
On projective E-generators and premonadic functors
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Abstract

It is shown that a well behaved category is premonadic over Set if it has a pro-
jective E-generator, for a convenient class E of epimorphisms. A variety of examples
is provided.

Introduction

A functor U : A → Set is said to be premonadic provided that it is a right-adjoint and
A is equivalent to a full subcategory of the corresponding category of Eilenberg-Moore
algebras. If A is a category with coequalizers, then the premonadicity of U means that
A is equivalent to a reflective subcategory of the category of algebras.

Of course every monadic functor is premonadic. Concerning monadicity, it is known
that a category A is monadic over Set if and only if A is an exact category, has a
regular projective generator P and arbitrary copowers of P . The aim of this paper is
to analyze what part of the above monadicity characterizing properties is relevant for
a characterization of premonadicity over Set. In particular, we show that an enough
well behaved category is premonadic over Set if it has a projective E-generator P , for a
convenient ”coreflective” class E of A-epimorphisms. A kind of partial converse of this
is also achieved. A significant role is played by the stabilization of E which is shown
to be often of the form Proj(P ), for some object P , that is, it consists of exactly those
morphisms to which P is projective.

1 Projective E-generators

Definition 1.1 A class E of epimorphisms of a category A (closed under the composition
with isomorphisms) is said to be a coreflective class whenever, for each B ∈ A, the
embedding E(B) → B ↓ A, where E(B) denotes de subcategory of B ↓ A whose objects
are E-morphisms, is a left adjoint; that is, each A-morphism f has a factorization m · e
with e ∈ E, and such that if m′ · e′ is another such a factorization of f then there is a
(unique) morphism t fulfilling the equalities t · e′ = e and m · t = m′. We say that m · e
is the E-factorization of f . (cf. [8], [13] and [4].)

Remark 1.2 If A has pushouts and E is a pushout-stable coreflective class, the following
facts are easy consequences of the above definition:
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1. The “local coreflections” E(B) → B ↓ A determine a “global coreflection” from
Mor(A) to E, where E is regarded as a full subcategory of Mor(A). (That is, using
terminology of [8], A has a locally orthogonal E-factorization.)

2. E determines a factorization system for morphisms if and only if it is closed under
composition.

We add another property which will play a role throughout:

Lemma 1.3 If E is a pushout-stable coreflective class in a category with pushouts, then
the following conditions are equivalent:

(i) Any split epimorphism m which is part of an E-factorization m · e is an isomor-
phism.

(ii) E is closed under the composition with split epimorphisms from the left.
(iii) E is closed under the composition with split epimorphisms (from the left and from

the right).

Proof.. (i) ⇒ (iii): Let r · s be defined with s ∈ E and r a split epi, and let m · e be the
E-factorization of r · s. Then there is t such that m · t = r and, since r is a split epi, so
is m, thus m is an isomorphism and r · s belongs to E .

Take r · s with r ∈ E and s a split epi, let u be such that s ·u = 1, and let m · e be the
E-factorization of r · s. From 1.2.1 and the equality 1 · r = m · e · u, we get a morphism t
such that mt = 1 and tr = eu. Condition (i) ensures that m is an iso, and r · s ∈ E .

(ii) ⇒ (i): Let m · e be the E-factorization of some f with m a split epi. Then f ∈ E
and so f has an E-factorization of the form 1 · f . Therefore, m is iso. 2

Definition 1.4 (cf. [3]) An object P is an E-generator of the category A with copowers
of P if, for each A ∈ A, the canonical morphism εA from the coproduct

∐

hom(P,A)

P to A

belongs to E.

Assumptions 1.5 From now on we assume that the category A has pullbacks and
pushouts, and E is a pushout-stable coreflective class contained in Epi(A) which is closed
under the composition with split epimorphisms.

A morphism is said to be E-stable if its pullback along any morphism belongs to E .
The stabilization of E is the class of all E-stable morphisms; it is denoted by St(E) and
it is clearly contained in E .(cf. [4])

Lemma 1.6 E and St(E) are strongly right-cancellable.

Proof.. Given r ·s ∈ E , we want to show that r ∈ E . Let m ·e be the E-factorization of r.
Then the equality 1 · (r · s) = (m · e) · s determines, by 1.2.1, the existence of a morphism
t such that mt = 1 and t · (r · s) = e · s. Since m is a split epimorphism and m · e is an
E-factorization, then, by 1.3, m is an isomorphism; so r ∈ E . The right-cancellability of
St(E) follows easily from the right-cancellability of E . 2
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Definition 1.7 An object P is said to be a projective E-generator provided that it is an
E-generator which is St(E)-projective, that is, for each f ∈ St(E), the function hom(P, f)
is surjective.

Notations 1.8 C(P ) denotes the colimit-closure of P in A, that is, the smallest full
subcategory of A containing P and closed under all colimits in A.

For A an A-object, Proj(A) denotes the class of all A-morphisms f such that A is
f-projective. It is easily seen that Proj(A) is pullback-stable.

Assumptions 1.9 In the following, besides the assumptions stated in 1.5, we also as-
sume that A is cocomplete.

We are going to make use of the following lemmas.

Lemma 1.10 If P is a projective E-generator, then St(E) = Proj(P ).

Proof. By the assumption on P , one of the inclusions is trivial. It remains to show
that if P is (f : X → Y )-projective then f ∈ St(E), i.e., any pullback of f along any
morphism belongs to E . Let (f̄ : W → Z, ḡ : W → X) be the pullback of (f, g). Since P
is f -projective, any coproduct of P is also f -projective; thus, from the pullback-stability
of any class Proj(A), f̄ ∈ Proj(

∐
hom(P,Z) P ). Let s be a morphism fulfilling f̄ · s = εZ

and let m · e be the E-factorization of f̄ . We get the equality 1Z · εZ = m · e · s, which,
since εZ ∈ E , implies the existence of some t such that t · εZ = e · s and m · t = 1Z . Then,
from 1.3, and in view of 1.5, m is an iso and f̄ ∈ E . 2

Lemma 1.11 If B is an E-coreflective subcategory1 of A, then it is (St(E)∩Mono(A))-
coreflective.

Proof. Let sX : S(X) → X be a coreflection of X in B (with S the coreflector functor).
By hypothesis, sX lies in E ; in order to show that it belongs to St(E), let (s̄ : W → Y, ḡ :
W → S(X)) be the pullback of (sX , g), for some morphism g. To conclude that s̄ ∈ E ,
let m · e be the E-factorization of s̄. Since sX · S(g) = g · sY , there is a unique morphism
v such that s̄ · v = sY and ḡ · v = S(g). Then we have 1Y · sY = m · e · v; since m · e is
an E-factorization and sY ∈ E , there is a morphism t such m · t = 1Y , and, taking into
account 1.3 and 1.5, we get that s̄ ∈ E . It remains to show that sX is a monomorphism:
Let a, b : Y → S(X) be such that sX · a = sX · b; then the equality sX · a · sY = sX · b · sY

implies that a · sY = b · sY , and thus, since E ⊆ Epi(A), a = b. 2

Let us recall that, for E a class containing all isomorphisms and closed under the com-
position with isomorphisms, A is said to be E-cocomplete provided that every pushout
of any E-morphism exists and belongs to E and any family of morphisms of E has a
cointersection belonging to E . The E-cocompletness of A implies that E ⊆ Epi(A) and
that E is a coreflective class (see [12]).

Proposition 1.12 Let A be E-cocomplete and let P be a projective E-generator of A.
Then C(P ) consists of all A-objects A such that the function hom(f, A) is bijective for
each f ∈ St(E)∩Mono(A). Furthermore C(P ) is the smallest E-correflective subcategory
of A.

1By subcategory we mean a full subcategory.
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Proof. Since A is E-cocomplete, P is an E-generator and C(P ) is closed under colimits
in A, a slight generalization of the dual of the Special Adjoint Functor Theorem ensures
that C(P ) is coreflective in A. Moreover it is well-known that, then, it coincides with the
co-orthogonal closure of P in A, that is, C(P ) consists of all those A-objects A such that
for any morphism f , hom(A, f) is a bijection whenever hom(P, f) is so. Consequently,
in order to conclude that C(P ) is the subcategory of A of those objects A such that the
function hom(f, A) is bijective for each f ∈ St(E) ∩Mono(A), it suffices to show that

St(E) ∩Mono(A) = {f ∈ Mor(A) |hom(P, f) is an iso}. (1)

From Lemma 1.10, the inclusion “⊆” is trivial. Let hom(P, f) be an iso. Then, again
by 1.10, f belongs to St(E). In order to conclude that f is a mono, let a, b : S → X be
morphisms such that fa = fb. Then for any t : P → S, we have fat = fbt, what implies,
since hom(P, f) is an iso, that at = bt. Thus a = b, because P is a generator.

The coreflections into C(P ) belong to St(E) ⊆ E , because P is rX -projective for each
coreflection rX . In order to show that C(P ) is the smallest E-coreflective subcategory of
A, let B be another E-coreflective subcategory of A. Let X ∈ C(P ) and let sX : S(X) →
X be the coreflection of X in B. By Lemma 1.11, sX belongs to St(E) ∩ Mono(A).
Therefore, using (1), we get a morphism t : X → S(X) such that sX · t = 1X , and thus
sX is an isomorphism. 2

Remark 1.13 In the above proof, the only role of the E-cocompleteness of A is to assure
that C(P ) is refletive in A. So, in Proposition 1.12, we can replace “A is E-cocomplete”
by “C(P ) is coreflective”.

We have just conclude that the existence of a projective E-generator P gives a char-
acterization of the stabilization of E , St(E) =Proj(P ), and, in case A is E-cocomplete,
it guarantees that P “generates” the smallest E-coreflective subcategory of A. In the
following we give several examples of this situation.

Examples 1.14

1. For any monadic category A over Set and E = RegEpi(A), let P = F{∗}, where
F is the corresponding left adjoint. Then P is an E-generator such that St(E) =
E = Proj(P ), and A = C(P).

We point out that, under the conditions of Proposition 1.12, A and C(P ) are iden-
tical whenever St(E) ∩Mono(A) = Iso(A), since { coreflections of A in C(P ) } ⊆
St(E) ∩Mono(A).

2. For A = Cat, E = ExtrEpi(A), and 2 = {0 → 1} the category given by the ordered
set 2, we have that 2 is an E-generator, St(E) = Proj(2), and E does not coincides
with its stabilization (cf. [6]). The equality A = C(P) also occurs.

3. Let PreOrd be the category whose objects are pairs (X,RX) with X a set and
RX a preorder (i.e., a reflexive and transitive binary relation) on X, and whose
morphisms are preorder-preserving maps. For E = {regular epimorphisms} =
{extremal epimorphisms}, the object P consisting of the set {0, 1} with (0, 1) as
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the only non-trivial relation pair, is a projective E-generator, in particular St(E) =
Proj(P ), although St(E) 6= E. The subcategory C(P ) coincides with PreOrd.

In the following examples, it occurs the dual situation. That is, P is an injective M-
cogenerator of A, with A and M fulfilling the dual conditions of 1.9. A morphism
belongs to St(M) whenever its pushout along any morphism lies in M. It holds
the equality St(M)=Inj(P ), and the limit closure of P in A, IL(P ), is the smallest
M-reflective subcategory of A.

4. In the category Set, the pushout-stable class M of monomorphisms coincides with
Inj(P ) for P the M-cogenerator set {0, 1}, and IL(P ) = Set.

5. For A the category Top of topological spaces and continuous maps, let M =
{embeddings}, and let P be the topological space {0, 1, 2} whose only non trivial
open is {0}. Then P is an M-cogenerator and Inj(P )=St(M)=M. The subcate-
gory IL(P ) is the whole category Top.

6. For the category Top0 of T0-topological spaces, M = {embeddings}, the Sierpiński
space S is an M-cogenerator which fulfils Inj(S)=St(M)=M. Here IL(S) is the
subcategory of sober spaces.

7. If A is the subcategory of Top of all 0-dimensional spaces, and M consists of
all embeddings, then M 6= St(M), but again St(M) = Inj(P), where P is the
space {0, 1, 2} whose topology has as only non trivial opens {0} and {1, 2}. (The
morphisms of St(M) are just those embeddings m : X → Y such that for each
clopen set G of X there is some clopen H in Y such that G = m−1(H) (cf. [10]).)
We have that IL(P ) = A (by 1.5.7 of [10]). A similar situation happens for the
category of 0-dimensional Hausdorff spaces and M the class of embeddings, which
again is not pushout-stable, if we choose P as being the space {0, 1} with the discrete
topology.

8. For Tych the category of Tychonoff spaces, the class M of embeddings is not stable
under pushouts, and St(M) = Inj(I), where I is the unit interval, with the euclidean
topology. The St(M)-morphisms are just the C∗-embeddings (cf. [10]) and IL(I) is
the subcategory of compact Hausdorff spaces.

9. For VecIK the category of linear spaces and linear maps over the field IK, the
class M of all monomorphisms is stable under pushouts and IK is an injective
M-cogenerator.

10. In the category Ab of abelian groups and homomorphisms of group, let M be
the class of all monomorphisms. Then P =

∐
n∈IN0

Q/nZZ (where Q and ZZ are
the groups of rational numbers and of integers numbers, respectively) is an M-
cogenerator2, and it holds that St(M) = M = Inj(P). The limit closure IL(P ) is

2For each X ∈ Ab, and each element x 6= 0 of X, let f : ZZ/nZZ → X be the monomorphism
determined by f(1 + nZZ) = x, where n = 0 if x is torsion-free, otherwise n is the minimum positive
integer such that nx = 0. Then there is some ī : X → Q/nZZ such that ī · f = i, where i is the inclusion
of ZZ/nZZ into Q/nZZ, and ī(x) 6= 0. So the quotients Q/nZZ with n = 0, 1, 2, ..., distinguish points in any
abelian group, from what follows that the divisible abelian group P =

∐
n∈IN0

Q/nZZ is an M-cogenerator

of Ab.
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the whole category Ab, taking into account the dual of 1.12 and that in Ab any
monomorphism is regular.

11. In the category of torsion-free abelian groups and homomorphisms of group, for
M the class of all monomorphisms, the group of rational numbers Q is an M-
cogenerator and St(M) = M = Inj(Q). IL(Q) is the subcategory of torsion-free
divisible abelian groups.

One question arises: When is the stabilization of a corefletive class E of the form
Proj(P ), or, at least, when is it of the form Proj(B) for some subcategory B of A? The
following proposition gives a partial answer.

Let us recall that, if F is a class of morphisms of a category A containing all iso-
morphisms and closed under composition with isomorphisms, A is said to have enough
F-projectives provided that, for each A ∈ A, there is an F-morphism f : B → A with an
F-projective domain. An F-morphism f : B → A is said to be F-coessential whenever
any composition f · g belongs to F only if g ∈ F . We say that the category A has F-
projective hulls if, for each A-object A there is some F-coessential morphism f : B → A
where B is F-projective.

Proposition 1.15 1. If A has enough St(E)-projectives, then St(E) = Proj(B) for some
subcategory B of A.

2. If St(E) = Proj(B) for some E-coreflective subcategory B of A, then B has St(E)-
projective hulls.

Proof. 1. Let B consist of all objects of A which are St(E)-projective; clearly St(E) ⊆
Proj(B). In order to show the converse inclusion, let f : A → B belong to Proj(B), and
let (f̄ : D → C, ḡ : D → A) be the pullback of f and g, for some g : C → B. Since A has
enough St(E)-projectives, there is some St(E)-morphism q : E → C with E ∈ B. It gives
rise to the existence of a morphism q̄ such that g · q = f · q̄, and so, by the universality
of the pullback, there is a morphism t : E → D such that f̄ · t = q and ḡ · t = q̄. Let
f̄ = m · e be the E-factorization of f̄ ; then the equality m · e · t = 1C · q guarantees the
existence of a morphism d such that m · d = 1C , so, being a split epimorphism, m is an
isomorphism, and thus f̄ belongs to E .

2. By Lemma 1.11, each coreflection sA : S(A) → A into B belongs to St(E). It
remains to show that sA is a St(E)-coessential morphism. Let g be such that sA ·g belongs
to St(E), and let ḡ be the pullback of g along any h. By 1.11, sA is a monomorphism,
then ḡ is also the pullback of sA · g along sA · h. Thus ḡ ∈ E , and g belongs to St(E). 2

2 Premonadicity

Definition 2.1 We say that a class F of epimorphisms is saturated provided that, for
each f ∈ F , the coequalizer of the kernel pair of f belongs to F .

Lemma 2.2 If P is a projective E-generator, then the following two assertions are equiv-
alent:

1. St(E) is saturated.
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2. For each e ∈ St(E), the unique morphism d such that d · c = e, for c the coequalizer
of the kernel pair of e, is a monomorphism.

Proof. By Lemma 1.10, St(E) = Proj(P). Let St(E) be saturated, let e ∈ St(E), let c
be the coequalizer of the kernel pair (u, v) of e, and let d be the unique morphism d such
that d · c = e. Let a and b be morphisms such that d · a = d · b; in order to show that
a = b, since P is a generator, we may assume without loss of generality that P is the
domain of a and b. Consequently, since c ∈ St(E), there is ā and b̄ such that c · ā = a and
c · b̄ = b; then e · ā = d · c · ā = da = db = d · c · b̄ = e · b̄. Since (u, v) is the kernel pair
of e, this implies the existence of a unique morphism t such that u · t = ā and v · t = b̄.
Therefore, a = c · ā = c · u · t = c · v · t = c · b̄ = b.

Conversely, if d is a monomorphism, for each morphism f with domain P and
codomain in the codomain of c, we have some morphism f ′ such that e · f ′ = d · f ,
because e ∈ Proj(P ). Thus, d · c · f ′ = d · f , and then c · f ′ = f . 2

Examples 2.3 1. If E ⊆ {regular epimorphisms}, St(E) is trivially saturated, since
a regular epimorphism is the coequalizer of its kernel pair. The saturation of St(E)
is also clear when E is pullback stable and E contains all regular epimorphisms.

2. In all examples of 1.14, for the considered class E or M, the corresponding stabi-
lization is saturated, except in the second example. In fact, for the category Cat
and E = {extremal epimorphisms}, St(E) is not saturated. To see that, consider
the functor F : A → B where A = 2 and B is the category with a unique object and
with an only non-identity morphism f such that f · f = f . Then the coequalizer of
the kernel pair of F is G : A → C where C is the category with a unique object and
fn, n ∈ IN, as morphisms different from the identity. Clearly the morphism G does
not belong to St(E) (see [6]).

It is known that there exists a monadic functor U : A → Set (see [1] or [7]) iff
(i) A has finite limits;
(ii) A is exact;
(iii) A has a regular generator P ;
(iv) P is projective;
(v) A has copowers of P .

The assumption (ii) ensures that St(E) = E for E the class of regular epimorphisms;
thus (iii) and (iv) mean that P is a projective E-generator in the sense of definition 1.7.
Moreover, the monadicity of U , combined with the cocompletness of A, implies that
A = C(P).

The next theorem, where projectivity has a relevant role, gives sufficient conditions
for the premonadicity of a right-adjoint U : A → Set. The assumed conditions are a
generalization of (i)–(v) above.

Theorem 2.4 Let P be a projective E-generator of A and let St(E) be saturated. Then,
assuming that C(P ) is coreflective in A, the functor hom(P,−) : C(P ) → Set is pre-
monadic, and C(P ) is equivalent to a reflective subcategory of the corresponding category
of Eilenberg-Moore algebras.
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Proof. Since hom(P,−) is a right adjoint and C(P ) has coequalizers, we know that
the comparision functor is a right adjoint. In order to show that it is full and faithful,
it suffices to prove that the co-units of the right adjoint hom(P,−) : C(P ) → Set are
regular epimorphisms. For each B ∈ C(P ), let us consider the corresponding co-unit

εB :
∐

hom(P,B)

P −→ B .

Since P is εB-projective, εB belongs to St(E), by 1.10. Let (u, v) be the kernel pair of εB

and let c be the coequalizer of u and v. Since St(E) is saturated, the morphism d such
that d · c = εB is a monomorphism. But St(E) is strongly right-cancellable, by 1.6, so
d ∈ St(E). Then d ∈ St(E) ∩Mono(A) and, thus, by Proposition 1.12 (see also Remark
1.13), there is some morphism t such that d · t = 1B. Therefore d is an isomorphism and
εB is a regular epimorphism. 2

Definition 2.5 P is a projective dense E-generator of A if it is a projective E-generator
and C(P ) = A.

Corollary 2.6 If A has a projective dense E-generator P and St(E) is saturated then
hom(P,−) : A → Set is premonadic.

Examples 2.7 All examples of 1.14 fulfil the conditions of the above theorem, except
the second one. As seen in 2.3.2, in this case, the saturation of St(E) fails. And, cu-
riously, the corresponding functor into Set is not premonadic: It is easily seen that the
corresponding co-units are not necessarily regular epimorphisms (cf. [6]).

In particular, the functor hom(0 → 1,−) : PreOrd → Set is premonadic but not
monadic, since regular epimorphisms are not stable under pullbacks.

1.14 and 2.3 also lead to several examples of categories A for which Aop is premonadic
over Set.

The above results bring up the question of knowing if the premonadicity implies the
existence of a projective E-generator for some E . The next proposition derives from the
analysis of this subject, although it does not give a complete answer.

Proposition 2.8 Let A be a cocomplete and cowellpowered category. If U : A → Set is
a premonadic functor, then there is a coreflective class E and a dense E-generator P of
A such that Proj(P ) ⊆ St(E).

Proof. Let U : A → Set be premonadic. It reflects isomorphisms because A is a
full subcategory of the corresponding category of Eilenberg-Moore algebras, and every
monadic functor over Set reflects isomorphisms. Let P = F{∗} where F is the left adjoint
of U . Since U ' hom(P,−) reflects isomorphisms we have that the class of morphisms
co-orthogonal to P is just Iso(A), thus A is the co-orthogonal closure of P . Under the
assumptions on A, C(P ) is coreflective, so it coincides with its co-orthogonal closure,
and thus C(P ) = A, that is, P is a dense generator.

Since the co-units of hom(P,−) are epimorphic, and f ∈Proj(P ) if and only if
hom(P, f) is surjective, it follows that Proj(P ) ⊆Epi(A). Let E be the closure of Proj(P )
under pushouts and cointersections in Mor(A). Then E is a subclass of Epi(A); we are
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going to see that it is coreflective, more than that, it fulfils the condition stated in 1.2.1.
In order to conclude that, given a morphism f , consider all pairs (ei,mi), such that
f = mi · ei and ei is in E . Let (e, (ti)) be the cointersection of all these ei’s, whose
existence is guaranteed by the fact that A is cocomplete and cowellpowered. The def-
inition of cointersection gives a unique morphism m such that m · e = f . This is an
E-factorization of f , that is, (1,m) : e → f is a coreflection of f ∈ Mor(A) into E . In
fact, let q be another morphism in E and let (r, h) : q → f be a morphism in the category
Mor(A), that is, f · r = h · q. Form the pushout (q′, r′) of (q, r) and let d be the unique
morphism which fulfil the equalities f = d · q′ and d · r′ = h. Then, for some io, q′ = eio

and d = mio . Thus tio · r′ is a morphism such that (tio · r′) · q = e · r and m · (tio · r′) = h.
Since Proj(P ) ⊆ E , and for each A ∈ A, the co-unit εA ∈ Proj(P ), we conclude that

P is a dense E-generator. Moreover, Proj(P ) is contained in St(E), because it is pullback
stable. 2
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