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Abstract

The aim of this paper is to study discretizations of convection-
diffusion-reaction equations using splitting methods. Estimates for
the physical splitting errors and the numerical splitting errors are es-
tablished. These estimates lead to the selection of optimal sequences
and coupling of physical phenomena and adequate use of implicit-
ness and explicitness. Numerical simulations of two chemical industry
problems are included.

1 Introduction

Numerical simulation of reacting flows is required in all problems coming
from the chemical industry, and also in the modelling of certain regions of
hypersonic aerodynamics. The added complexity of this kind of problems
comes from the fact that often a wide range of time scales is present. This
leads to numerical difficulties related to the possible stiffness of reaction

∗This work has been supported by Centro de Matemática da Universidade de Coimbra
and Project POCTI/35039/MAT/2000
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terms. Considering the Partial Differential Equations that describe reacting
flows, we may split them additively into advective transport, diffusive trans-
port and chemical transformations. We thus obtain submodels corresponding
to different physical phenomena,that are easier to solve separately. Recent
literature ([2], [4], [6]) has provided several ways of dealing with operator
splitting as far as the sequence of these physical phenomena and also the pos-
sible coupling between some of them are concerned. Numerical simulations
in [0, 1] pointed out that the coupling of reactions with diffusive transport
in a sequence composed by a convection problem in a certain interval [0,
t/2], a diffusion-reaction problem in [0, t] and a final convection problem in
[t/2, t] perform notably better than an uncoupled splitting. In this paper
we present a theoretical justification of this numerical evidence by studying
the splitting errors and the stability properties of some numerical methods,
based on different sequences and couplings of physical phenomena.

The splitting error has two main contributions: a physical splitting error
that would exist even if submodels were solved exactly, and a numerical
splitting error, related with the approximation of each submodel and the way
these submodels are linked. In section 2 we establish the order of the physical
splitting error for different sequences and couplings of the phenomena. In
section 3 we show how the stability properties of numerical splitting errors
based on the previous sequences and couplings, depend on the alternating
use of implicit and explicit methods. Numerical simulations of two chemical
industry problems will be presented in section 4. Namely we exhibit results
concerning a fixed bed catalytic reactor and a paper industry digester.

2 Splitting methods and splitting errors

Let us consider convection-diffusion-reaction equations of type

∂c

∂t
(z, t) = F1(c, z, t) + F2(c, z, t) + F3(c, z, t) (1)

where c denotes a specie concentration and F1(c, z, t), F2(c, z, t), F3(c, z, t)
represent respectively the convection, the diffusion and the reaction terms.

Let us define in [0, T ] the splitting grid {ts} with ts = s∆t and ts+1/2 =
ts + ∆t/2 where ∆t denotes the splitting step size. We suppose that the
concentration c at t = ts is known ( at least approximately ). The computa-
tion of an approximation of c at time level ts+1 can be obtained using several
splitting algorithms. In this paper we analyse from a theoretical viewpoint
two functional splitting procedures, suggested in [6], to study an atmospheric
pollution problem.
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• Functional splitting I

Problem (1) is decomposed in five subproblems respectively (Convec-
tion, Diffusion, Reaction, Diffusion, Convection) as follows:

∂u

∂t
(z, t) = F1(u, z, t), t ∈ [ts, ts+1/2], u(ts) = c(ts) , (2)

∂v

∂t
(z, t) = F2(v, z, t), t ∈ [ts, ts+1/2], v(ts) = u(ts+1/2) , (3)

∂w

∂t
(z, t) = F3(w, z, t), t ∈ [ts, ts+1], w(ts) = v(ts+1/2) , (4)

∂v∗

∂t
(z, t) = F2(v

∗, z, t), t ∈ [ts+1/2, ts+1], v∗(ts+1/2) = w(ts+1) , (5)

∂u∗

∂t
(z, t) = F1(u

∗, z, t), t ∈ [ts+1/2, ts+1], u∗(ts+1/2) = v∗(ts+1). (6)

The splitting solution I at ts+1 is u∗(ts+1) – the exact solution of (2)-(6)
– which represents an approximation of c(ts+1).

• Functional splitting II

Problem (1) is decomposed in three subproblems (Convection, Diffu-
sion+Reaction, Convection) as described below

∂u

∂t
(z, t) = F1(u, z, t), t ∈ [ts, ts+1/2], u(ts) = c(ts) , (7)

∂v

∂t
(z, t) = F2(v, z, t)+F3(v, z, t), t ∈ [ts, ts+1], v(ts) = u(ts+1/2) , (8)

∂u∗

∂t
(z, t) = F1(u

∗, z, t), t ∈ [ts+1/2, ts+1], u∗(ts+1/2) = v∗(ts+1). (9)

The splitting solution II at ts+1 is u∗(z, ts+1) – the exact solution of
(7)-(9) – which stands for an approximation of c(ts+1).
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Let us represent by cI and cII respectively the splitting solutions I and
II. In the case operators F1, F2 are linear and F3 depends only on z we can
estimate the splitting errors ‖c− cI‖∞ and ‖c− cII‖∞.

Proposition 1 Let F1(c, z, t) = −α
∂c

∂z
(z, t), F2(c, z, t) = β

∂2c

∂z2
(z, t), and

F3(c, z, t) = F3(z), with |F ′
3| ≤ q, c(z, 0) = c0(z) and

lim
z→±∞

c(z, t) = 0,

for all t. Then
‖c− cI‖∞ = O(∆t3/2)

and
‖c− cII‖∞ = O(∆t2).

Proof: Using Fourier transforms we have for the exact solution of (1)

c(z, t) =
1√
π

∫ t

0

∫

IR

F3(z−αξ+2
√

βξy)e−y2

dy dξ +
1√
π

∫

IR

c0(z−αt+2
√

βtξ)e−ξ2

dξ.

(10)
It is a tedious but straightforward task to establish that the splitting solutions
cI and cII are given respectively by

cI(z, t) =
1√
π

∫

IR

tF3(z−αt

2
+2

√
βt

2
y)e−y2

dy +
1√
π

∫

IR

c0(z−αt+2
√

βtξ)e−ξ2

dξ,

(11)

cII(z, t) =
1√
π

∫ t

0

∫

IR

F3(z−αt

2
+2

√
βξy)e−y2

dy dξ +
1√
π

∫

IR

c0(z−αt+2
√

βtξ)e−ξ2

dξ.

(12)
From (10) and (11) we have

|c(z, t)− cI(z, t)| ≤ q√
π

∣∣∣∣∣
∫

IR

∫ t

0

(αξ − αk

2
+ 2

√
βξ −

√
βt

2
y)e−y2

dy dξ

∣∣∣∣∣

and considering that

∫

IR

e−y2

dy =
√

π and

∫

IR

e−y2|y| dy = 1 we easily con-

clude
‖c− cI‖∞ = O(∆t

√
∆t).

From (10) and (12) we conclude

|c(z, t)− cII(z, t)| ≤ q√
π

∣∣∣∣
∫

IR

∫ t

0

(αξ − αt

2
y)e−y2

dy dξ

∣∣∣∣
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and consequently
‖c− cII‖∞ = O(∆t2).

We note that the integral terms in (11) and (12), concerning the initial
conditions c0(z), introduce no error in cI and cII . Also if F3 is a linear
function of z then cI = cII .

In [6], the authors, while studying an atmospheric problem, point out
that splitting II lead to more accurate numerical results. The estimates of
Proposition 1 can justify from a theoretical point of view this numerical
evidence.

The following example illustrates the estimates of Proposition 1. Let us
consider the initial boundary value problem

∂c

∂t
(z, t) = γ1

∂c

∂z
(z, t) + γ2

∂2c

∂z2
(z, t) + γ3(c(z, t)− cw(t)) + γ4r(c) (13)

with initial boundary conditions





c(z, 0) = f(z), z ∈ (0, 1),

c(0, 0) = cF (0),

γ2
∂c

∂z
(0, t) = [c(0, t)− cF (t)]γ1, t > 0,

∂c

∂z
(1, t) = 0, t ≥ 0.

(14)

In (13), γi, i = 1, . . . , 5, are positive constants, r(c) and cw(t) represent known
functions. In (14), f and cF are also assumed to be known.

We took in (14), r(c) = c2, γ1 = −1, γ2 = 10−3, γ3 = −0.5, γ4 = 0.5,
f(z) = 1.11067 + 0.359664z + 0.325977z2 and cw(t) = 0.8.

In Figure 1 are plotted the exact and numerical splitting solutions for
t = 0.5 and t = 1. We note that splitting II solution is much more accurate
than splitting solution I.

In Proposition 1 we consider a convection-diffusion-reaction problem in an
unbounded domain. In the case of convection-reaction equations estimates
have been established under a boundary condition along z = 0.
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Figure 1: Numerical solutions (split I: dots; split II: dash-dots) and exact
solution for (13)-(14).
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Proposition 2 Let F2 = 0 and F3(c, z, t) = F3(c), with |F ′
3| ≤ q.

1. If c(z, 0) = c0(z) for z ∈ (0, +∞) and c(0, t) = g(t) with c0 and g
enough smooth functions, then:

(a) if F1(c) = α(z, t)
∂c

∂z
we have cII = c for z > αt and ‖c− cII‖∞ =

O(∆t) for z ≤ αt;

(b) if F1(c) =
∂

∂z
f(c) we have ‖c− cII‖∞ = O(∆t).

2. If c(z, 0) = c0(z), z ∈ IR, then the splitting solution is the exact solution.

Proof: We just present the proof of 1(a). The exact solution satisfies





∫ c(z,t)

g(αt−z
α

)

d c

F3(c)
=

z

α
, z ≤ αt,

∫ c(z,t)

c0(z−αt)

d c

F3(c)
= t, z > αt .

(15)

The solution cII of (7)- (9) verifies





c(z, t) = g(
αt− z

α
), 0 ≤ z ≤ αt

2
,

∫ c(z,t)

g(αt−z
α

)

d c

F3(c)
=

z

α
, αt

2
< z ≤ αt,

∫ c(z,t)

c0(z−αt)

d c

F3(c)
= t, z > αt.

(16)

From (15) and (16) the result follows.

We observe that if no boundary conditions are considered in the
convection-reaction problem, as in 2. of Proposition 2, the exact solution
is obtained. When a boundary condition is considered as in 1. of Proposition
1 an error of order ∆t propagates in the domain defined by z ≤ αt.

3 Numerical splitting methods

3.1 General description of the family of methods

We consider, in what follows, numerical methods obtained by the discretiza-
tion of (7)-(9). In the interval [0, T ] we consider the splitting grid {ts} and in
the space domain we define the grid {zj} with zj − zj−1 = h. Let U s

h, V s
h and
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U s∗
h be numerical approximations at ts of u(ts), v(ts) and u∗(ts), respectively

defined by

U
s+1/2
h = F1,h(U

s
h), U s

h = cs
h, (17)

F ∗
3,h(V

s+1
h ) = F2,h(V

s
h ) + F3,h(V

s
h ), V s

h = U
s+1/2
h , (18)

U s+1∗
h = F1,h(U

s+1/2∗
h ), U

s+1/2∗
h = V s+1

h , (19)

where U s+1∗
h represents a numerical approximation of cII(ts+1) and conse-

quently of c(ts+1). In this algorithm F1,h is a linear operator resulting from
the discretizations of the convection equation (7), F2,h represents a discretiza-
ton of F2, F3,h is associated with the discretization of F3 and F ∗

3,h represents
the discretization of the time derivative. These operators take account of the
boundary conditions prescribed for (7)-(9).

3.2 Stability

We establish in what follows the stability of the methods described by al-
gorithm (17)-(19). Let cs+1

h and c̃s+1
h be two solutions computed using this

splitting algorithm. The difference cs+1
h −c̃s+1

h satisfies the following equation:

cs+1
h − c̃s+1

h = F1,h(JF ∗
3,h)

−1 (F2,h + JF3,h) F1,h(c
s
h − c̃s

h) (20)

where JF ∗
3,h is the Jacobian matrix of F ∗

3,h computed in σV n+1
h +(1−σ)Ṽ n+1

h

for some σ ∈ [0, 1]. The Jacobian matrix JF3,h is defined analogously. The
following proposition can be easily established:

Proposition 3 If exists SC ∈ (0, 1) such that

‖F1,h(JF ∗
3,h)

−1 (F2,h + JF3,h) F1,h‖ ≤ SC (21)

then the splitting method (17)-(19) is stable.

Let us suppose now that in each step of (17)-(19) we introduce a pertur-
bation εi, that is

Ũ
s+1/2
h = F1,h(Ũ

s
h) + ε1, (22)

F ∗
3,h = F2,h(Ṽ

s
h ) + F3,h(Ṽ

s
h ) + ε2, Ṽ s

h = Ũ
s+1/2
h , (23)
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Ũ s+1∗
h = F1,h(Ũ

s+1/2∗
h ) + ε3, Ũ

s+1/2∗
h = Ũ s+1

h , (24)

Then we can study how these perturbations propagate from time level ts
to time level ts+1. Considering that

cs+1
h − c̃s+1

h = F1,h(JF ∗
3,h)

−1 ((F2,h + JF3,h) (F1,h(c
s
h − c̃s

h) + ε1) + ε2) + ε3

we obtain the internal stability factor

ρs = F1,h(JF ∗
3,h)

−1 ((F2,h + JF3,h) ε1 + ε2) + ε3

which satisfies

‖ρs‖ ≤ ‖F1,h(JF ∗
3,h)

−1 (F2,h + JF3,h) ‖‖ε1‖+ ‖F1,h(JF ∗
3,h)

−1‖‖ε2‖+ ‖ε3‖.

Attending to the last inequality we have the following proposition.

Proposition 4 If exists IC ∈ (0, 1] such that

‖F1,h(JF ∗
3,h)

−1 (F2,h + JF3,h) ‖ ≤ IC (25)

‖F1,h(JF ∗
3,h)

−1‖ ≤ IC (26)

then the splitting method is internally stable.

3.3 Discretization errors

We recall that c(ts) represents the solution of the convection-diffusion-
reaction equation at t = ts, cs

h a numerical approximation computed using
splitting method (17)-(19) and cII(ts) the solution computed using the func-
tional splitting (7)-(9). We have

‖c(ts)− cs
h‖∞ ≤ ‖c(ts)− cII(ts)‖∞ + ‖cII(ts)− cs

h‖∞.

The first norm in the right hand side has been estimated in Proposition 1.
We compute in what follows ‖cII(ts) − cs

h‖∞. Let T s+1
i,h , i = 1, 2, 3 be the

truncation errors at t = ts+1 associated with the discretizations (17), (18)
and (19) respectively. By es+1

i,h , i = 1, 2, 3, we denote the global errors defined

by es+1
1,h = u(ts+1)−U s+1

h , es+1
2,h = v(ts+1)−V s+1

h and es+1
3,h = u∗(ts+1)−U s+1∗

h .
These errors satisfy (22), (23) and (24) with εi = T s

i,h. Then

cII(ts+1)− cs+1
h = F1,h(JF ∗

3,h)
−1 (F2,h + JF3,h) F1,h(c

s
h − c̃s

h)
+F1,h(JF ∗

3,h)
−1

(
(F2,h + JF3,h) T s

1,h + T s
2,h

)
+ T s

3,h.
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Therefore, we obtain for the truncation error of the splitting method, T s
h , the

following equation

T s
h = F1,h(JF ∗

3,h)
−1

(
(F2,h + JF3,h) T s

1,h + T s
2,h

)
+ T s

3,h.

From the previous results and stability Propositions 3 and 4 its easy to
establish the next convergence estimate for the discretization error.

Proposition 5 If (21), (25) and (26) are satisfied then

‖cII(ts + 1)− cs+1
h ‖∞ ≤ 1− Ss+1

C

1− SC

(IC + 1) max
i=1,2,3

max
`=1,...,s+1

‖T `
i,h‖∞.

3.4 Special families of methods

Let us consider equation (1) with z ∈ [0, 1],

F1(c) = −α
∂c

∂z
, F2(c) = β

∂2c

∂z2
.

We discretize (7)-(9) using backward and second order centered differ-
ences respectively for first and second order space derivatives. The time
derivative is discretized using the θ-method which is defined by

ys+1/2 = ys +
∆t

2

(
(1− θ)G(ys+1/2) + θG(ys)

)
,

when y′ = G(y) is to be solved.
In this case we have,

[F1,h(U
s
h)]1 =

1− aθ̂

1 + a
(U s

h)1,

and, for i = 2, . . . , N ,

[F1,h(U
s
h)]i =

1 + θ̂

1 + a

i−1∑
j=1

(
a

1 + a

)i−j

(U s
h)j +

1− aθ̂

1 + a
(U s

h)i,

with a = α
∆t

2h
(1− θ), θ̂ =

θ

1− θ
.

For F2,h we have

[F2,h(V
s
h )]1 = (1− 2β

∆t

h2
)(V s

h )1 + β
∆t

h2
(V s

h )2;
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for i = 2, . . . , N − 1,

[F2,h(V
s
h )]i = β

∆t

h2
(V s

h )i−1 + (1− 2β
∆t

h2
)(V s

h )i + β
∆t

h2
(V s

h )i+1

and

[F2,h(V
s
h )]N = β

∆t

h2
(V s

h )N−1 + (1− 2β
∆t

h2
)(V s

h )N .

Finally, F3,h and F ∗
3,h are defined, i = 1, . . . , N , by

[F3,h(V
s
h )]i = ∆tσf((V s

h )i), [F ∗
3,h(V

s+1
h )]i = (1−∆t(1− σ))f((V s+1

h )i),

for σ ∈ [0, 1].
Let us denote by Method (θ, σ) the splitting method just described.
It is a simple but tedious task to establish the expressions of IC and SC for

Method (θ, σ). Let ∆t0 be an upper bound for the time step size. Assuming
that |F ′

3| ≤ q we have:

1. For θ = 0 then, for γ ∈ (0, 1) and for ∆t small enough, we have

SC := γ2 1 + ∆t0σq

1− (1− σ)∆t0q
,

IS := γ
1 + ∆t0σq

1− (1− σ)∆t0q
;

2. For θ ∈ (0, 1), there exists K(θ) < 1 such that, for ∆t small enough,

SC := K(θ)2 1 + ∆t0σq

1− (1− σ)∆t0q
,

IS := K(θ)
1 + ∆t0σq

1− (1− σ)∆t0q
;

3. If θ = 1 then IC and SC are greater or equal to one.

Attending to the values of SC and IC we conclude that Method (0,1) and
Method (0,0) are stable and internally stable. Nevertheless the stability
constant of Method (0,1) is bounded by γ2(1+∆t0q) while Method (0,0)

has a stability constant bounded by
γ

1−∆t0q
.

As far as the spatial truncation error is concerned we have, for j = 1, 3,
w = u, u∗,

T s+1
j,h =

∂2w

∂t2
∆t

2

(
1

2
− (1− θ)

)
+ α

h

2

∂2w

∂x2
+ O(h2, ∆t2),

11



and

T s+1
2,h =

∆t

2

(
∂2w

∂t2
− (1− σ)f ′(v(xi, ts+1))

∂v

∂t

)
+ O(h2, ∆t2),

where the partial derivatives are evaluated at some points in (xi−1, xi) ×
(ts, ts+1).

From Proposition 5, if Method (θ, σ) is stable and internally stable –
with stability constants SC , IS less than one – then the discretization error
cII(ts)− cs

h satisfies

‖cII(ts+1)− cs+1
h ‖∞ ≤ 1− Ss+1

C

1− SC

(IS + 1)O(h, ∆t).

4 Numerical examples

4.1 A fixed bed cathalitic reactor

This section is concerned with the nonlinear initial boundary value problem
(13)-(14) which assumes importance in chemical engineering, for instance in
the modeling of fixed bed cathalitic reactors ([5]). In this model is assumed
that for a given axial point, the temperature values at a characteristic po-
sition of the tube radius are representative of the whole cross section. In
(13), γi, i = 1, ..., 4, are real constants, representing the intensity of some
mechanisms occurring in the system. The wall temperature cw(t) reflects the
distributed nature of the interaction between the process and its environment
and the term r(c) is a nonlinear known function standing for a chemical re-
action rate. In the initial-boundary condition (14), f and cF are assumed to
be known functions.

Computation have been carried with parameters:




γ1 = −1, γ2 = 10−3, γ3 = −0.5, γ4 = 0.5,
cF (0) = 1.1, cF (t) = 1, t > 0,
r(c) = c2,
f(z) = 1.11067 + 0.359664z + 0.325977z2, z ∈ (0, 1),
cw(t) = 0.8, t ≥ 0.

In Figure 2 we plot the numerical solution computed with Method (1,1)

and Method (0,1) with h = 10−2 and ∆t =
h

2
The behaviour of the numerical approximation obtained using Method

(0,0) is analogous to the one presented by the numerical approximation
obtained using Method (0,1). However the computational cost of Method
(0,0) is greater than the computational cost of Method (0,1).
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Figure 2: Numerical approximations (Method (1,1); dots; Method (0,1):
dash-dots) and exact solution for (13)-(14).
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4.2 A moving bed reactor used in the paper industry

In this section we consider the system of hyperbolic partial differential equa-
tions that describes the behaviour of a moving bed reactor – the digester –
used in the paper and pulp industry ([1]).

The digester is an heterogeneous reactor with an almost cylindrical shape,
where wood chips – solid phase – react with an aqueous solution – free liquid
phase – of sodium hydroxide and sodium sulfide, to remove the lignin from
the cellulose fibers (Figure 3). As the wood chips are porous a third phase –
entrapped liquid phase – is also considered.
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Figure 3: In the first part of the digester the phases flow concurrently while
in the second part the flows are countercurrently.

From the physical point of view we can describe the behaviour of a di-
gester as follows: (A) In its upper part the solid and the liquid phase flow
downwards concurrently and at z = EXT the liquid phase is completely
extracted ; (B) In its lower part a free liquid flows upwards countercurrently
with the solid phase ; (C) At several levels of the digester’s height – the
circulations C1, C2 – the free liquid is extracted, enriched and heated before
being reinjected. From an industrial point of view it is important to know
the temperature and the concentration of several chemical species – lignin,
cellulose, hemicellulose – in the solid phase, free liquid phase and entrapped
liquid phase. If yi denotes the concentration of some chemical product then
yF

i , yE
i and yS

i denote its concentration in the liquid, entrapped and solid
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phases respectively. For ` = F,E, S, y`
i , i = 1, 2, 3, represents the concentra-

tion of respectively cellulose, hemicellulose and lignin. For ` = F, E, i = 4, 5,
y`

i represents the concentration respectively of solid hydroxide and solid sul-
fide. Finally yF

6 , yE
6 stand for the temperature of the free and the entrapped

liquid. The behaviour of the digester is described in a simplified way by the
system of PDE’s





ξ1
∂yF

i

∂t
= −uF

∂yF
i

∂z
+ ρ1(y

E
i − yF

i ), i = 1, . . . , 5,

ξ1
∂yF

6

∂t
= −uF

∂yF
6

∂z
+ ρ2(y

E
6 − yF

6 ),

ξ2
∂yE

i

∂t
= −uS

∂yE
i

∂z
−Ri − ρ3(y

E
i − yF

i ), i = 1, . . . , 5,

ξ2
∂yE

6

∂t
= −uS

∂yE
6

∂z
− ρ4(y

E
6 − yF

6 )

ξ3
∂yS

i

∂t
= −uS

∂yS
i

∂z
+ Ri, i = 1, . . . , 3 ,

(27)

where ξi, i = 1, 2, 3, ρi, i = 1, . . . , 4, represent physical constants.
In system (27), the velocity uF is positive for i = 1, 2, 3 – the liquid phase

flows downwards – and is negative for i = 4, 5, and z ≥ EXT – because
the liquid phase flows upwards countercurrently. The reaction terms Ri are
represented by exponential functions depending on y`

i and are experimentally
established in [1]. The boundary and initial conditions as well as the values
of the parameters used in the model were obtained experimentally and are
established in [1].

In Figure 4 the evolution in time of the concentration of solid cellulose,
solid lignin, entrapped alkali and the temperature of the free liquid are plot-
ted. The computations have been made using Method (0,1) with constant
step-size and local refinement near the circulation points.

The stationary concentrations of cellulose, hemicellulose, lignin, alkali,
hidro-sulfide and the temperature are plotted in Figure 5. The results ob-
tained for the evolution problem present physical evidence. The stationary
results agree with the numerical results in [1].
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Figure 4: The evolution in time of the concentration of solid cellulose, solid
lignin, entrapped alkali and the temperature of the free liquid.
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Figure 5: Numerical stationary solution for (27).
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