms of a category \mathbf{A} (closed under the composition with isomorphisms) is said to be a coreflective class whenever, for each $B \in \mathbf{A}$, the embedding $\mathcal{E}(B) \to B \downarrow \mathbf{A}$, where $\mathcal{E}(B)$ denotes de subcategory of $B \downarrow \mathbf{A}$ whose objects are \mathcal{E} -morphisms, is a left adjoint; that is, each \mathbf{A} -morphism f has a factorization $m \cdot e$ with $e \in \mathcal{E}$, and such that if $m' \cdot e'$ is another such a factorization of f then there is a (unique) morphism t fulfilling the equalities $t \cdot e' = e$ and $m \cdot t = m'$. We say that $m \cdot e$ is the \mathcal{E} -factorization of f. (cf. [8], [13] and [4].)

Remark 1.2 If A has pushouts and \mathcal{E} is a pushout-stable coreflective class, the following facts are easy consequences of the above definition:

^{*}The author was supported in part by Center of Mathematics of Coimbra University.

- 1. The "local coreflections" $\mathcal{E}(B) \to B \downarrow \mathbf{A}$ determine a "global coreflection" from $Mor(\mathbf{A})$ to \mathcal{E} , where \mathcal{E} is regarded as a full subcategory of $Mor(\mathbf{A})$. (That is, using terminology of [8], \mathbf{A} has a locally orthogonal \mathcal{E} -factorization.)
- 2. \mathcal{E} determines a factorization system for morphisms if and only if it is closed under composition.

We add another property which will play a role throughout:

Lemma 1.3 If \mathcal{E} is a pushout-stable coreflective class in a category with pushouts, then the following conditions are equivalent:

(i) Any split epimorphism m which is part of an \mathcal{E} -factorization $m \cdot e$ is an isomorphism.

(ii) \mathcal{E} is closed under the composition with split epimorphisms from the left.

(iii) \mathcal{E} is closed under the composition with split epimorphisms (from the left and from the right).

Proof. (i) \Rightarrow (iii): Let $r \cdot s$ be defined with $s \in \mathcal{E}$ and r a split epi, and let $m \cdot e$ be the \mathcal{E} -factorization of $r \cdot s$. Then there is t such that $m \cdot t = r$ and, since r is a split epi, so is m, thus m is an isomorphism and $r \cdot s$ belongs to \mathcal{E} .

Take $r \cdot s$ with $r \in \mathcal{E}$ and s a split epi, let u be such that $s \cdot u = 1$, and let $m \cdot e$ be the \mathcal{E} -factorization of $r \cdot s$. From 1.2.1 and the equality $1 \cdot r = m \cdot e \cdot u$, we get a morphism t such that mt = 1 and tr = eu. Condition (i) ensures that m is an iso, and $r \cdot s \in \mathcal{E}$.

(ii) \Rightarrow (i): Let $m \cdot e$ be the \mathcal{E} -factorization of some f with m a split epi. Then $f \in \mathcal{E}$ and so f has an \mathcal{E} -factorization of the form $1 \cdot f$. Therefore, m is iso.

Definition 1.4 (cf. [3]) An object P is an \mathcal{E} -generator of the category **A** with copowers of P if, for each $A \in \mathbf{A}$, the canonical morphism ε_A from the coproduct $\prod_{\text{hom}(P,A)} P$ to A

belongs to \mathcal{E} .

Assumptions 1.5 From now on we assume that the category **A** has pullbacks and pushouts, and \mathcal{E} is a pushout-stable coreflective class contained in $Epi(\mathbf{A})$ which is closed under the composition with split epimorphisms.

A morphism is said to be \mathcal{E} -stable if its pullback along any morphism belongs to \mathcal{E} . The stabilization of \mathcal{E} is the class of all \mathcal{E} -stable morphisms; it is denoted by $St(\mathcal{E})$ and it is clearly contained in \mathcal{E} .(cf. [4])

Lemma 1.6 \mathcal{E} and $St(\mathcal{E})$ are strongly right-cancellable.

Proof. Given $r \cdot s \in \mathcal{E}$, we want to show that $r \in \mathcal{E}$. Let $m \cdot e$ be the \mathcal{E} -factorization of r. Then the equality $1 \cdot (r \cdot s) = (m \cdot e) \cdot s$ determines, by 1.2.1, the existence of a morphism t such that mt = 1 and $t \cdot (r \cdot s) = e \cdot s$. Since m is a split epimorphism and $m \cdot e$ is an \mathcal{E} -factorization, then, by 1.3, m is an isomorphism; so $r \in \mathcal{E}$. The right-cancellability of $\operatorname{St}(\mathcal{E})$ follows easily from the right-cancellability of \mathcal{E} . **Definition 1.7** An object P is said to be a projective \mathcal{E} -generator provided that it is an \mathcal{E} -generator which is $St(\mathcal{E})$ -projective, that is, for each $f \in St(\mathcal{E})$, the function hom(P, f) is surjective.

Notations 1.8 $\mathbb{C}(P)$ denotes the colimit-closure of P in \mathbf{A} , that is, the smallest full subcategory of \mathbf{A} containing P and closed under all colimits in \mathbf{A} .

For A an **A**-object, Proj(A) denotes the class of all **A**-morphisms f such that A is f-projective. It is easily seen that Proj(A) is pullback-stable.

Assumptions 1.9 In the following, besides the assumptions stated in 1.5, we also assume that \mathbf{A} is cocomplete.

We are going to make use of the following lemmas.

Lemma 1.10 If P is a projective \mathcal{E} -generator, then $St(\mathcal{E}) = Proj(P)$.

Proof. By the assumption on P, one of the inclusions is trivial. It remains to show that if P is $(f : X \to Y)$ -projective then $f \in \operatorname{St}(\mathcal{E})$, i.e., any pullback of f along any morphism belongs to \mathcal{E} . Let $(\bar{f} : W \to Z, \bar{g} : W \to X)$ be the pullback of (f, g). Since Pis f-projective, any coproduct of P is also f-projective; thus, from the pullback-stability of any class $\operatorname{Proj}(A), \bar{f} \in \operatorname{Proj}(\coprod_{\operatorname{hom}(P,Z)} P)$. Let s be a morphism fulfilling $\bar{f} \cdot s = \varepsilon_Z$ and let $m \cdot e$ be the \mathcal{E} -factorization of \bar{f} . We get the equality $1_Z \cdot \varepsilon_Z = m \cdot e \cdot s$, which, since $\varepsilon_Z \in \mathcal{E}$, implies the existence of some t such that $t \cdot \varepsilon_Z = e \cdot s$ and $m \cdot t = 1_Z$. Then, from 1.3, and in view of 1.5, m is an iso and $\bar{f} \in \mathcal{E}$.

Lemma 1.11 If **B** is an \mathcal{E} -coreflective subcategory¹ of **A**, then it is $(St(\mathcal{E}) \cap Mono(\mathbf{A}))$ -coreflective.

Proof. Let $s_X : S(X) \to X$ be a coreflection of X in **B** (with S the coreflector functor). By hypothesis, s_X lies in \mathcal{E} ; in order to show that it belongs to $St(\mathcal{E})$, let $(\bar{s} : W \to Y, \bar{g} : W \to S(X))$ be the pullback of (s_X, g) , for some morphism g. To conclude that $\bar{s} \in \mathcal{E}$, let $m \cdot e$ be the \mathcal{E} -factorization of \bar{s} . Since $s_X \cdot S(g) = g \cdot s_Y$, there is a unique morphism v such that $\bar{s} \cdot v = s_Y$ and $\bar{g} \cdot v = S(g)$. Then we have $1_Y \cdot s_Y = m \cdot e \cdot v$; since $m \cdot e$ is an \mathcal{E} -factorization and $s_Y \in \mathcal{E}$, there is a morphism t such $m \cdot t = 1_Y$, and, taking into account 1.3 and 1.5, we get that $\bar{s} \in \mathcal{E}$. It remains to show that s_X is a monomorphism: Let $a, b : Y \to S(X)$ be such that $s_X \cdot a = s_X \cdot b$; then the equality $s_X \cdot a \cdot s_Y = s_X \cdot b \cdot s_Y$ implies that $a \cdot s_Y = b \cdot s_Y$, and thus, since $\mathcal{E} \subseteq \text{Epi}(\mathbf{A}), a = b$.

Let us recall that, for \mathcal{E} a class containing all isomorphisms and closed under the composition with isomorphisms, \mathbf{A} is said to be \mathcal{E} -cocomplete provided that every pushout of any \mathcal{E} -morphism exists and belongs to \mathcal{E} and any family of morphisms of \mathcal{E} has a cointersection belonging to \mathcal{E} . The \mathcal{E} -cocompletness of \mathbf{A} implies that $\mathcal{E} \subseteq \operatorname{Epi}(\mathbf{A})$ and that \mathcal{E} is a coreflective class (see [12]).

Proposition 1.12 Let \mathbf{A} be \mathcal{E} -cocomplete and let P be a projective \mathcal{E} -generator of \mathbf{A} . Then $\mathbb{C}(P)$ consists of all \mathbf{A} -objects A such that the function hom(f, A) is bijective for each $f \in St(\mathcal{E}) \cap Mono(\mathbf{A})$. Furthermore $\mathbb{C}(P)$ is the smallest \mathcal{E} -correflective subcategory of \mathbf{A} .

¹By subcategory we mean a full subcategory.

Proof. Since \mathbf{A} is \mathcal{E} -cocomplete, P is an \mathcal{E} -generator and $\mathbb{C}(P)$ is closed under colimits in \mathbf{A} , a slight generalization of the dual of the Special Adjoint Functor Theorem ensures that $\mathbb{C}(P)$ is coreflective in \mathbf{A} . Moreover it is well-known that, then, it coincides with the co-orthogonal closure of P in \mathbf{A} , that is, $\mathbb{C}(P)$ consists of all those \mathbf{A} -objects A such that for any morphism f, hom(A, f) is a bijection whenever hom(P, f) is so. Consequently, in order to conclude that $\mathbb{C}(P)$ is the subcategory of \mathbf{A} of those objects A such that the function hom(f, A) is bijective for each $f \in \operatorname{St}(\mathcal{E}) \cap \operatorname{Mono}(\mathbf{A})$, it suffices to show that

$$\operatorname{St}(\mathcal{E}) \cap \operatorname{Mono}(\mathbf{A}) = \{ f \in \operatorname{Mor}(\mathbf{A}) \, | \, \operatorname{hom}(P, f) \text{ is an iso} \}.$$

$$\tag{1}$$

From Lemma 1.10, the inclusion " \subseteq " is trivial. Let hom(P, f) be an iso. Then, again by 1.10, f belongs to St(\mathcal{E}). In order to conclude that f is a mono, let $a, b : S \to X$ be morphisms such that fa = fb. Then for any $t : P \to S$, we have fat = fbt, what implies, since hom(P, f) is an iso, that at = bt. Thus a = b, because P is a generator.

The coreflections into $\mathbb{C}(P)$ belong to $\operatorname{St}(\mathcal{E}) \subseteq \mathcal{E}$, because P is r_X -projective for each coreflection r_X . In order to show that $\mathbb{C}(P)$ is the smallest \mathcal{E} -coreflective subcategory of \mathbf{A} , let \mathbf{B} be another \mathcal{E} -coreflective subcategory of \mathbf{A} . Let $X \in \mathbb{C}(P)$ and let $s_X : S(X) \to X$ be the coreflection of X in \mathbf{B} . By Lemma 1.11, s_X belongs to $\operatorname{St}(\mathcal{E}) \cap \operatorname{Mono}(\mathbf{A})$. Therefore, using (1), we get a morphism $t : X \to S(X)$ such that $s_X \cdot t = 1_X$, and thus s_X is an isomorphism. \Box

Remark 1.13 In the above proof, the only role of the \mathcal{E} -cocompleteness of \mathbf{A} is to assure that $\mathbb{C}(P)$ is refletive in \mathbf{A} . So, in Proposition 1.12, we can replace " \mathbf{A} is \mathcal{E} -cocomplete" by " $\mathbb{C}(P)$ is coreflective".

We have just conclude that the existence of a projective \mathcal{E} -generator P gives a characterization of the stabilization of \mathcal{E} , $\operatorname{St}(\mathcal{E}) = \operatorname{Proj}(P)$, and, in case **A** is \mathcal{E} -cocomplete, it guarantees that P "generates" the smallest \mathcal{E} -coreflective subcategory of **A**. In the following we give several examples of this situation.

Examples 1.14

1. For any monadic category \mathbf{A} over Set and $\mathcal{E} = RegEpi(\mathbf{A})$, let $P = F\{*\}$, where F is the corresponding left adjoint. Then P is an \mathcal{E} -generator such that $St(\mathcal{E}) = \mathcal{E} = Proj(P)$, and $\mathbf{A} = \mathbb{C}(\mathbf{P})$.

We point out that, under the conditions of Proposition 1.12, \mathbf{A} and $\mathbb{C}(P)$ are identical whenever $St(\mathcal{E}) \cap Mono(\mathbf{A}) = Iso(\mathbf{A})$, since { coreflections of \mathbf{A} in $\mathbb{C}(P)$ } \subseteq $St(\mathcal{E}) \cap Mono(\mathbf{A})$.

- 2. For $\mathbf{A} = \mathbf{Cat}$, $\mathcal{E} = ExtrEpi(\mathbf{A})$, and $\mathbf{2} = \{\mathbf{0} \to \mathbf{1}\}$ the category given by the ordered set 2, we have that $\mathbf{2}$ is an \mathcal{E} -generator, $St(\mathcal{E}) = Proj(\mathbf{2})$, and \mathcal{E} does not coincides with its stabilization (cf. [6]). The equality $\mathbf{A} = \mathbb{C}(\mathbf{P})$ also occurs.
- 3. Let **PreOrd** be the category whose objects are pairs (X, R_X) with X a set and R_X a preorder (i.e., a reflexive and transitive binary relation) on X, and whose morphisms are preorder-preserving maps. For $\mathcal{E} = \{\text{regular epimorphisms}\} = \{\text{extremal epimorphisms}\}, \text{ the object } P \text{ consisting of the set } \{0,1\} \text{ with } (0,1) \text{ as} \}$

the only non-trivial relation pair, is a projective \mathcal{E} -generator, in particular $St(\mathcal{E}) = Proj(P)$, although $St(\mathcal{E}) \neq \mathcal{E}$. The subcategory $\mathbb{C}(P)$ coincides with **PreOrd**.

In the following examples, it occurs the dual situation. That is, P is an injective \mathcal{M} cogenerator of \mathbf{A} , with \mathbf{A} and \mathcal{M} fulfilling the dual conditions of 1.9. A morphism
belongs to $St(\mathcal{M})$ whenever its pushout along any morphism lies in \mathcal{M} . It holds
the equality $St(\mathcal{M})=Inj(P)$, and the limit closure of P in \mathbf{A} , $\mathbb{L}(P)$, is the smallest \mathcal{M} -reflective subcategory of \mathbf{A} .

- In the category Set, the pushout-stable class M of monomorphisms coincides with Inj(P) for P the M-cogenerator set {0,1}, and L(P) = Set.
- 5. For **A** the category **Top** of topological spaces and continuous maps, let $\mathcal{M} = \{embeddings\}$, and let P be the topological space $\{0, 1, 2\}$ whose only non trivial open is $\{0\}$. Then P is an \mathcal{M} -cogenerator and $Inj(P)=St(\mathcal{M})=\mathcal{M}$. The subcategory $\mathbb{L}(P)$ is the whole category **Top**.
- 6. For the category $\mathbf{Top_0}$ of T_0 -topological spaces, $\mathcal{M} = \{\text{embeddings}\}$, the Sierpiński space S is an \mathcal{M} -cogenerator which fulfils $Inj(S)=St(\mathcal{M})=\mathcal{M}$. Here $\mathbb{IL}(S)$ is the subcategory of sober spaces.
- 7. If A is the subcategory of Top of all 0-dimensional spaces, and M consists of all embeddings, then M ≠ St(M), but again St(M) = Inj(P), where P is the space {0,1,2} whose topology has as only non trivial opens {0} and {1,2}. (The morphisms of St(M) are just those embeddings m : X → Y such that for each clopen set G of X there is some clopen H in Y such that G = m⁻¹(H) (cf. [10]).) We have that IL(P) = A (by 1.5.7 of [10]). A similar situation happens for the category of 0-dimensional Hausdorff spaces and M the class of embeddings, which again is not pushout-stable, if we choose P as being the space {0,1} with the discrete topology.
- 8. For **Tych** the category of Tychonoff spaces, the class \mathcal{M} of embeddings is not stable under pushouts, and $St(\mathcal{M}) = Inj(\mathcal{I})$, where I is the unit interval, with the euclidean topology. The $St(\mathcal{M})$ -morphisms are just the C^{*}-embeddings (cf. [10]) and $\mathbb{L}(I)$ is the subcategory of compact Hausdorff spaces.
- 9. For $\mathbf{Vec}_{\mathbf{K}}$ the category of linear spaces and linear maps over the field \mathbf{K} , the class \mathcal{M} of all monomorphisms is stable under pushouts and \mathbf{K} is an injective \mathcal{M} -cogenerator.
- 10. In the category Ab of abelian groups and homomorphisms of group, let \mathcal{M} be the class of all monomorphisms. Then $P = \coprod_{n \in \mathbb{N}_0} \mathbb{Q}/n\mathbb{Z}$ (where \mathbb{Q} and \mathbb{Z} are the groups of rational numbers and of integers numbers, respectively) is an \mathcal{M} cogenerator², and it holds that $St(\mathcal{M}) = \mathcal{M} = Inj(\mathcal{P})$. The limit closure $\mathbb{L}(P)$ is

²For each $X \in \mathbf{Ab}$, and each element $x \neq 0$ of X, let $f : \mathbb{Z}/n\mathbb{Z} \to X$ be the monomorphism determined by $f(1 + n\mathbb{Z}) = x$, where n = 0 if x is torsion-free, otherwise n is the minimum positive integer such that nx = 0. Then there is some $\overline{i} : X \to \mathbb{Q}/n\mathbb{Z}$ such that $\overline{i} \cdot f = i$, where i is the inclusion of $\mathbb{Z}/n\mathbb{Z}$ into $\mathbb{Q}/n\mathbb{Z}$, and $\overline{i}(x) \neq 0$. So the quotients $\mathbb{Q}/n\mathbb{Z}$ with n = 0, 1, 2, ..., distinguish points in any abelian group, from what follows that the divisible abelian group $P = \prod_{n \in \mathbb{N}_0} \mathbb{Q}/n\mathbb{Z}$ is an \mathcal{M} -cogenerator of \mathbf{Ab} .

the whole category Ab, taking into account the dual of 1.12 and that in Ab any monomorphism is regular.

11. In the category of torsion-free abelian groups and homomorphisms of group, for \mathcal{M} the class of all monomorphisms, the group of rational numbers \mathbb{Q} is an \mathcal{M} -cogenerator and $St(\mathcal{M}) = \mathcal{M} = Inj(\mathbb{Q})$. $\mathbb{L}(\mathbb{Q})$ is the subcategory of torsion-free divisible abelian groups.

One question arises: When is the stabilization of a corefletive class \mathcal{E} of the form $\operatorname{Proj}(P)$, or, at least, when is it of the form $\operatorname{Proj}(\mathbf{B})$ for some subcategory **B** of **A**? The following proposition gives a partial answer.

Let us recall that, if \mathcal{F} is a class of morphisms of a category \mathbf{A} containing all isomorphisms and closed under composition with isomorphisms, \mathbf{A} is said to have *enough* \mathcal{F} -projectives provided that, for each $A \in \mathbf{A}$, there is an \mathcal{F} -morphism $f: B \to A$ with an \mathcal{F} -projective domain. An \mathcal{F} -morphism $f: B \to A$ is said to be \mathcal{F} -coessential whenever any composition $f \cdot g$ belongs to \mathcal{F} only if $g \in \mathcal{F}$. We say that the category \mathbf{A} has \mathcal{F} -projective hulls if, for each \mathbf{A} -object A there is some \mathcal{F} -coessential morphism $f: B \to A$ where B is \mathcal{F} -projective.

Proposition 1.15 1. If **A** has enough $St(\mathcal{E})$ -projectives, then $St(\mathcal{E}) = Proj(\mathbf{B})$ for some subcategory **B** of **A**.

2. If $St(\mathcal{E}) = Proj(\mathbf{B})$ for some \mathcal{E} -coreflective subcategory \mathbf{B} of \mathbf{A} , then \mathbf{B} has $St(\mathcal{E})$ -projective hulls.

Proof. 1. Let **B** consist of all objects of **A** which are $\operatorname{St}(\mathcal{E})$ -projective; clearly $\operatorname{St}(\mathcal{E}) \subseteq$ Proj(**B**). In order to show the converse inclusion, let $f: A \to B$ belong to $\operatorname{Proj}(\mathbf{B})$, and let $(\bar{f}: D \to C, \bar{g}: D \to A)$ be the pullback of f and g, for some $g: C \to B$. Since **A** has enough $\operatorname{St}(\mathcal{E})$ -projectives, there is some $\operatorname{St}(\mathcal{E})$ -morphism $q: E \to C$ with $E \in \mathbf{B}$. It gives rise to the existence of a morphism \bar{q} such that $g \cdot q = f \cdot \bar{q}$, and so, by the universality of the pullback, there is a morphism $t: E \to D$ such that $\bar{f} \cdot t = q$ and $\bar{g} \cdot t = \bar{q}$. Let $\bar{f} = m \cdot e$ be the \mathcal{E} -factorization of \bar{f} ; then the equality $m \cdot e \cdot t = 1_C \cdot q$ guarantees the existence of a morphism d such that $m \cdot d = 1_C$, so, being a split epimorphism, m is an isomorphism, and thus \bar{f} belongs to \mathcal{E} .

2. By Lemma 1.11, each coreflection $s_A : S(A) \to A$ into **B** belongs to $St(\mathcal{E})$. It remains to show that s_A is a $St(\mathcal{E})$ -coessential morphism. Let g be such that $s_A \cdot g$ belongs to $St(\mathcal{E})$, and let \bar{g} be the pullback of g along any h. By 1.11, s_A is a monomorphism, then \bar{g} is also the pullback of $s_A \cdot g$ along $s_A \cdot h$. Thus $\bar{g} \in \mathcal{E}$, and g belongs to $St(\mathcal{E})$. \Box

2 Premonadicity

Definition 2.1 We say that a class \mathcal{F} of epimorphisms is saturated provided that, for each $f \in \mathcal{F}$, the coequalizer of the kernel pair of f belongs to \mathcal{F} .

Lemma 2.2 If P is a projective \mathcal{E} -generator, then the following two assertions are equivalent:

1. $St(\mathcal{E})$ is saturated.

2. For each $e \in St(\mathcal{E})$, the unique morphism d such that $d \cdot c = e$, for c the coequalizer of the kernel pair of e, is a monomorphism.

Proof. By Lemma 1.10, $\operatorname{St}(\mathcal{E}) = \operatorname{Proj}(\mathcal{P})$. Let $\operatorname{St}(\mathcal{E})$ be saturated, let $e \in \operatorname{St}(\mathcal{E})$, let c be the coequalizer of the kernel pair (u, v) of e, and let d be the unique morphism d such that $d \cdot c = e$. Let a and b be morphisms such that $d \cdot a = d \cdot b$; in order to show that a = b, since P is a generator, we may assume without loss of generality that P is the domain of a and b. Consequently, since $c \in \operatorname{St}(\mathcal{E})$, there is \bar{a} and \bar{b} such that $c \cdot \bar{a} = a$ and $c \cdot \bar{b} = b$; then $e \cdot \bar{a} = d \cdot c \cdot \bar{a} = da = db = d \cdot c \cdot \bar{b} = e \cdot \bar{b}$. Since (u, v) is the kernel pair of e, this implies the existence of a unique morphism t such that $u \cdot t = \bar{a}$ and $v \cdot t = \bar{b}$. Therefore, $a = c \cdot \bar{a} = c \cdot u \cdot t = c \cdot v \cdot t = c \cdot \bar{b} = b$.

Conversely, if d is a monomorphism, for each morphism f with domain P and codomain in the codomain of c, we have some morphism f' such that $e \cdot f' = d \cdot f$, because $e \in \operatorname{Proj}(P)$. Thus, $d \cdot c \cdot f' = d \cdot f$, and then $c \cdot f' = f$.

- **Examples 2.3** 1. If $\mathcal{E} \subseteq \{\text{regular epimorphisms}\}, St(\mathcal{E})$ is trivially saturated, since a regular epimorphism is the coequalizer of its kernel pair. The saturation of $St(\mathcal{E})$ is also clear when \mathcal{E} is pullback stable and \mathcal{E} contains all regular epimorphisms.
 - In all examples of 1.14, for the considered class E or M, the corresponding stabilization is saturated, except in the second example. In fact, for the category Cat and E = {extremal epimorphisms}, St(E) is not saturated. To see that, consider the functor F : A → B where A = 2 and B is the category with a unique object and with an only non-identity morphism f such that f · f = f. Then the coequalizer of the kernel pair of F is G : A → C where C is the category with a unique object and fⁿ, n ∈ N, as morphisms different from the identity. Clearly the morphism G does not belong to St(E) (see [6]).

It is known that there exists a monadic functor $U: \mathbf{A} \to \mathbf{Set}$ (see [1] or [7]) iff

- (i) **A** has finite limits;
- (ii) \mathbf{A} is exact;
- (iii) **A** has a regular generator P;
- (iv) P is projective;
- (v) **A** has copowers of P.

The assumption (ii) ensures that $\operatorname{St}(\mathcal{E}) = \mathcal{E}$ for \mathcal{E} the class of regular epimorphisms; thus (iii) and (iv) mean that P is a projective \mathcal{E} -generator in the sense of definition 1.7. Moreover, the monadicity of U, combined with the cocompletness of \mathbf{A} , implies that $\mathbf{A} = \mathbb{C}(\mathbf{P})$.

The next theorem, where projectivity has a relevant role, gives sufficient conditions for the premonadicity of a right-adjoint $U : \mathbf{A} \to \mathbf{Set}$. The assumed conditions are a generalization of (i)–(v) above.

Theorem 2.4 Let P be a projective \mathcal{E} -generator of \mathbf{A} and let $St(\mathcal{E})$ be saturated. Then, assuming that $\mathbb{C}(P)$ is coreflective in \mathbf{A} , the functor $\hom(P, -) : \mathbb{C}(P) \to \mathbf{Set}$ is premonadic, and $\mathbb{C}(P)$ is equivalent to a reflective subcategory of the corresponding category of Eilenberg-Moore algebras. **Proof.** Since hom(P, -) is a right adjoint and $\mathbb{C}(P)$ has coequalizers, we know that the comparison functor is a right adjoint. In order to show that it is full and faithful, it suffices to prove that the co-units of the right adjoint hom $(P, -) : \mathbb{C}(P) \to \mathbf{Set}$ are regular epimorphisms. For each $B \in \mathbb{C}(P)$, let us consider the corresponding co-unit

$$\varepsilon_B: \coprod_{\operatorname{hom}(P,B)} P \longrightarrow B.$$

Since P is ε_B -projective, ε_B belongs to $\operatorname{St}(\mathcal{E})$, by 1.10. Let (u, v) be the kernel pair of ε_B and let c be the coequalizer of u and v. Since $\operatorname{St}(\mathcal{E})$ is saturated, the morphism d such that $d \cdot c = \varepsilon_B$ is a monomorphism. But $\operatorname{St}(\mathcal{E})$ is strongly right-cancellable, by 1.6, so $d \in \operatorname{St}(\mathcal{E})$. Then $d \in \operatorname{St}(\mathcal{E}) \cap \operatorname{Mono}(\mathbf{A})$ and, thus, by Proposition 1.12 (see also Remark 1.13), there is some morphism t such that $d \cdot t = 1_B$. Therefore d is an isomorphism and ε_B is a regular epimorphism. \Box

Definition 2.5 *P* is a projective dense \mathcal{E} -generator of **A** if it is a projective \mathcal{E} -generator and $\mathbb{C}(P) = \mathbf{A}$.

Corollary 2.6 If **A** has a projective dense \mathcal{E} -generator P and $St(\mathcal{E})$ is saturated then $hom(P, -) : \mathbf{A} \to \mathbf{Set}$ is premonadic.

Examples 2.7 All examples of 1.14 fulfil the conditions of the above theorem, except the second one. As seen in 2.3.2, in this case, the saturation of $St(\mathcal{E})$ fails. And, curiously, the corresponding functor into **Set** is not premonadic: It is easily seen that the corresponding co-units are not necessarily regular epimorphisms (cf. [6]).

In particular, the functor $hom(0 \rightarrow 1, -)$: **PreOrd** \rightarrow **Set** is premonadic but not monadic, since regular epimorphisms are not stable under pullbacks.

1.14 and 2.3 also lead to several examples of categories \mathbf{A} for which \mathbf{A}^{op} is premonadic over Set.

The above results bring up the question of knowing if the premonadicity implies the existence of a projective \mathcal{E} -generator for some \mathcal{E} . The next proposition derives from the analysis of this subject, although it does not give a complete answer.

Proposition 2.8 Let \mathbf{A} be a cocomplete and cowellpowered category. If $U : \mathbf{A} \to \mathbf{Set}$ is a premonadic functor, then there is a coreflective class \mathcal{E} and a dense \mathcal{E} -generator P of \mathbf{A} such that $Proj(P) \subseteq St(\mathcal{E})$.

Proof. Let $U : \mathbf{A} \to \mathbf{Set}$ be premonadic. It reflects isomorphisms because \mathbf{A} is a full subcategory of the corresponding category of Eilenberg-Moore algebras, and every monadic functor over **Set** reflects isomorphisms. Let $P = F\{*\}$ where F is the left adjoint of U. Since $U \simeq \hom(P, -)$ reflects isomorphisms we have that the class of morphisms co-orthogonal to P is just Iso(\mathbf{A}), thus \mathbf{A} is the co-orthogonal closure of P. Under the assumptions on \mathbf{A} , $\mathbb{C}(P)$ is coreflective, so it coincides with its co-orthogonal closure, and thus $\mathbb{C}(P) = \mathbf{A}$, that is, P is a dense generator.

Since the co-units of $\hom(P, -)$ are epimorphic, and $f \in \operatorname{Proj}(P)$ if and only if $\hom(P, f)$ is surjective, it follows that $\operatorname{Proj}(P) \subseteq \operatorname{Epi}(\mathbf{A})$. Let \mathcal{E} be the closure of $\operatorname{Proj}(P)$ under pushouts and cointersections in $\operatorname{Mor}(\mathbf{A})$. Then \mathcal{E} is a subclass of $\operatorname{Epi}(\mathbf{A})$; we are

going to see that it is coreflective, more than that, it fulfils the condition stated in 1.2.1. In order to conclude that, given a morphism f, consider all pairs (e_i, m_i) , such that $f = m_i \cdot e_i$ and e_i is in \mathcal{E} . Let $(e, (t_i))$ be the cointersection of all these e_i 's, whose existence is guaranteed by the fact that \mathbf{A} is cocomplete and cowellpowered. The definition of cointersection gives a unique morphism m such that $m \cdot e = f$. This is an \mathcal{E} -factorization of f, that is, $(1,m): e \to f$ is a coreflection of $f \in \operatorname{Mor}(\mathbf{A})$ into \mathcal{E} . In fact, let q be another morphism in \mathcal{E} and let $(r,h): q \to f$ be a morphism in the category $\operatorname{Mor}(A)$, that is, $f \cdot r = h \cdot q$. Form the pushout (q',r') of (q,r) and let d be the unique morphism which fulfil the equalities $f = d \cdot q'$ and $d \cdot r' = h$. Then, for some $i_o, q' = e_{i_o}$ and $d = m_{i_o}$. Thus $t_{i_o} \cdot r'$ is a morphism such that $(t_{i_o} \cdot r') \cdot q = e \cdot r$ and $m \cdot (t_{i_o} \cdot r') = h$.

Since $\operatorname{Proj}(P) \subseteq \mathcal{E}$, and for each $A \in \mathbf{A}$, the co-unit $\varepsilon_A \in \operatorname{Proj}(P)$, we conclude that P is a dense \mathcal{E} -generator. Moreover, $\operatorname{Proj}(P)$ is contained in $\operatorname{St}(\mathcal{E})$, because it is pullback stable. \Box

Acknowledgements I would like to thank George Janelidze for very valuable discussions on the subject of this paper.

References

- [1] Borceux, F. Handbook of categorical Algebra, Vol. 1 and 2, Cambridge University Press 1994.
- [2] Bednarczyk, M.A., Borzyszkowski, A., Pawlowski, W., Generalized congruences epimorphisms in Cat, Theory Appl. Categories 5 (1999) 266–280.
- [3] Börger, R., Tholen, W., Generators, totality, and density, I, preprint
- [4] Carboni, A., Janelidze, G., Kelly, G. M., and Paré, R. On localization and stabilization for factorization systems, Appl. Categorical Structures 5 (1997), 1–58.
- [5] Janelidze, G. and Sobral, M. *Finite preorders and topological descent*, J. Pure Appl. Algebra (to appear)
- [6] Janelidze, G., Sobral, M., and Tholen, W. Beyond Barr Exactness: Effective Descent Morphisms, preprint.
- [7] MacDonald, J. and Sobral, M. Aspects of Monads, preprint.
- [8] MacDonald, J. and Tholen, W. Decomposition of morphisms into infinitely many factors, Category Theory Proceedings Gummersbch 1981, Lecture Notes in Mathematics 962, Springer, Berlin, 1982, 175–189.
- [9] Sobral, M., Absolutely closed spaces and categories of algebras, Portugaliae Math. 47 (1990), 341–351.
- [10] Sousa, L. Orthogonal and Reflective Hulls, PhD. thesis, University of Coimbra, 1997.
- [11] Sousa, L. Pushout stability of embeddings, injectivity and categories of algebras, Proceedings of the Ninth Prague Topological Symposium (2001), Topol. Atlas, North Bay, ON, 2002, 295–308.

- [12] Tholen, W. Semi-topological functors I, J. Pure App. Algebra 15 (1979), 53–73.
- [13] Tholen, W. Factorizations, localizations, and the orthogonal subcategory problem, Math. Nachr. 114 (1983), 63–85.