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Abstract: For a complete cartesian-closed category V with coproducts, and for
any pointed endofunctor T of the category of sets satisfying a suitable Beck-Chevalley-
type condition, it is shown that the category of lax reflexive (T,V)-algebras is a
quasitopos. This result encompasses many known and new examples of quasitopoi.

0. Introduction
Failure to be cartesian closed is one of the main defects of the category of

topological spaces. But often this defect can be side-stepped by moving tem-
porarily into the quasitopos hull of Top, the category of pseudotopological
(or Choquet) spaces, see for example [11, 14, 7]. A pseudotopology on a set
X is most easily described by a relation x → x between ultrafilters x on X
and points x in X, the only requirement for which is the reflexivity condition
•

x → x for all x ∈ X, with
•

x denoting the principal ultrafilter on x. In this
setting, a topology on X is a pseudotopology which satisfies the transitivity
condition

X → y & y → z ⇒ m(X) → z

for all z ∈ X, y ∈ UX (the set of ultrafilters on X) and X ∈ UUX; here the
relation → between UX and X has been naturally extended to a relation
between UUX and UX, and m = mX : UUX → UX is the unique map that

gives U together with eX(x) =
•

x the structure of a monad U = (U, e,m).
Barr [2] observed that the two conditions, reflexivity and transitivity, are
precisely the two basic laws of a lax Eilenberg-Moore algebra when one ex-
tends the Set-monad U to a lax monad of Rel(Set), the category of sets with
relations as morphisms. In [9] Barr’s presentation of topological spaces was
extended to include Lawvere’s presentation of metric spaces as V-categories
with V = R+, the extended real half-line. Thus, for any symmetric monoidal
category V with coproducts preserved by the tensor product, and for any
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Set-monad T that suitably extends from Set-maps to all V-matrices (or
“V-relations”, with ordinary relations appearing for V = 2, the two-element
chain), the paper [9] develops the notion of reflexive and transitive (T,V)-
algebra, investigates the resulting category Alg(T,V), and presents many
examples, in particular Top = Alg(U, 2).

The purpose of this paper is to show that dropping the transitivity condi-
tion leads us to a quasitopos not only in the case of Top, but rather generally.
In order to define just reflexive (T,V)-algebras, one indeed needs neither the
tensor product of V (just the “unit” object) nor the “multiplication” of the
monad T. Positively speaking then, we start off with a category V with co-
products and a distinguished object I in V and any pointed endofunctor T of
Set and define the category Alg(T,V). Our main result says that when V is
complete and locally cartesian closed and a certain Beck-Chevalley condition
is satisfied, also Alg(T,V) is locally cartesian closed (Theorem 2.7).

Defining reflexive (T,V)-algebras for the “truncated” data T , V entails a
considerable departure from [9], as it is no longer possible to talk about the
bicategory Mat(V) of V-matrices. The missing tensor product prevents us
from being able to introduce the (horizontal) matrix composition; however,
“whiskering” by Set-maps (considered as 1-cells in Mat(V)) is still well-
defined and well-behaved, and this is all that is needed in this paper.

We explain the relevant properties of Mat(V) in Section 1 and define the
needed Beck-Chevalley condition. Briefly, this condition says that the com-
parison map that “measures” the extent to which the T -image of a pullback
diagram in Set still is a pullback diagram must be a lax epimorphism when
considered a 1-cell in Mat(V). Having presented our main result, at the end
of Section 2 we show that this condition is equivalent to asking T to preserve
pullbacks or, if V is thin (i.e., a preordered class), to transform pullbacks
into weak pullback diagrams (barring trivial choices for I and V). In certain
cases, (BC) turns out to be even a necessary condition for local cartesian
closedness of Alg(T,V), see 2.10. In Section 3 we show how to construct
limits and colimits in Alg(T,V) in general, and Section 4 presents the con-
struction of partial map classifiers, leading us to the theorem stated in the
Abstract. A list of examples follows in Section 5.

Acknowledgements. We dedicate this paper in great admiration to Nico
Pumplün with whom the third-named author started off studying Lawvere-
Linton theories and monads in the late sixties. The authors are also grateful
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to Ross Street and Richard Wood for pointing them to their respective arti-
cles [15] and [3].

1. V-matrices

1.1 Let V be a category with coproducts and a distinguished object I. A
V-matrix (or V-relation) r from a set X to a set Y , denoted by r : X 9 Y ,
is a functor r : X × Y → V, i.e. an X × Y -indexed family (r(x, y))x,y
of objects in V. With X, Y fixed, such V-matrices form the objects of
a category Mat(V)(X, Y ), the morphisms ϕ : r → s of which are natural
transformations, i.e. families (ϕx,y : r(x, y) → s(x, y))x,y of morphisms in V;
briefly,

Mat(V)(X, Y ) = VX×Y .

1.2 Every Set-map f : X → Y may be considered as a V-matrix f : X 9 Y
when one puts

f(x, y) =

{

I if f(x) = y,
0 else,

with 0 denoting a fixed initial object in V. This defines a functor

Set(X, Y ) // Mat(V)(X, Y ),

of the discrete category Set(X, Y ), and the question is: when do we obtain
a full embedding, for all X and Y ? Precisely when

(*) V(I, 0) = ∅ and |V(I, I)| = 1,

as one may easily check. In the context of a cartesian-closed category V,
we usually pick for I a terminal object 1 in V, and then condition (*) is
equivalently expressed as

(**) 0 6∼= 1,

preventing V from being equivalent to the terminal category.

1.3 While in this paper we do not need the horizontal composition of V-
matrices in general, we do need the composites sf and gr for maps
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f : X → Y , g : Y → Z and V-relations r : X 9 Y , s : Y 9 Z, de-
fined by

(sf)(x, z) = s(f(x), z),

(gr)(x, z) =
∑

y : g(y)=z

r(x, y),

for x ∈ X, z ∈ Z; likewise for morphisms ϕ : r → r′ and ψ : s → s′. Hence,
we have the “whiskering” functors

−f : Mat(V)(Y, Z) → Mat(V)(X,Z),

g− : Mat(V)(X, Y ) → Mat(V)(X,Z).

The horizontal composition with Set-maps from either side is associative
up to coherent isomorphisms whenever defined; hence, if h : U → X and
k : Z → V , then

(sf)h = s(fh) and k(gr) ∼= (kg)r.

Although Mat(V) falls short of being a bicategory, even a sesquicategory [15],
we refer to sets as 0-cells of Mat(V), V-matrices as its 1-cells, and natural
transformations between them as its 2-cells.

1.4 The transpose r◦ : Y 9 X of a V-matrix r : X 9 Y is defined by
r◦(y, x) = r(x, y) for all x ∈ X, y ∈ Y . Obviously r◦◦ = r, and with

(sf)◦ = f ◦s◦, (gr)◦ = r◦g◦

we can also introduce whiskering by transposes of Set-maps from either side,
also for 2-cells.

A Set-map f : X → Y gives rise to 2-cells

η : 1X → f ◦f, ε : ff ◦ → 1Y

satisfying the triangular identities (εf)(fη) = 1f , (f ◦ε)(ηf ◦) = 1f .

1.5 For a functor T : Set → Set, we denote by κ : TW → U the comparison
map from the T -image of the pullback W := Z×Y X of (g, f) to the pullback
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U := TZ ×TZ TX of (Tg, Tf)

TW Tk

$$

Th

!!

κ

$$I
I

I

U
π2 //

π1

��

TX

Tf

��

TZ
Tg

// TY.

(1)

We say that the Set-functor T satisfies the Beck-Chevalley Condition (BC)
if the 1-cell κ is a lax epimorphism; that is, if the “whiskering” functor
−κ : Mat(V)(TW, S) → Mat(V)(U, S) is full and faithful, for every set S.

In the next section we will relate this condition with other known formu-
lations of the Beck-Chevalley condition.

2. Local cartesian closedness of Alg(T,V)

2.1 Let (T, e) be a pointed endofunctor of Set and V category with coprod-
ucts and a distinguished object I. A lax (reflexive) (T,V)-algebra (X, a, η) is
given by a set X, a 1-cell a : TX 9 X and a 2-cell η : 1X → aeX in Mat(V).
The 2-cell η is completely determined by the V-morphisms

ηx := ηx,x : I // a(eX(x), x),

x ∈ X. As we shall not change the notation for this 2-cell, we write (X, a)
instead of (X, a, η). A (lax) homomorphism (f, ϕ) : (X, a) → (Y, b) of (T,V)-
algebras is given by a map f : X → Y in Set and a 2-cell ϕ : fa → b(Tf)
which must preserve the units: (ϕeX)(fη) = ηf . The 2-cell ϕ is completely
determined by a family of V-morphisms

fx,x : a(x, x) // b(Tf(x), f(x)),

x ∈ X, x ∈ TX, and preservation of units now reads as feX(x),xηx = ηf(x) for
all x ∈ X. For simplicity, we write f instead of (f, ϕ), and when we write

fx,x : a(x, x) // b(y, y)

this automatically entails y = Tf(x) and y = f(x); these are the V-components
of the homomorphism f . Composition of (f, ϕ) with (g, ψ) : (Y, b) → (Z, c)
is defined by

(g, ψ)(f, ϕ) = (gf, (ψ(Tf))(gϕ))
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which, in the notation used more frequently, means

(gf)x,x = (a(x, x)
fx,x

// b(y, y)
gy,y

// c(z, z)).

We obtain the category Alg(T,V) (denoted by Alg(T, e;V) in [9]).

2.2 Let V be finitely complete. The pullback (W, d) of f : (X, a) → (Z, c)
and g : (Y, b) → (Z, c) in Alg(T,V) is constructed by the pullback W =
X ×Z Y in Set and a family of pullback diagrams in V, as follows:

d(w, w)
f ′w,w

//

g′w,w
��

b(y, y)

gy,y

��

a(x, x)
fx,x

// c(z, z)

for all w ∈ W ; hence,

d(w, w) = a(Tg′(w), g′(w)) ×c b(Tf
′(w), f ′(w))

in V, where g′ : W → X and f ′ : W → Y are the pullback projections in
Set. For each w = (x, y) in W , we define ηw :=< ηx, ηy >.

2.3 Every set X carries the discrete (T,V)-structure e◦X. In fact, the 2-
cell η : 1X → e◦XeX making (X, e◦X) a (T,V)-algebra is just the unit of the
adjunction eX a e◦X in Mat(V). Now X 7→ (X, e◦X) defines the left adjoint of
the forgetful functor

Alg(T,V) // Set

since every map f : X → Y into a (T,V)-algebra (Y, b) becomes a homo-
morphism f : (X, e◦X) → (Y, b); indeed the needed 2-cell fe◦X → b(Tf) is
obtained from the unit 2-cell η : 1 → beY with the adjunction eX a e◦X: it is
the mate of fη : f → beY f = b(Tf)eX . In pointwise notation, for

fx,x : e◦X(x, x) // b(y, y)

one has fx,x = 1I if eX(x) = x; otherwise its domain is the initial object 0 of
V, i.e. it is trivial.

2.4 We consider the discrete structure in particular on a one-element set 1.
Then, for every (T,V)-algebra (X, a), an element x ∈ X can be equivalently
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considered as a homomorphism x : (1, e◦1) → (X, a) whose only non-trivial
component is the unit ηx : I → a(eX(x), x).

2.5 Assume V to be complete and locally cartesian closed. For a homomor-
phism f : (X, a) → (Y, b) and an additional (T,V)-algebra (Z, c) we form
a substructure of the partial product of the underlying Set-data (see [10]),
namely

Z Q
evoo

f ′

��

q
// X

f
��

P
p

// Y,

(2)

with

P = Zf = {(s, y) | y ∈ Y, s : (Xy, ay) → (Z, c)},

Q = Zf ×Y X = {(s, x) | x ∈ X, s : (Xf(x), af(x)) → (Z, c)},

where (Xy = f−1y, ay) is the domain of the pullback

iy : (Xy, ay) // (X, a)

of y : (1, e◦1) → (Y, b) along f . Of course, p and q are projections, and ev is
the evaluation map. We must find a structure d : TP 9 P which, together
with a 2-cell η, will make these maps morphisms in Alg(T,V).

For (s, y) ∈ P and p ∈ TP , in order to define d(p, (s, y)), consider each
pair x ∈ X and q ∈ TQ with f(x) = y and Tf ′(q) = p and form the partial
product

c(z, s(x)) c(z, s(x))fx,x ×b a(x, x)
ẽvq,x
oo

��

// a(x, x)

fx,x

��

c(z, s(x))fx,x
p̃q,x

// b(y, y)

(3)

in V, where z = T ev(q), and then the multiple pullback d(p, (s, y)) of the
morphisms p̃q,x in V, as in:

c(z, s(x))fx,x

p̃q,x

&&NNNNNNNNNNN

d(p, (s, y))

πq,x
77nnnnnnnnnnnn

pp,(s,y)

// b(y, y).
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2.6 We define the 2-cell η : 1P → deP componentwise. Let (s, y) ∈ P and
consider each x ∈ X and q ∈ TQ with f(x) = y and Tf ′(q) = eP (s, y) =
T (s, y)e1 (where (s, y) : 1 → P ). Consider the pullback jy : Xy → Q of
(s, y) : 1 → P along f ′ in Set; whence, jy(x) = s(x). By (BC) there is
x ∈ TXy such that Tjy(x) = q and T !(x) = e1(∗) (where ! : Xy → 1 and ∗ is
the only point of 1). Since evjy = s, we may form the diagram

c(z, s(x)) ay(x, x)
sx,x

oo

��

(iy)x,x
// a(x, x)

fx,x

��

I
ηy

// b(eY (y), y)

in V, where z = T ev(q) = Ts(x), and the square is a pullback. The universal
property of (3) guarantees the existence of η̃q,x : I → c(z, s(x))fx,x such that
p̃q,xη̃q,x = ηy and ẽvq,x(η̃q,x ×b 1) = sx,x. Then, with the multiple pullback
property, the morphisms η̃q,x define jointly η(s,y) : I → d(eP (s, y), (s, y)).

2.7 Theorem. If the pointed Set-functor T satisfies (BC) and V is complete
and locally cartesian closed, then also Alg(T,V) is locally cartesian closed.

Proof. Continuing in the notation of 2.5 and 2.6, we equip Q with the
lax algebra structure r : TQ 9 Q that makes the square of diagram (2) a
pullback diagram in Alg(T,V). Then the 2-cell defined by

r(q, (s, x))
πq,x×b1

// c(z, s(x))fx,x ×b a(x, x)
ẽvq,x

// c(z, s(x))

makes ev : (Q, r) → (Z, c) a homomorphism.
In order to prove the universal property of the partial product, given any

other pair (h : (L, u) → (Y, b), k : (M, v) → (Z, c)), where M := L×Y X, we
consider the map t : L→ P , defined by t(l) := (sl, h(l)), with

((Xh(l), ah(l)))
sl // (Z, c)) = ((Xh(l), ah(l))

jl // (M, v)
k // (Z, c)),
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where jl is the pullback of l : (1, e◦1) → (L, u) along f ′′ : (M, v) → (L, u). We
remark that in the commutative diagram

Z Q
evoo

q
//

f ′��

X

f

��

M
k

__>>>>>
t′ ??�����

f ′′

��

Xh(l)

ih(l)

<<zzzzz
jloo

��

P
p

// Y

L

t ==|||||
1

l
oo h(l)

;;vvvvvv

every vertical face of the cube is a pullback in Set.
Now, for each l ∈ L and l ∈ L we define tl,l : u(l, l) → d(Tt(l), t(l))

componentwise. Since evt′ = k we observe that Tk factors through the
comparison map κ : TM → TL ×TP TQ, defined by the diagram

TM T t′

((

Tf ′′

%%

κ
((Q

Q
QQ

TL×TP TQ
π2 //

π1

��

TQ

Tf ′

��

TL
T t // TP ;

that is Tk = (T ev)(Tt′) = (T ev)π2κ. Since also kv factors through κ, i.e.,
kv = kṽκ, with (BC) we conclude that the 2-cell kv → c(Tk) is of the form

ϕ

��

M
κ // TL×TP TQ

kṽ

��

(T ev)π2

DDZ.

For each x ∈ X and q ∈ TQ such that f(x) = h(l) and Tf ′(q) = Tt(l), let
m ∈ TM be such that (Tf ′′)(m) = l and (Tt′)(m) = q. In the diagram

c(z, sl(x)) v(m, (l, x))
km,(l,x)
oo

��

// a(x, x)

fx,x

��

u(l, l)
hl,l

// b(y, y)
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in V one has z = (T ev)(q) and the morphism km,(l,x) depends only on q

and l. Moreover, the square is a pullback, hence there is a V-morphism
t̃l,l : u(l, l) → c(z, sl(x))

fx,x such that p̃q,xt̃l,l = hl,l and km,(l,x)(t̃l,l×b 1) = ẽvq,x.

With the multiple pullback property, the morphisms t̃l,l define the unique
2-cell that makes t : (L, u) → (P, d) a homomorphism. �

If in the proof we take for (Y, b) the terminal object of Alg(T,V), that is,
the pair (1,>) where the lax structure > is constantly equal to the terminal
object of V, we conclude:

2.8 Corollary. If the pointed Set-functor T satisfies (BC) and V is com-
plete and cartesian closed, then also Alg(T,V) is cartesian closed.

We explain now the strength of our Beck-Chevalley condition.

2.9 Proposition. For T and V as in 1.5, let V(I, 0) = ∅. Then:

(a) If T satisfies (BC), then T transforms pullbacks into weak pullbacks.
The two conditions are actually equivalent when V is thin (i.e. a
preordered class).

(b) If V is not thin, satisfaction of (BC) by T is equivalent to preservation
of pullbacks by T .

(c) If V is cartesian closed, with I = 1 the terminal object, then T satisfies
(BC) if and only if (Tf)◦Tg = Tk(Th)◦, for every pullback diagram

W
k //

h
��

X

f
��

Z
g

// Y

(4)

in Set.

Proof. (a) Let κ : TW → U be the comparison map of diagram (1). By (BC)
the 2-cell κη : κ→ κκ◦κ is the image by −κ of a 2-cell σ : 1U → κκ◦. Hence,

for each u ∈ U there is a V-morphism I → κκ◦(u, u) =
∑

w∈TW :κ(w)=u

κ(w, u).

Therefore the set {w ∈ TW |κ(w) = u} cannot be empty, that is, κ is
surjective.

If V is thin and κ is surjective, there is a (necessarily unique) 2-cell
1U → κκ◦. Then each 2-cell ψ : κr → κs induces a 2-cell ϕ : r → s
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defined by

r
rσ // rκκ◦

ψκ◦
// sκκ◦

sε // s

whose image under −κ is necessarily ψ.

(b) If T preserves pullbacks, then κ is an isomorphism and (BC) holds.
Conversely, let T satisfy (BC) and let κ : TW → U be a comparison map

as in (1). We consider w0, w1 ∈ TW with κ(w0) = κ(w1) and V-morphisms
α, β : v → v′ with α 6= β, and define r : U × U → V by r(u, u′) = v and
s : U × U → V by s(u, u′) = v′. The 2-cell ψ : rκ → sκ, with ψw,u = α if
w = w0 and ψw,u = β elsewhere, factors through κ only if w0 = w1.

(c) For any commutative diagram (4) there is a 2-cell kh◦ → f ◦g, defined by

kh◦
ηkh◦

// f ◦fkh◦ = f ◦ghh◦
f◦gε

// f ◦g,

which is an identity morphism in case the diagram is a pullback.
If T satisfies (BC) and V is not thin, the equality Tk(Th)◦ = (Tf)◦Tg

follows from (b). If V is thin, then in the diagram (1) the 2-cell σ : 1 → κκ◦

considered in (a) gives rise to a 2-cell

(Tf)◦Tg = π2π
◦
1

π2σπ
◦

1 // π2κκ
◦π◦1 = Tk(Th)◦,

and the equality follows.
Conversely, the equality (Tf)◦Tg = Tk(Th)◦ guarantees the surjectivity

of κ, hence (BC) follows in case V is thin, by (a). If V is not thin, we first

observe that a coproduct
∑

X

I is isomorphic to I only if X is a singleton,

due to the cartesian closedness of V. Now, (Tf)◦Tg = Tk(Th)◦ means that,
for every z ∈ TZ and x ∈ TX with Tg(z) = Tf(x),

I = Tf(x, T g(z)) = Tf ◦Tg(z, x) = TkTh◦(z, x) =

=
∑

{I |w ∈ TW : Tk(w) = x & Th(w) = z}.

From this equality we conclude that there exists exactly one such w, i.e.
TW = TZ ×TY TX. �

2.10 Finally we remark that, in some circumstances, the 2-categorical part
of (BC) is essential for local cartesian-closedness of Alg(T,V). Indeed, if V
is extensive [4], T transforms pullback diagrams into weak pullback diagrams
and Alg(T,V) is locally cartesian closed, then T satisfies (BC), as we show
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next. To check (BC) we consider a 2-cell ψ : rκ → sκ, with κ : TW → U
the comparison map of diagram (1) and r, s : U → S. We need to check that
ψ = ϕκ for a unique 2-cell ϕ : r → s. This 2-cell exists, and it is unique if
and only if

∀w0,w1 ∈ TW ∀s ∈ S κ(w0) = κ(w1) ⇒ ψw0,s = ψw1,s.

For v := r(κ(w0), s) and v′ := s(κ(w0), s), and α := ψw0,s and β = ψw1,s, we
want to show that α = β.

For that, in the pullback diagram (4) we consider structures a, b, c, d, on
X, Y , Z and W respectively, constantly equal to I + v, with η : I → I + v
the coproduct injection. For d′ constantly equal to I + v′, in the diagram

(W, d′) (W, d)
(id,ε)
oo

(h,1)
��

(k,1)
// (X, a)

(f,1)
��

(Z, c)
(g,1)

// (Y, b)

we define ε by:

εw,w =

{

1 + α if w = w0,
1 + β elsewhere.

The square is a pullback. Hence the morphism (id, ε) factors through the
partial product via t ×Y id, with t : Z → P . Since the 2-cell of t ×Y id is
obtained by a pullback construction and κ(w0) = κ(w1), its 2-cell “identifies”
w0 and w1, hence εw0,w = εw1,w, that is, 1 + α = 1 + β. Therefore α = β, by
extensitivity of V.

3. (Co)completeness of the category Alg(T,V)

3.1 We assume V to be complete and cocomplete. The construction of
limits in Alg(T,V) reduces to a combined construction of limits in Set and
V, as we show next.

The limit of a functor

F : D → Alg(T,V)
D 7→ (FD, aD)

D
f
→ E 7→ (FD, aD)

Ff
→ (FE, aE)

is constructed in two steps.
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First we consider the composition of F with the forgetful functor into Set

D
F // Alg(T,V) // Set, (5)

and construct its limit in Set

(L
pD

// FD)D∈D.

Then, we define the (T,V)-algebra structure a : TL 9 L, that is the map
a : TX ×X → V, pointwise. For every l ∈ TL and l ∈ L, we consider now
the functor

Fl,l : D → V
D 7→ aD(TpD(l), pD(l))

D
f
→ E 7→ aD(TpD(l), pD(l))

Ff
TpD(l),pD(l)

// aE(TpE(l), pE(l))

and its limit in V

(a(l, l)
pD

l,l
// aD(TpD(l), pD(l)))D∈D.

This equips pD : (L, a) → (FD, aD) with a 2-cell pDa→ aDTp
D.

By construction

(L, a)
pD

// (FD, aD) (6)

is a cone for F . To check that it is a limit, let

(Y, b)
gD

// (FD, aD)

be a cone for F . By construction of (L, pD), there exists a map t : Y → L
such that pDt = gD for each D ∈ D. For each y ∈ TY and y ∈ Y ,

b(y, y)
gD

y,y
// aD(TpD(Tt(y)), pD(t(y)))

is a cone for the functor FT t(y),t(y). Hence, by construction of a(Tt(y), t(y)),
there exists a unique V-morphism ty,y making the diagram

a(Tt(y), t(y))
pD

y,y
// aD(TpD(Tt(y)), pD(t(y)))

b(y, y)

ty,y

OO�
�

�
gD

y,y

33gggggggggggggggggggggggg
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commutative. These V-morphisms define pointwise the unique 2-cell
gb → pDa.

For each l ∈ L, ηl : I → a(eL(l), l) is the morphism induced by the cone

(ηDpD(l),pD(l) : I → aD(eFD(pD(l)), pD(l)))D∈D.

3.2 Cocompleteness. To construct the colimit of a functor
F : D → Alg(T,V) we first proceed analogously to the limit construction.
That is, we form the colimit in Set

(FD
iD // Q)D∈D

of the functor (5).
To construct the structure c : TQ 9 Q, for each q ∈ TQ and q ∈ Q, we

consider the functor F q,q : D → V, with

F q,q(D) =
∑

{aD(x, x) |TiD(x) = q, iD(x) = q},

and, for f : D → E, the morphism F q,q(f) : F q,q(D) → F q,q(E) is induced
by

aD(x, x)
Ffx,x // aE(Tf(x), f(x)) //

∑

{aE(y, y) |TiE(y) = q, iE(y) = q} = F q,q(E).

and denote by c̃(q, q) the colimit of F q,q. If q 6= eQ(q) for q ∈ Q, then c̃(q, q)
is in fact the structure c(q, q) on the colimit. For q = eQ(q), the multiple
pushout

c̃(eQ(q), q)

$$JJJJJJJJJJJJJJJJJ

aD(eFD(x), x)

iD
eFD(x),x 55kkkkkkk

I

ηx
77ppppppppp ηq

// c(eQ(q), q),

defines c(eQ(q), q), with D ∈ D and x ∈ FD such that iD(x) = q.

4. Representability of partial morphisms

4.1 Let S be a pullback-stable class of morphisms of a category C. An

S-partial map from X to Y is a pair ( X U
soo // Y ) where s ∈ S. We

say that S has a classifier if there is a morphism true : 1 → 1̃ in S such that
every morphism in S is, in a unique way, a pullback of true; C has S-partial
map classifiers if, for every Y ∈ C, there is a morphism trueY : Y → Ỹ in
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S such that every S-partial map ( X U
soo // Y ) from X to Y can be

uniquely completed so that the diagram

U

s
��

// Y

trueY
��

X //___ Ỹ .

is a pullback.
From Corollary 4.6 of [10] it follows that:

4.2 Proposition. If S is a pullback-stable class of morphisms in a finitely
complete locally cartesian-closed category C, then the following assertions are
equivalent:

(i) S has a classifier;
(ii) C has S-partial map classifiers.

4.3 Our goal is to investigate whether the category Alg(T,V) has S-partial
map classifiers, for the class S of extremal monomorphisms. For that we first
observe:

4.4 Lemma. An Alg(T,V)-morphism s : (U, c) → (X, a) is an extremal
monomorphism if and only if the map s : U → X is injective and, for each
u ∈ TU and u ∈ U , su,u : c(u, u) → a(x, x) is an isomorphism in V.

4.5 Proposition. In Alg(T,V) the class of extremal monomorphisms has
a classifier.

Proof. For 1̃ = (1 + 1, >̃), where >̃ is pointwise terminal, we consider
the inclusion true : 1 → 1̃ onto the first summand. For every extremal
monomorphism s : (U, c) → (X, a), we define χU : (X, a) → 1̃ with
χU : X → 1 + 1 the characteristic map of s(U), and the 2-cell constantly
! : a(x, x) → 1. Then the diagram below

(U, s)

s
��

! // 1

true
��

(X, a)
χU // 1̃.
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is a pullback diagram; it is in fact the unique possible diagram that presents
s as a pullback of true. �

Using Theorem 2.7 and Proposition 4.5, we conclude that:

4.6 Theorem. If the pointed Set-functor T satisfies (BC) and V is a com-
plete and cocomplete locally cartesian closed category, then Alg(T,V) is a
quasitopos.

4.7 Remark. Representability of (extremal mono)-partial maps can also be
proved directly, and in this way one obtains a slight improvement of Theorem
4.6: Alg(T,V) is a quasi-topos whenever T satisfies (BC) and V is a complete
and cocomplete cartesian closed category, not necessarily locally so.

5. Examples.

5.1 We start off with the trivial functor T which maps every set to a terminal
object 1 of Set. T preserves pullbacks. Choosing for I the top element of any
(complete) lattice V we obtain with Alg(T,V) nothing but the topos Set.
This shows that local cartesian closedness of V is not a necessary condition
for local cartesian closedness of Alg(T,V). We also note that T does not
carry the structure of a monad.

If, for the same T , we choose V = Set, then Alg(T,Set) is the formal
coproduct completion of the category Set∗ of pointed sets, i.e. Alg(T,Set) ∼=
Fam(Set∗).

5.2 Let T = Id, e = id. Considering for V as in [9] the two-element chain
2, the extended half-line R+ = [0,∞] (with the natural order reversed), and
the category Set, one obtains with Alg(T,V) the category of

− sets with a reflexive relation
− sets with a fuzzy reflexive relation
− reflexive directed graphs,

respectively.
More generally, if we let TX = Xn for a non-negative integer n, with the

same choices for V one obtains

− sets with a reflexive (n+ 1)-ary relation
− sets with a fuzzy reflexive (n + 1)-ary relation
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− reflexive directed “multigraphs” given by sets of vertices and of edges,
with an edge having an ordered n-tuple of vertices as its source and a
single edge as its target; reflexivity means that there is a distinguished
edge (x, · · · , x) → x for each vertex x.

Note that the case n = 0 encompasses Example 5.1.

5.3 For a fixed monoid M , let T belong to the monad T arising from the
adjunction

SetM ⊥ // Set,
oo

i.e. TX = M×X with eX(x) = (0, x), with 0 neutral in M (writing the com-
position inM additively). T preserves pullbacks. The quasitopos Alg(T,Set)
may be described as follows. Its objects are “M -normed reflexive graphs”,
given by a set X of vertices and sets a(x, y) of edges from x to y which come
with a “norm” vx,y : a(x, y) → M for all x, y ∈ X; there is a distinguished
edge 1x : x → x with vx,x(1x) = 0. Morphisms must preserve the norm. Of
course, for trivial M we are back to directed graphs as in 5.2.

It is interesting to note that if one forms Alg(T,Set) for the (untruncted)
monad T (see [9]), then Alg(T,Set) is precisely the comma category Cat/M ,
where M is considered a one-object category; its objects are categories which
come with a norm function v for morphisms satisfying v(gf) = v(g) + v(f)
for composable morphisms f, g.

5.4 Let T = U be the ultrafilter functor, as mentioned in the Introduction.
U transforms pullbacks into weak pullback diagrams. Hence, for V = 2 we
obtain with Alg(T, 2) the quasitopos of pseudotopological spaces, and for
V = R+ the quasitopos of (what should be called) quasiapproach spaces (see
[9, 8]). If we choose for V the extensive category Set, then the resulting cat-
egory Alg(U,Set) is a rather naturally defined supercategory of the category
of ultracategories (as defined in [9]) but fails to be locally cartesian closed,
according to 2.9(b) and 2.10.
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