On projective £-generators and premonadic functors
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Abstract

It is shown that a well behaved category is premonadic over Set if it has a pro-
jective E-generator, for a convenient class £ of epimorphisms. A variety of examples
is provided.

Introduction

A functor U : A — Set is said to be premonadic provided that it is a right-adjoint and
A is equivalent to a full subcategory of the corresponding category of Eilenberg-Moore
algebras. If A is a category with coequalizers, then the premonadicity of U means that
A is equivalent to a reflective subcategory of the category of algebras.

Of course every monadic functor is premonadic. Concerning monadicity, it is known
that a category A is monadic over Set if and only if A is an exact category, has a
regular projective generator P and arbitrary copowers of P. The aim of this paper is
to analyze what part of the above monadicity characterizing properties is relevant for
a characterization of premonadicity over Set. In particular, we show that an enough
well behaved category is premonadic over Set if it has a projective £-generator P, for a
convenient ”coreflective” class £ of A-epimorphisms. A kind of partial converse of this
is also achieved. A significant role is played by the stabilization of £ which is shown
to be often of the form Proj(P), for some object P, that is, it consists of exactly those
morphisms to which P is projective.

1 Projective £-generators

Definition 1.1 A class € of epimorphisms of a category A (closed under the composition
with isomorphisms) is said to be a coreflective class whenever, for each B € A, the
embedding E(B) — B | A, where £(B) denotes de subcategory of B | A whose objects
are E-morphisms, is a left adjoint; that is, each A-morphism f has a factorization m - e
with e € €, and such that if m’ - €' is another such a factorization of f then there is a
(unique) morphism t fulfilling the equalities t - €' = e and m -t =m/. We say that m - e

is the E-factorization of f. (cf. [8], [13] and [4].)

Remark 1.2 If A has pushouts and £ is a pushout-stable coreflective class, the following
facts are easy consequences of the above definition:
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1. The “local coreflections” E(B) — B | A determine a “global coreflection” from
Mor(A) to &, where £ is regarded as a full subcategory of Mor(A). (That is, using
terminology of [8], A has a locally orthogonal &-factorization.)

2. € determines a factorization system for morphisms if and only if it is closed under
composition.

We add another property which will play a role throughout:

Lemma 1.3 If £ is a pushout-stable coreflective class in a category with pushouts, then
the following conditions are equivalent:

(i) Any split epimorphism m which is part of an E-factorization m - e is an isomor-
phism.

(i1) € is closed under the composition with split epimorphisms from the left.

(1ii) € is closed under the composition with split epimorphisms (from the left and from
the right).

Proof.. (i) = (iii): Let r - s be defined with s € £ and r a split epi, and let m - e be the
E-factorization of r - s. Then there is ¢ such that m -t = r and, since r is a split epi, so
is m, thus m is an isomorphism and r - s belongs to £.

Take r-s with r € £ and s a split epi, let u be such that s-u = 1, and let m - e be the
E-factorization of r - s. From 1.2.1 and the equality 1-r =m - e - u, we get a morphism ¢
such that mt = 1 and tr = eu. Condition (i) ensures that m is an iso, and - s € £.

(ii) = (i): Let m - e be the E-factorization of some f with m a split epi. Then f € £
and so f has an E-factorization of the form 1. f. Therefore, m is iso. O

Definition 1.4 (c¢f. [3]) An object P is an E-generator of the category A with copowers
of P if, for each A € A, the canonical morphism €4 from the coproduct H PtoA

hom(P,A)
belongs to &.

Assumptions 1.5 From now on we assume that the category A has pullbacks and
pushouts, and & is a pushout-stable coreflective class contained in Epi(A ) which is closed
under the composition with split epimorphisms.

A morphism is said to be £-stable if its pullback along any morphism belongs to £.
The stabilization of £ is the class of all £-stable morphisms; it is denoted by St(€) and
it is clearly contained in £.(cf. [4])

Lemma 1.6 & and St(E) are strongly right-cancellable.

Proof.. Given r-s € £, we want to show that r € £. Let m-e be the £-factorization of .
Then the equality 1-(r-s) = (m-e) - s determines, by 1.2.1, the existence of a morphism
t such that mt =1 and t- (r - s) = e - s. Since m is a split epimorphism and m - e is an
E-factorization, then, by 1.3, m is an isomorphism; so r € £. The right-cancellability of
St(€) follows easily from the right-cancellability of &. O



Definition 1.7 An object P is said to be a projective £-generator provided that it is an
E-generator which is St(E)-projective, that is, for each f € SHE), the function hom(P, f)
18 surjective.

Notations 1.8 C(P) denotes the colimit-closure of P in A, that is, the smallest full
subcategory of A containing P and closed under all colimits in A.

For A an A-object, Proj(A) denotes the class of all A-morphisms [ such that A is
f-projective. It is easily seen that Proj(A) is pullback-stable.

Assumptions 1.9 In the following, besides the assumptions stated in 1.5, we also as-
sume that A is cocomplete.

We are going to make use of the following lemmas.
Lemma 1.10 If P is a projective E-generator, then St(€) = Proj(P).

Proof. By the assumption on P, one of the inclusions is trivial. It remains to show
that if P is (f : X — Y)-projective then f € St(£), i.e., any pullback of f along any
morphism belongs to €. Let (f : W — Z,g: W — X) be the pullback of (f, g). Since P
is f-projective, any coproduct of P is also f-projective; thus, from the pullback-stability
of any class Proj(A), f € Proj(Ilhom(p,z) P)- Let s be a morphism fulfilling f-s=c¢z
and let m - e be the E-factorization of f. We get the equality 15 -€z = m - e - s, which,
since ez € &£, implies the existence of some ¢ such that t-e; =e-sand m-t = 1. Then,
from 1.3, and in view of 1.5, m is an iso and f € &. O

Lemma 1.11 If B is an E-coreflective subcategory' of A, then it is (St(€) N Mono(A))-
coreflective.

Proof. Let sx : S(X) — X be a coreflection of X in B (with S the coreflector functor).
By hypothesis, sx lies in &; in order to show that it belongs to St(£), let (s: W — Y, g:
W — S(X)) be the pullback of (sx,g), for some morphism g. To conclude that 5 € £,
let m - e be the E-factorization of 5. Since sx - S(g) = g - sy, there is a unique morphism
v such that 5-v = sy and g-v = S(g). Then we have 1y - sy = m - e - v; since m - e is
an E-factorization and sy € &, there is a morphism ¢ such m -t = 1y, and, taking into
account 1.3 and 1.5, we get that § € £. It remains to show that sx is a monomorphism:
Let a,b:Y — S(X) be such that sx - a = sx - b; then the equality sx -a-sy = sx -b-sy
implies that a - sy = b- sy, and thus, since &€ C Epi(A), a = b. O

Let us recall that, for £ a class containing all isomorphisms and closed under the com-
position with isomorphisms, A is said to be £-cocomplete provided that every pushout
of any £-morphism exists and belongs to £ and any family of morphisms of £ has a
cointersection belonging to £. The £-cocompletness of A implies that £ C Epi(A) and
that & is a coreflective class (see [12]).

Proposition 1.12 Let A be £-cocomplete and let P be a projective £-generator of A.
Then C(P) consists of all A-objects A such that the function hom(f, A) is bijective for
each f € St(E)N Mono(A). Furthermore C(P) is the smallest €-correflective subcategory
of A.

!By subcategory we mean a full subcategory.



Proof. Since A is £-cocomplete, P is an -generator and C(P) is closed under colimits
in A, a slight generalization of the dual of the Special Adjoint Functor Theorem ensures
that C(P) is coreflective in A. Moreover it is well-known that, then, it coincides with the
co-orthogonal closure of P in A, that is, C(P) consists of all those A-objects A such that
for any morphism f, hom(A, f) is a bijection whenever hom(P, f) is so. Consequently,
in order to conclude that C(P) is the subcategory of A of those objects A such that the
function hom(f, A) is bijective for each f € St(£) N Mono(A), it suffices to show that

St(€) NMono(A) = {f € Mor(A) |hom(P, f) is an iso}. (1)

From Lemma 1.10, the inclusion “C” is trivial. Let hom(P, f) be an iso. Then, again
by 1.10, f belongs to St(£). In order to conclude that f is a mono, let a,b: S — X be
morphisms such that fa = fb. Then for any ¢t : P — S, we have fat = fbt, what implies,
since hom(P, f) is an iso, that at = bt. Thus a = b, because P is a generator.

The coreflections into C(P) belong to St(€) C &, because P is rx-projective for each
coreflection rx. In order to show that C(P) is the smallest £-coreflective subcategory of
A let B be another E-coreflective subcategory of A. Let X € C(P) and let sx : S(X) —
X be the coreflection of X in B. By Lemma 1.11, sx belongs to St(£) N Mono(A).
Therefore, using (1), we get a morphism ¢ : X — S(X) such that sx -t = 1x, and thus
sx is an isomorphism. O

Remark 1.13 In the above proof, the only role of the £-cocompleteness of A is to assure
that C(P) is refletive in A. So, in Proposition 1.12, we can replace “A is E-cocomplete”
by “C(P) is coreflective”.

We have just conclude that the existence of a projective £-generator P gives a char-
acterization of the stabilization of £, St(€) =Proj(P), and, in case A is E-cocomplete,
it guarantees that P “generates” the smallest £-coreflective subcategory of A. In the
following we give several examples of this situation.

Examples 1.14

1. For any monadic category A over Set and € = RegEpi(A), let P = F{x}, where
F is the corresponding left adjoint. Then P is an E-generator such that St(€) =
& = Proj(P), and A = C(P).

We point out that, under the conditions of Proposition 1.12, A and C(P) are iden-
tical whenever S(E) N Mono(A) = Iso(A), since { coreflections of A in C(P)} C
St(E) N Mono(A).

2. For A = Cat, £ = ExtrEpi(A), and 2 = {0 — 1} the category given by the ordered
set 2, we have that 2 is an E-generator, S{(E) = Proj(2), and £ does not coincides
with its stabilization (cf. [6]). The equality A = C(P) also occurs.

3. Let PreOrd be the category whose objects are pairs (X, Rx) with X a set and
Rx a preorder (i.e., a reflexive and transitive binary relation) on X, and whose
morphisms are preorder-preserving maps. For & = {regular epimorphisms} =
{extremal epimorphisms}, the object P consisting of the set {0,1} with (0,1) as



the only non-trivial relation pair, is a projective £-generator, in particular St(E) =

Proj(P), although St(E) # £. The subcategory C(P) coincides with PreOrd.

In the following examples, it occurs the dual situation. That is, P is an injective M-
cogenerator of A, with A and M fulfilling the dual conditions of 1.9. A morphism
belongs to St(M) whenever its pushout along any morphism lies in M. It holds
the equality St(M)=Inj(P), and the limit closure of P in A, IL(P), is the smallest
M-reflective subcategory of A.

4. In the category Set, the pushout-stable class M of monomorphisms coincides with
Inj(P) for P the M-cogenerator set {0,1}, and IL(P) = Set.

5. For A the category Top of topological spaces and continuous maps, let M =
{embeddings}, and let P be the topological space {0,1,2} whose only non trivial
open is {0}. Then P is an M-cogenerator and Inj(P)=St(M)=M. The subcate-

gory IL(P) is the whole category Top.

6. For the category Topo of Ty-topological spaces, M = {embeddings}, the Sierpiriski
space S is an M-cogenerator which fulfils Inj(S)=St(M)=M. Here IL(S) is the
subcategory of sober spaces.

7. If A is the subcategory of Top of all 0-dimensional spaces, and M consists of
all embeddings, then M # St(M), but again S{(M) = Inj(P), where P is the
space {0,1,2} whose topology has as only non trivial opens {0} and {1,2}. (The
morphisms of St(M) are just those embeddings m : X — Y such that for each
clopen set G of X there is some clopen H in'Y such that G = m~1(H) (cf. [10]).)
We have that IL(P) = A (by 1.5.7 of [10]). A similar situation happens for the
category of 0-dimensional Hausdorff spaces and M the class of embeddings, which
again is not pushout-stable, if we choose P as being the space {0, 1} with the discrete
topology.

8. For Tych the category of Tychonoff spaces, the class M of embeddings is not stable
under pushouts, and St(M) = Inj(T), where I is the unit interval, with the euclidean
topology. The St(M)-morphisms are just the C*-embeddings (cf. [10]) and IL(I) is
the subcategory of compact Hausdorff spaces.

9. For Veck the category of linear spaces and linear maps over the field IK, the
class M of all monomorphisms is stable under pushouts and IK is an injective
M -cogenerator.

10. In the category Ab of abelian groups and homomorphisms of group, let M be
the class of all monomorphisms. Then P = ][N, Q/nZ (where Q and 7L are
the groups of rational numbers and of integers numbers, respectively) is an M-
cogenerator®, and it holds that S{(M) = M = Inj(P). The limit closure IL(P) is

*For each X € Ab, and each element x # 0 of X, let f : Z/nZ — X be the monomorphism
determined by f(1 + nZ) = x, where n = 0 if x is torsion-free, otherwise n is the minimum positive
integer such that nx = 0. Then there is some i : X — Q/nZ such that i - f = i, where i is the inclusion
of Z/nZ into Q/nZ, and i(x) # 0. So the quotients Q/nZ with n = 0, 1,2, ..., distinguish points in any
abelian group, from what follows that the divisible abelian group P = [ | Q/nZ is an M-cogenerator
of Ab.
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the whole category Ab, taking into account the dual of 1.12 and that in Ab any
monomorphism is reqular.

11. In the category of torsion-free abelian groups and homomorphisms of group, for
M the class of all monomorphisms, the group of rational numbers Q is an M-
cogenerator and S(M) = M = Inj(Q). IL(Q) is the subcategory of torsion-free
divisible abelian groups.

One question arises: When is the stabilization of a corefletive class £ of the form
Proj(P), or, at least, when is it of the form Proj(B) for some subcategory B of A? The
following proposition gives a partial answer.

Let us recall that, if F is a class of morphisms of a category A containing all iso-
morphisms and closed under composition with isomorphisms, A is said to have enough
F-projectives provided that, for each A € A, there is an F-morphism f : B — A with an
F-projective domain. An F-morphism f : B — A is said to be F-coessential whenever
any composition f - g belongs to F only if g € F. We say that the category A has F-
projective hulls if, for each A-object A there is some F-coessential morphism f: B — A
where B is F-projective.

Proposition 1.15 1. If A has enough St(€ )-projectives, then St(€) = Proj(B) for some
subcategory B of A.

2. If St(€) = Proj(B) for some E-coreflective subcategory B of A, then B has St(€ )-
projective hulls.

Proof. 1. Let B consist of all objects of A which are St(&£)-projective; clearly St(€) C
Proj(B). In order to show the converse inclusion, let f : A — B belong to Proj(B), and
let (f: D — C, g: D — A) be the pullback of f and g, for some g : C — B. Since A has
enough St(€)-projectives, there is some St(£)-morphism ¢ : E — C with F € B. It gives
rise to the existence of a morphism ¢ such that g-¢g = f - ¢, and so, by the universality
of the pullback, there is a morphism ¢ : E — D such that f-¢t =gqgand §-t = §. Let
f = m - e be the E-factorization of f; then the equality m - e -t = 1¢ - ¢ guarantees the
existence of a morphism d such that m - d = 1¢, so, being a split epimorphism, m is an
isomorphism, and thus f belongs to &.

2. By Lemma 1.11, each coreflection s4 : S(A) — A into B belongs to St(£). It
remains to show that s 4 is a St(&)-coessential morphism. Let g be such that s4-g belongs
to St(€), and let g be the pullback of g along any h. By 1.11, s4 is a monomorphism,
then g is also the pullback of s4 - g along s4 - h. Thus g € £, and g belongs to St(£). O

2 Premonadicity

Definition 2.1 We say that a class F of epimorphisms is saturated provided that, for
each f € F, the coequalizer of the kernel pair of f belongs to F.

Lemma 2.2 If P is a projective £-generator, then the following two assertions are equiv-
alent:

1. SH(E) is saturated.



2. For each e € St(E), the unique morphism d such that d-c = e, for c the coequalizer
of the kernel pair of e, is a monomorphism.

Proof. By Lemma 1.10, St(£) = Proj(P). Let St(£) be saturated, let e € St(&), let ¢
be the coequalizer of the kernel pair (u,v) of e, and let d be the unique morphism d such
that d-c = e. Let a and b be morphisms such that d-a = d - b; in order to show that
a = b, since P is a generator, we may assume without loss of generality that P is the
domain of @ and b. Consequently, since ¢ € St(€), there is @ and b such that ¢-a@ = a and
c-b=bjthene-a=d-c-a=da=db=d-c-b=e-b. Since (u,v) is the kernel pair
of e, this implies the existence of a unique morphism ¢ such that u -t = @ and v - t = b.
Therefore, a =c-a=c-u-t=c-v-t=c-b=>».

Conversely, if d is a monomorphism, for each morphism f with domain P and
codomain in the codomain of ¢, we have some morphism f’ such that e- f/ = d - f,
because e € Proj(P). Thus, d-c- f'=d- f, and then c- f' = f. O

Examples 2.3 1. If £ C {regular epimorphisms}, St(€) is trivially saturated, since
a regular epimorphism is the coequalizer of its kernel pair. The saturation of St(€)
is also clear when £ is pullback stable and € contains all regular epimorphisms.

2. In all examples of 1.14, for the considered class £ or M, the corresponding stabi-
lization is saturated, except in the second example. In fact, for the category Cat
and & = {extremal epimorphisms}, St(€) is not saturated. To see that, consider
the functor F': A — B where A = 2 and B is the category with a unique object and
with an only non-identity morphism f such that f - f = f. Then the coequalizer of
the kernel pair of F is G : A — C where C is the category with a unique object and
f™, n €N, as morphisms different from the identity. Clearly the morphism G does
not belong to St(€) (see [6]).

It is known that there exists a monadic functor U : A — Set (see [1] or [7]) iff
(i) A has finite limits;
(ii) A is exact;
(iii) A has a regular generator P;
(iv) P is projective;
(v) A has copowers of P.

The assumption (ii) ensures that St(£) = £ for £ the class of regular epimorphisms;
thus (iii) and (iv) mean that P is a projective £-generator in the sense of definition 1.7.
Moreover, the monadicity of U, combined with the cocompletness of A, implies that
A =C(P).

The next theorem, where projectivity has a relevant role, gives sufficient conditions
for the premonadicity of a right-adjoint U : A — Set. The assumed conditions are a
generalization of (i)—(v) above.

Theorem 2.4 Let P be a projective E-generator of A and let St(E) be saturated. Then,
assuming that C(P) is coreflective in A, the functor hom(P,—) : C(P) — Set is pre-
monadic, and C(P) is equivalent to a reflective subcategory of the corresponding category
of Eilenberg-Moore algebras.



Proof. Since hom(P, —) is a right adjoint and C(P) has coequalizers, we know that
the comparision functor is a right adjoint. In order to show that it is full and faithful,
it suffices to prove that the co-units of the right adjoint hom(P, —) : C(P) — Set are
regular epimorphisms. For each B € C(P), let us consider the corresponding co-unit

B : H P— B.
hom(P,B)

Since P is e g-projective, e g belongs to St(€), by 1.10. Let (u,v) be the kernel pair of ep
and let ¢ be the coequalizer of u and v. Since St(€) is saturated, the morphism d such
that d - ¢ = ep is a monomorphism. But St(£) is strongly right-cancellable, by 1.6, so
d € St(£). Then d € St(€£) N Mono(A) and, thus, by Proposition 1.12 (see also Remark
1.13), there is some morphism ¢ such that d -t = 1. Therefore d is an isomorphism and
€p is a regular epimorphism. O

Definition 2.5 P is a projective dense £-generator of A if it is a projective £-generator
and C(P) = A.

Corollary 2.6 If A has a projective dense E-generator P and St(E) is saturated then
hom(P, —) : A — Set is premonadic.

Examples 2.7 All examples of 1.1/ fulfil the conditions of the above theorem, except
the second one. As seen in 2.5.2, in this case, the saturation of St(€) fails. And, cu-
riously, the corresponding functor into Set is not premonadic: It is easily seen that the
corresponding co-units are not necessarily reqular epimorphisms (cf. [6]).

In particular, the functor hom( — 1,—) : PreOrd — Set is premonadic but not
monadic, since reqular epimorphisms are not stable under pullbacks.

1.14 and 2.3 also lead to several examples of categories A for which A°P is premonadic
over Set.

The above results bring up the question of knowing if the premonadicity implies the
existence of a projective £-generator for some £. The next proposition derives from the
analysis of this subject, although it does not give a complete answer.

Proposition 2.8 Let A be a cocomplete and cowellpowered category. If U : A — Set is
a premonadic functor, then there is a coreflective class £ and a dense &-generator P of
A such that Proj(P) C St(£).

Proof. Let U : A — Set be premonadic. It reflects isomorphisms because A is a
full subcategory of the corresponding category of Eilenberg-Moore algebras, and every
monadic functor over Set reflects isomorphisms. Let P = F{*} where F'is the left adjoint
of U. Since U ~ hom(P, —) reflects isomorphisms we have that the class of morphisms
co-orthogonal to P is just Iso(A), thus A is the co-orthogonal closure of P. Under the
assumptions on A, C(P) is coreflective, so it coincides with its co-orthogonal closure,
and thus C(P) = A, that is, P is a dense generator.

Since the co-units of hom(P, —) are epimorphic, and f €Proj(P) if and only if
hom(P, f) is surjective, it follows that Proj(P) CEpi(A). Let & be the closure of Proj(P)
under pushouts and cointersections in Mor(A). Then £ is a subclass of Epi(A); we are



going to see that it is coreflective, more than that, it fulfils the condition stated in 1.2.1.
In order to conclude that, given a morphism f, consider all pairs (e;,m;), such that
f =mj-e and ¢; is in €. Let (e, (t;)) be the cointersection of all these e;’s, whose
existence is guaranteed by the fact that A is cocomplete and cowellpowered. The def-
inition of cointersection gives a unique morphism m such that m -e = f. This is an
E-factorization of f, that is, (1,m) : e — f is a coreflection of f € Mor(A) into £. In
fact, let ¢ be another morphism in £ and let (r,h) : ¢ — f be a morphism in the category
Mor(A), that is, f -7 = h - q. Form the pushout (¢,r’) of (¢,7) and let d be the unique
morphism which fulfil the equalities f = d - ¢’ and d -7’ = h. Then, for some i,, ¢ = ¢;,
and d = m;,. Thus t;, -’ is a morphism such that (¢;,-r')-q=e-r and m-(¢;, -7’') = h.

Since Proj(P) C &, and for each A € A, the co-unit £4 € Proj(P), we conclude that
P is a dense E-generator. Moreover, Proj(P) is contained in St(£), because it is pullback
stable. O
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