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Abstract: Unlike a uniformity, a quasi-uniformity is not determined by its quasi-
uniform covers. However, a classical construction, due to Fletcher, which assigns a
transitive quasi-uniformity to each family of interior-preserving open covers, allows
to describe all transitive quasi-uniformities on the topological spaces in terms of
those families of covers.

In this paper we develop a pointfree generalization of this, which solves a problem
posed by G. C. L. Brümmer, together with various examples and applications that
illustrate its remarkable usefulness. By this construction, many kinds of interior-
preserving open covers (e.g. locally finite, open spectrum, well-monotone) induce
compatible quasi-uniformities on an arbitrary frame.
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Introduction

Transitive quasi-uniform spaces form an important subcategory of the cat-
egory of quasi-uniform spaces and uniformly continuous maps and they play
a rôle almost as general as that of quasi-uniform spaces in the study of topo-
logical properties. The most striking aspect of transitive quasi-uniformities
is that they can all be obtained by the Fletcher construction [8] (see also [9])
considering the interior-preserving open covers of their associated topological
spaces:

Let (X, T ) be a topological space and let A be a collection of interior-
preserving open covers A of X such that

⋃

A is a subbase for T . For any A
set

RA =
⋂

{EA | A ∈ A}
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where EA stands for

{(x, y) ∈ X × X | x ∈ A ⇒ y ∈ A}.

Then the collection {RA | A ∈ A} is a subbase for a compatible transitive
quasi-uniformity EA on X (that is, (X, EA) is a transitive quasi-uniform space
inducing as first topology the given topology T ).

Corresponding to each kind of interior-preserving open cover we get well-
known quasi-uniformities. For example, if A is the collection of all finite (resp.
point-finite, locally finite, interior-preserving, open spectra, well-monotone)
open covers of X, then EA is the Pervin (resp. point-finite, locally finite, fine
transitive, semicontinuous, well-monotone) quasi-uniformity of X. Moreover,
this construction gives all transitive quasi-uniformities on X [4].

The purpose of this paper is to extend these considerations to pointfree
topology, solving Problem 3 of [5], posed by G.C.L. Brümmer at the topol-
ogy conference in Ankara, summer 2001. This extension is by no means
immediate in that a number of technical difficulties, which have no place in
the spatial case (by the very nature of entourages as reflexive relations on a
set X and quasi-uniformities as filters of entourages on X), have now to be
surpassed.

In the classical theory, the construction relies on the fact that every open
subspace of a space X has a complement. To get the localic counterpart
of this construction, we turn to the frame of congruences (more precisely,
the congruence biframe) which provides the right tools for the translation of
the topological properties pertaining to the Fletcher construction. The topo-
logical intuition behind our arguments concerning congruences can be easily
traced back by the correspondence between sublocales and congruences.

The paper is organized as follows:
In Sections 1 and 2, we recall the specific notions and facts which will

be used later on. After that, we discuss the concept of interior-preserving
cover (Section 3) and the covers which induce entourages in our construction
(Section 4). In Section 5, we present a technical result on the construction
of general transitive frame quasi-uniformities that has specific relevance in
the construction of compatible quasi-uniformities that we describe in Section
6, the main goal of this paper. Next, in Section 7, we present the funda-
mental result that the construction of Section 6 accounts for all transitive
compatible quasi-uniformities, as well as a result that has the noteworthy
consequence of making the construction in question functorial, a fact which
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will be the subject of a forthcoming paper. In the final section we show
the effectiveness of our construction with a brief survey of various examples
and applications. The examples essentially cover all the facts concerning the
Fletcher construction from [9] which make pointfree sense.

In a sequel [7] to this paper, we show that the general method introduced
here gives precisely all functorial transitive quasi-uniformities on frames.
This extends the results of Brümmer [4] on functorial transitive quasi-uni-
formities on the topological spaces.

1. Background

In order to fix terminology let us recall a few concepts.

1.1. Frames and biframes. A frame (also locale) is a complete lattice
satisfying the infinite distributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}

for every x ∈ L and every S ⊆ L. A frame homomorphism f : L → M is a
map between frames which preserves finite meets (including the top element
1) and arbitrary joins (including the bottom element 0). The corresponding
category will be denoted by Frm. A cover A of L is a subset A ⊆ L such that
∨

A = 1.
If L is a frame and x ∈ L then

x∗ :=
∨

{a ∈ L | a ∧ x = 0}

is the pseudocomplement of x. Obviously, if x ∨ x∗ = 1, x is complemented
and we denote the complement x∗ by ¬x. Note that, in any frame, the first
De Morgan law

(
∨

i∈I

xi)
∗ =

∧

i∈I

x∗
i

holds but for infima we have only the trivial inequality
∨

i∈I

x∗
i ≤ (

∧

i∈I

xi)
∗.

Recall also that a biframe is a triple (L0, L1, L2) where L1 and L2 are
subframes of the frame L0, which together generate L0. A biframe homo-
morphism, f : (L0, L1, L2) −→ (M0, M1, M2), is a frame homomorphism
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f : L0 −→ M0 which maps Li into Mi (i = 1, 2) and BiFrm denotes the
resulting category.

Further, a biframe (L0, L1, L2) is strictly zero-dimensional [2] if it satisfies
the following condition or its counterpart with L1 and L2 reversed: each
x ∈ L1 is complemented in L0, with complement in L2, and L2 is generated
by these complements. Along this paper, when referring to a strictly zero-
dimensional biframe, we always assume that it satisfies the condition above,
not its counterpart with L1 and L2 reversed.

For general facts concerning frames we refer to Johnstone [13] or Vickers
[19]. Additional information concerning biframes may be found in [2] and
[3].

1.2. Weil entourages. For a frame L consider the frame D(L × L) of all
non-void decreasing subsets of L × L, ordered by inclusion. The coproduct
L ⊕ L will be represented, as usual (cf. [13]), as the subset of D(L × L)
consisting of all C-ideals, that is, of those sets A which satisfy

{x} × S ⊆ A ⇒ (x,
∨

S) ∈ A

and

S × {y} ⊆ A ⇒ (
∨

S, y) ∈ A.

Since the premise is trivially satisfied if S = ∅, each C-ideal A contains
O := {(0, a), (a, 0) | a ∈ L}, and O is the zero of L ⊕ L. Obviously, each
x ⊕ y = ↓(x, y) ∪ O is a C-ideal and for each C-ideal A one has

A =
∨

{x ⊕ y | x ⊕ y ≤ A} =
∨

{x ⊕ y | (x, y) ∈ A}.

The coproduct injections uL
i : L → L ⊕ L are defined by uL

1 (x) = x ⊕ 1 and
uL

2 (x) = 1 ⊕ x so that x ⊕ y = uL
1 (x) ∧ uL

2 (y).
For any frame homomorphism h : L −→ M , the definition of coproduct

ensures us the existence (and uniqueness) of a frame homomorphism h⊕ h :
L ⊕ L −→ M ⊕ M such that (h ⊕ h) · uL

i = uM
i · h (i = 1, 2).

A Weil entourage [15] on L is just an element E of L ⊕ L for which
∨

{x ∈ L | (x, x) ∈ E} = 1.

The collection WEnt(L) of all Weil entourages of L with the inclusion is a
partially ordered set with finitary meets (including a unit 1 = L ⊕ L).
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If E and F are elements of L ⊕ L then

E ◦ F :=
∨

{x ⊕ y | ∃z ∈ L \ {0} : (x, z) ∈ E, (z, y) ∈ F}.

Note that E ⊆ E ◦ E for every Weil entourage E. A Weil entourage E is
called

• transitive if E ◦ E = E;
• finite if there exists a finite cover x1, . . . , xn of L such that

∨n
i=1(xi ⊕

xi) ⊆ E.

Let E ⊆ L ⊕ L and x, y ∈ L. If

E ◦ (x ⊕ x) ⊆ y ⊕ y for some E ∈ E , (1.2.1)

we write x
E
/ y. When E is symmetric (that is, E−1 ∈ E whenever E ∈ E)

this is equivalent to

(x ⊕ x) ◦ E ⊆ y ⊕ y for some E ∈ E (cf. [15]). (1.2.2)

A set E ⊆ WEnt(L) is called admissible if, for every x ∈ L,

x =
∨

{y ∈ L | y
E
/ x},

where E := E ∪ {E−1 | E ∈ E}.

1.3. Uniform and quasi-uniform frames. An admissible filter E of
WEnt(L) is a (Weil) uniformity on L if it satisfies the following conditions:

(U1) For each E ∈ E there exists F ∈ E such that F ◦ F ⊆ E.
(U2) For every E ∈ E , E−1 ∈ E .

Further, a (Weil) uniform frame is a pair (L, E) where L is a frame and E
is a uniformity on L. If (L, E) and (M,F) are uniform frames, f : (L, E) →
(M,F) is a uniform homomorphism if f : L → M is a frame homomorphism
such that (f ⊕ f)(E) ∈ F , for all E ∈ E . The resulting category is denoted
by UFrm.

By just dropping the symmetry condition (U2) in the definition of uniform
frame we get the category of quasi-uniform frames, denoted by QUFrm. With
the lack of symmetry the equivalence between conditions (1.2.1) and (1.2.2)

is no longer valid; whence, in the place of
E
/ we have two partial orders

x
E
/1 y ≡ E ◦ (x ⊕ x) ⊆ y ⊕ y, for some E ∈ E ,

x
E
/2y ≡ (x ⊕ x) ◦ E ⊆ y ⊕ y, for some E ∈ E ,
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which in turn, lead to the following subframes of L:

L1(E) :=
{

x ∈ L | x =
∨

{y ∈ L | y
E
/1x}

}

,

L2(E) :=
{

x ∈ L | x =
∨

{y ∈ L | y
E
/2x}

}

.

It is worth pointing that then, for each x ∈ L,

x ∈ L1(E) ⇔ x =
∨

{y ∈ L1(E) | y
E
/1x} (1.3.1)

and

x ∈ L2(E) ⇔ x =
∨

{y ∈ L2(E) | y
E
/2x} [15]. (1.3.2)

Further, the admissibility condition is equivalent to saying that the triple

(L,L1(E),L2(E))

is a biframe [16]. This is the pointfree expression of the classical fact that each
quasi-uniform space (X, E) induces a bitopological structure (T1(E), T2(E)) on
X.

Regarding quasi-uniform frames, we shall need the following notions: a
quasi-uniform frame (L, E) is called

• transitive if E has a base consisting of transitive entourages;
• totally bounded if E has a base of finite entourages.

For more information on transitive quasi-uniformities and totally bounded
quasi-uniformities we refer to [12] and [11], respectively.

Throughout this paper, L always represents a frame.

2. Tools

In this section we collect the facts needed later on concerning the notions
which play a particularly significant rôle in our construction: the strong

inclusion (
E
/1,

E
/1) induced by a quasi-uniformity E and the congruence lattice

CL.

2.1. Let (L, E) be a quasi-uniform frame. The pair (
E
/1,

E
/2) is a strong

inclusion [18] on the biframe (L,L1(E),L2(E)). In particular, this means

that x
E
/i y implies x ≺i y, that is, the existence of z ∈ Lj(E), j 6= i, such

that z ∧ x = 0 and z ∨ y = 1.

We should also note that
E
/1 and

E
/2 may be characterized in the following

way [16]:
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• x
E
/1 y if and only if there exists E ∈ E such that

st1(x, E) :=
∨

{a ∈ L | (a, b) ∈ E, b ∧ x 6= 0} ≤ y; (2.1.1)

• x
E
/2 y if and only if there exists E ∈ E such that

st2(x, E) :=
∨

{b ∈ L | (a, b) ∈ E, a ∧ x 6= 0} ≤ y. (2.1.2)

The elements sti(x, E) (i = 1, 2) satisfy the following properties, for every
x, y ∈ L and every E, F ∈ L ⊕ L [15]:

(S1) x ≤ y ⇒ sti(x, E) ≤ sti(y, E);
(S2) For every Weil entourage E, x ≤ st1(x, E) ∧ st2(x, E);
(S3) sti(x, E ∩ F ) ≤ sti(x, E) ∧ sti(x, F );
(S4) st1(st1(x, E), F ) ≤ st1(x, F ◦E) and st2(st2(x, E), F ) ≤ st2(x, E ◦ F );
(S5) sti(

∨

j∈J xj, E) =
∨

j∈J sti(xj, E);
(S6) If (x, y) ∈ E then (x, st2(y, E)) and (st1(x, E), y) belong to E ◦ E;

2.2. The lattice of frame congruences on L under set inclusion is a frame,
denoted by CL. A good presentation of the congruence frame is given by
Frith [10]. Here, we shall need the following properties:

(1) For any x ∈ L, ∇x = {(a, b) | a ∨ x = b ∨ x} is the least congruence
containing (0, x); ∆x = {(a, b) | a ∧ x = b ∧ x} is the least congruence
containing (1, x). The ∇x are called closed and the ∆x open.

(2) Each ∇x is complemented in CL with complement ∆x.
(3) ∇L = {∇x | x ∈ L} is a subframe of CL. Let ∆L denote the subframe

of CL generated by {∆x | x ∈ L}. Since θ =
∨

{∇y ∧ ∆x | (x, y) ∈
θ, x ≤ y}, for every θ ∈ CL, the triple (CL,∇L, ∆L) is a biframe
(usually referred to as the Skula biframe [10]). Clearly, this is a strictly
zero-dimensional biframe.

(4) The map x 7→ ∇x is a frame isomorphism L → ∇L, whereas the map
x 7→ ∆x is a dual poset embedding L → ∆L taking finitary meets to
finitary joins and arbitrary joins to arbitrary meets.

For any θ ∈ CL, the interior of θ, denoted by int(θ), is given by
∧

{∆x | θ ≤ ∆x} = ∆∨

{x∈L|θ∧∇x=0}.

Obviously, int(∇x) = ∆x∗ and int(
∨

∆xi
) = ∆∧

xi
.



8 M. J. FERREIRA AND J. PICADO

3. Interior-preserving covers

3.1. Fletcher’s construction starts from a collection A of interior-preserving
open covers of the given space X. The immediate translation of the classical
notion of interior-preserving open covers of a space into the pointfree setting
says that an open cover {∆a | a ∈ A} of a locale L (i.e.,

∧

a∈A ∆a = 0, which
means, internally in L, that A is a cover of L) is interior-preserving if, for
each B ⊆ A,

∨

b∈B

∆b = ∆∧

B. (3.1.1)

More generally, we say that a subset A of L is interior-preserving if condition
(3.1.1) holds for any B ⊆ A.

Classically, De Morgan laws imply immediately that an open cover A of a
topological space X is interior-preserving if and only if {X \ A | A ∈ A} is
a closure-preserving closed co-cover of X. This equivalence is no longer true
in the pointfree setting. Indeed, a closed co-cover {∇a | a ∈ A} (internally
in L, this means that A is again a cover of L, since ∇∨

A =
∨

a∈A ∇a = 1) is
closure-preserving if,

for each B ⊆ A,
∧

b∈B

∇b = ∇∧

B. (3.1.2)

Now, the first De Morgan law implies immediately that (3.1.1) implies (3.1.2)
but the converse is not true.

We say that a cover A of L is weakly interior-preserving if it satisfies con-
dition (3.1.2). We note that subsets A of L satisfying (3.1.2) were already
studied by Chen [6] (under the name “conservative subsets”). In ([6], Lemma
2.3) Chen characterizes them by the condition

for each B ⊆ A, x ∨
∧

B =
∧

{x ∨ b | b ∈ B} for all x ∈ L.

As we shall see later on, condition (3.1.2) is the right condition we need to
impose on the covers in order to fulfill our construction of a quasi-uniformity
compatible with the given frame L.

In what follows we illustrate the scope of these notions by a number of
important examples which we shall refer to later on as guiding examples.

3.2. Locally finite covers. Recall that a set A ⊆ L is said to be locally
finite [6] if there is a cover C of L such that Ac := {a ∈ A | c ∧ a 6= 0} is
finite for each c ∈ C. Such a cover C is said to finitize A.
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Proposition. Every locally finite set is interior-preserving.

Proof : Let A be a locally finite set of L and let C be the corresponding cover
that finitizes it. Then A is interior-preserving because, for every infinite
B ⊆ A,

∨

b∈B ∆b = 1. Indeed:
Since B is infinite, for every c ∈ C there exists b ∈ B such that b ∧ c =

0, that is, ∆b∧c = 1. Thus
∨

b∈B ∆b∧c = 1 for every c ∈ C. Equivalently,
∨

b∈B ∆b ≥ ∇c for every c ∈ C. Hence
∨

b∈B ∆b ≥
∨

c∈C ∇c = 1.

3.3. Open spectra. We say that a cover A = {an | n ∈ Z} of L is an open
spectrum if an ≤ an+1, for each n ∈ Z, and

∨

n∈Z ∆an
= 1 (which implies, in

particular, that
∧

n∈Z an = 0).

Proposition. Every open spectrum is interior-preserving.

Proof : It suffices to show that
∨

n∈S

∆an
≥ ∆∧

n∈S an
for every S ⊆ Z.

Let S ⊆ Z. If S has a least element m then, obviously,
∨

n∈S ∆an
= ∆am

=
∆∧

n∈S an
. Otherwise,

∨

n∈S ∆an
=

∨

n∈Z ∆an
= 1.

3.4. Well-monotone covers. We say that a cover A of L is a well-monotone
cover if it is well-ordered by the partial order ≤ of L. So A is a chain in L,
satisfying the descending chain condition. The following is obvious:

Proposition. Every well-monotone cover is interior-preserving.

4. Fletcher covers

4.1. Our first aim is to cast the basic (transitive) entourages in Fletcher
construction into pointfree form. As in initial step towards this, let

Ea = (∇a ⊕ 1) ∨ (1 ⊕ ∆a)

for any a ∈ L. This is clearly a transitive Weil entourage of CL. It is also
worth pointing that Ea is simply (∇a ⊕ 1) ∪ (1⊕∆a), since this is already a
C-ideal.

For any A ⊆ L set

RA =
⋂

{Ea | a ∈ A} ∈ CL ⊕ CL.

In view of the following lemma, we shall consider only RA with A ∈ CovL

(this is not a serious restriction since, for any B ⊆ L, A = B ∪{1} is a cover
and RB = RA).
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Lemma. If A and B are covers of L then RA ∩ RB = RA∧B.

Proof : It is easy to see that, for every A, B ⊆ L,

(
⋂

a∈A

Ea) ∩ (
⋂

b∈B

Eb) ⊆
⋂

{Ea∧b | a ∈ A, b ∈ B},

since ∇a∧b = ∇a ∧∇b and ∆a∧b = ∆a ∨ ∆b.
For the reverse inclusion, consider (α, β) ∈

⋂

{Ea∧b | a ∈ A, b ∈ B}. Let
a ∈ A. If α ≤ ∇a then (α, β) ∈ Ea. Otherwise, if α 6≤ ∇a, then α 6≤ ∇a∧b so,
necessarily, β ≤ ∆a∧b, for every b ∈ B. Consequently, since B is a cover of
L,

β ≤
∧

b∈B

∆a∧b = ∆∨

b∈B(a∧b) = ∆a.

Thus (α, β) also belongs to Ea in this case. Similarly, (α, β) ∈ Eb for every
b ∈ B. Hence (α, β) ∈ RA ∩ RB.

Of course, RA would be of little use for our purpose if it would not be
a Weil entourage (which may happen, contrarily to the classical case, since
infinite intersections of Weil entourages are not necessarily entourages).

For each cover A of L, let

d(A) =
∨

{(
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a) | A1 ∪ A2 = A}.

Proposition. Let A be a cover of L. The following assertions are equivalent:

(i) RA is a Weil entourage of CL.
(ii) d(A) = 1.
(iii) There exists a cover C of L such that, for each c ∈ C, ∇c =

∨

i∈Ic
θc
i ,

where each pair (θc
i , θ

c
i ) belongs to RA.

Proof : (i)⇔(ii): If RA is a Weil entourage then
∨

{α ∈ CL | (α, α) ∈ RA} =

1. But (α, α) ∈ RA means that there exists a partition A1∪A2 of A for which

α ≤ (
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a).

Thus d(A) = 1.
The converse is obvious since

((
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a), (
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a)) ∈ RA

whenever A1 ∪ A2 = A.
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(i)⇒(iii): Take just the cover A. For each a ∈ A,

∇a = ∇a ∧ d(A) =
∨

{(
∧

b∈A1

∇b) ∧ (
∧

b∈A2

∆b) | A1 ∪ A2 = A, a ∈ A1}.

Clearly,

((
∧

b∈A1

∇b) ∧ (
∧

b∈A2

∆b), (
∧

b∈A1

∇b) ∧ (
∧

b∈A2

∆b)) ∈ RA.

(iii)⇒(i): It is obvious:
∨

(θ,θ)∈RA

θ ≥
∨

c∈C

∨

i∈Ic

θc
i =

∨

c∈C

∇c = 1.

We say that a cover A of L is a Fletcher cover whenever it satisfies the
equivalent conditions of the Proposition.

Remark. For each finite A ⊆ L, a straightforward proof by induction shows
that d(A) = 1. Thus finite covers are examples of Fletcher covers.

Corollary. If A is a Fletcher cover of L then RA is a transitive Weil en-
tourage of CL.

Proof : It remains to check that RA ◦ RA ⊆ RA. So, consider (α, β), (β, γ) ∈
RA with β 6= 0 and let a ∈ A. If α 6≤ ∇a then β ≤ ∆a and, consequently,
β 6≤ ∇a, since β 6= 0. Therefore γ ≤ ∆a and (α, γ) ∈ RA.

In view of the Proposition, it is clear that Fletcher covers will play a central
rôle in our context. We do not know whether (weakly) interior-preserving
covers are Fletcher covers but we do know that, in each of our guiding ex-
amples, the covers are indeed Fletcher covers, as we shall show in the sequel.

4.2. Locally finite covers are Fletcher covers. Let A be a locally finite
cover of L and let C be a cover that finitizes it.

Lemma. For each c ∈ C, there exists {θi | i ∈ I} ⊆ CL such that ∇c =
∨

i∈I θi and (θi, θi) ∈ RA for every i ∈ I.

Proof : Let c ∈ C and consider Ac = {aj | j ∈ J}. By Remark 4.1, since J is
finite,

∨

J1∪J2=J

((
∧

j∈J1

∇aj
) ∧ (

∧

j∈J2

∆aj
)) = 1.
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Therefore

∇c =
∨

J1∪J2=J

(∇c ∧ (
∧

j∈J1

∇aj
) ∧ (

∧

j∈J2

∆aj
)).

Denote the congruence ∇c ∧ (
∧

j∈J1
∇aj

) ∧ (
∧

j∈J2
∆aj

) by θ. It remains to
check that (θ, θ) ∈ RA, that is, θ ≤ ∇a or θ ≤ ∆a for every a ∈ A. Let a ∈ A.
If a ∧ c = 0 then ∇c ≤ ∆a and, consequently, θ ≤ ∆a. Otherwise, a = aj for
some j ∈ J . If j ∈ J1 then θ ≤ ∇a. If j ∈ J2, θ ≤ ∆a.

Then, by Proposition 4.1, we immediately get

Proposition. Every locally finite cover is a Fletcher cover.

4.3. Open spectra are Fletcher covers.

Proposition. Let A = {an | n ∈ Z} be an open spectrum. Then

d(A) =
∨

n∈Z

(∇an
∧ ∆an−1

) = 1.

Proof : Clearly,

1 = (
∨

n∈Z

∇an
) ∧ (

∨

m∈Z

∆am
) =

∨

n∈Z

∨

m∈Z

(∇an
∧ ∆am

) =

=
∨

n∈Z

∨

m<n

(∇an
∧ ∆am

).

But, for m = n − k,

∇an
∧ ∆am

= (∇an
∧ ∆an−1

) ∨ (∇an−1
∧ ∆an−2

) ∨ · · · ∨ (∇an−k+1
∧ ∆am

).

Hence 1 =
∨

n∈Z(∇an
∧ ∆an−1

).
Let Z1∪Z2 be a partition of Z. If Z1 has a least element m then

∧

n∈Z1
∇an

=
∇am

and
∧

n∈Z2
∆an

≤ ∆am−1
so (

∧

n∈Z1
∇an

) ∧ (
∧

n∈Z2
∆an

) ≤ ∇am
∧ ∆am−1

.
Otherwise,

∧

n∈Z1
∇an

=
∧

n∈Z ∇an
= 0 and (

∧

n∈Z1
∇an

) ∧ (
∧

n∈Z2
∆an

) = 0.
In conclusion,

d(A) ≤
∨

n∈Z

(∇an
∧ ∆an−1

).

The reverse inequality is trivial (just take Z1 = ↓(n − 1) and Z2 = ↑n).

4.4. Well-monotone covers are Fletcher covers. Let γ be an ordinal
and let {aα | α ∈ γ} be a well-monotone cover of L (that is, aα ≤ aβ for
every α, β ∈ γ, α < β).
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Remark. If γ is a successor ordinal δ +1 then, obviously, aδ =
∨

α<γ aα = 1,
that is, 1 = aδ ∈ A.

Lemma. Let δ < γ, δ1∪δ2 = δ. Then γ \δ = δ′1∪δ′2 for some δ′1, δ
′
2 satisfying

(
∧

α∈δ1

∇aα
) ∧ (

∧

α∈δ2

∆aα
) ≤ (

∧

α∈(δ1∪δ′1)

∇aα
) ∧ (

∧

α∈(δ2∪δ′2)

∆aα
).

Proof : If δ2 = 0 then (
∧

α∈δ1
∇aα

) ∧ (
∧

α∈δ2
∆aα

) =
∧

α∈δ ∇aα
= ∇a0

=
∧

α∈γ ∇aα
. So, in this case, take δ′1 = γ \ δ1 and δ′2 = 0.

If δ2 6= 0 consider aβ1
=

∧

α∈δ1
aα and take δ′1 = {α ∈ γ \ δ | α ≥ β} and

δ′2 = (γ \ δ) \ δ′. Then
∧

α∈(δ1∪δ′1)
∇aα

= ∇aβ1
=

∧

α∈δ1
∇aα

. On the other

hand, for each α ∈ δ′2, α < β1 so aα ≤ aβ1
(and, moreover, aα ≤ aβ1−1 in case

β1 is a successor). Thus, for each α ∈ δ′2,

∧

β∈δ2

∆aβ
≤

∧

β<β1

∆aβ
=







∆aβ1−1
≤ ∆aα

if β1 is a successor

∆aβ1
≤ ∆aα

if β1 is a limit.

Hence
∧

β∈δ2
∆aβ

≤
∧

α∈(δ2∪δ′2)
∆aα

.

Finally, a transfinite induction gives

Proposition. Each well-monotone cover is a Fletcher cover.

Proof : We already know (Remark 4.1) that, if γ is finite, d(A) = 1.
If γ = δ + 1 is a successor ordinal,

d(A) =
∨

γ1∪γ2=γ

((
∧

α∈γ1

∇aα
)∧ (

∧

α∈γ2

∆aα
)) =

∨

δ1∪δ2=δ

((
∧

α∈δ1

∇aα
)∧∇aδ

∧ (
∧

α∈δ2

∆aα
)),

since δ ∈ γ2 implies
∧

α∈γ2
∆aα

= 0, by the Remark above. By induction, also
d(A) = 1 in this case.

Finally, if γ =
⋃

δ<γ δ is a limit ordinal, by the Lemma we have

d(A) ≥
∨

δ∈γ

(
∨

δ1∪δ2=δ

((
∧

α∈δ1

∇aα
) ∧ (

∧

α∈δ2

∆aα
))) = 1.
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5. An important general procedure on the construction

of transitive frame quasi-uniformities

5.1. In what follows let (L0, L1, L2) ∈ BiFrm and let L′
2 be a subframe of L0

contained in L2. Assume also that S is a family of transitive Weil entourages
of L0 which generates a filter E that satisfies the following conditions:

(Q1) For every E ∈ E there exists F ∈ E such that F 2 ⊆ E;
(Q2) L1(E) = L1;
(Q3) L2(E) = L′

2.

If L′
2 = L2, this means that E is a quasi-uniformity on L0. Otherwise, if

L′
2 ⊂ L2, it need not be a quasi-uniformity; however, there is an easy way of

obtaining a quasi-uniform frame by modifying E (and L0):
Let L′

0 denote the subframe of L0 generated by L1∨L′
2. Clearly, (L′

0, L1, L
′
2)

is a biframe. Let

S ′ = {E ∩ (L′
0 × L′

0) | E ∈ S}.

Clearly, each E ′ = E ∩ (L′
0 × L′

0) is a C-ideal of L0. If S ′ ⊆ WEnt(L′
0),

denote by E ′ the corresponding filter of WEnt(L′
0).

Lemma. (a) For every x ∈ L′
0 and every transitive E ∈ E such that

E′ ∈ WEnt(L′
0), sti(x, E) = sti(x, E ′) (i = 1, 2).

(b) If S ′ ⊆ WEnt(L′
0) then, for every x, y ∈ L′

0, x
E
/i y if and only if x

E ′

/i y

(i = 1, 2).

Proof : (a) Consider x ∈ L′
0 and a transitive E ∈ E such that E ′ = E ∩

(L′
0×L′

0) ∈ WEnt(L0). Obviously, sti(x, E ′) ≤ sti(x, E). Let us prove
that st1(x, E) ≤ st1(x, E ′) (the case i = 2 may be shown in a similar
way).

Since E ′ ∈ WEnt(L′
0),

x =
∨

{x ∧ a | x ∧ a 6= 0, (a, a) ∈ E ′}.

Therefore, by property (S5) of 2.1, we may write

st1(x, E) =
∨

{st1(x ∧ a, E) | x ∧ a 6= 0, (a, a) ∈ E ′}. (5.1.1)

But, by (S6), (x∧a, x∧a) ∈ E implies (st1(x∧a, E), x∧a) ∈ E◦E = E.

On the other hand, again by the transitivity of E and by (S4),

st1(st1(x ∧ a, E), E) ≤ st1(x ∧ a, E).
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Therefore st1(x∧a, E)
E
/1 st1(x∧a, E) and, consequently, st1(x∧a, E) ∈

L1(E) = L1 ⊆ L′
0. Hence (st1(x ∧ a, E), x ∧ a) ∈ E ′, from which it

follows that st1(x ∧ a, E) ≤ st1(x ∧ a, E ′). Consequently, (5.1.1) gives

st1(x, E) ≤
∨

{st1(x ∧ a, E ′) | x ∧ a 6= 0, (a, a) ∈ E ′} = st1(x, E ′).

(b) It follows immediately from (a).

Theorem. If S ′ ⊆ WEnt(L′
0) then (L′

0, E
′) is a quasi-uniform frame whose

underlying biframe is (L′
0, L1, L

′
2).

Proof : By hypothesis, every E ∩ (L′
0 ×L′

0), with E in S, is a Weil entourage
of L′

0 so E ′ is filter of WEnt(L′
0). In order to prove that (L′

0, E
′) is a quasi-

uniform frame it remains to check that:

(1) For each E ′ ∈ E ′ there exists F ′ ∈ E ′ such that F ′ ◦ F ′ ⊆ E ′;
(2) (L′

0,L1(E
′),L2(E

′)) ∈ Bifrm.

(1) It is easy: indeed, let E ′ ∈ E ′ and consider E ′
1, . . . , E

′
n ∈ S ′ such that

E′
1 ∩ · · · ∩ E ′

n ⊆ E ′. Then, for each i, E ′
i = Ei ∩ (L′

0 × L′
0) for some

Ei ∈ S. But E1 ∩ · · · ∩ En ∈ S. Therefore, by condition (Q1), there
exists F ∈ E satisfying F ◦ F ⊆ E1 ∩ · · · ∩ En. Then, obviously, for
F ′ = F ∩ (L′

0 × L′
0), we have F ′ ◦ F ′ ⊆ E ′

1 ∩ · · · ∩ E ′
n ⊆ E ′.

(2) In order to show (2) it suffices to prove that
(2a) L1(E

′) = L1;
(2b) L2(E ′) = L′

2.
(2a) By (Q2), it suffices to check that L1(E ′) = L1(E). If x ∈ L1(E)

then, by (1.3.1),

x =
∨

{y ∈ L1(E) | y
E
/1 x} ≤

∨

{y ∈ L′
0 | y

E
/1 x} ≤ x.

Hence, by the Lemma, x =
∨

{y ∈ L′
0 | y

E ′

/1 x}.
The reverse inclusion follows from assertion (b) in the Lemma.

(2b) It can be proved in a similar way, using (Q3).
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6. The construction

6.1. We are finally in conditions to present our pointfree version of Fletcher’s
construction.

Let L be a frame. We say that a quasi-uniformity E on CL (more generally,
on a subframe of CL) is compatible with L whenever the “first topology” L1(E)
coincides with the frame ∇L ∼= L. It is our goal in this section to construct,
for an arbitrary frame L, quasi-uniformities compatible with L.

Before doing that, some technical results are required.

Lemma 1. Let A be a Fletcher cover. Then, for every a ∈ A and B ⊆ A,
we have:

(a) st1(∇a, RA) = ∇a;
(b) st2(∆a, RA) = ∆a;
(c) st2(∆∨

B, RA) = ∆∨

B.

Proof : (a) The fact that ∇a ≤ st1(∇a, RA) follows from property (S2) of
2.1. On the other hand, for every (α, β) ∈ RA with β∧∇a 6= 0, β 6≤ ∆a

thus α ≤ ∇a. Hence st1(∇a, RA) ≤ ∇a.
(b) Similar to the proof of (a).
(c) Let (α, β) ∈ RA such that α ∧ ∆∨

B 6= 0. Then, for each b ∈ B,
α ∧ ∆b 6= 0, that is, α 6≤ ∇b. Consequently, β ≤ ∆b for every b ∈ B,
that is, β ≤

∧

β∈B ∆b = ∆∨

B.

Lemma 2. Let θ ∈ CL and let Ai (i = 1, 2, . . . , n) be covers of L. Then:

(a) st1(θ,
⋂n

i=1 RAi
) =

∨

{
∧n

i=1

∧

a∈Bi
∇a | Bi ⊆ Ai, (

∧n
i=1

∧

a∈A\Bi
∆a) ∧

θ 6= 0}.
(b) st2(θ,

⋂n
i=1 RAi

) =
∨

{
∧n

i=1

∧

a∈Bi
∆a | Bi ⊆ Ai, (

∧n
i=1

∧

a∈A\Bi
∇a) ∧

θ 6= 0}.

Proof : (a) Let (α, β) ∈
⋂n

i=1 RAi
such that β ∧ θ 6= 0. Then, for every

i and every a ∈ Ai, α ≤ ∇a or β ≤ ∆a. Let Bi = {a ∈ Ai | α ≤
∇a}. Then α ≤

∧n
i=1

∧

a∈Bi
∇a. On the other hand, for every i and

every a ∈ A \ Bi, β ≤ ∆a. Thus β ≤
∧n

i=1

∧

a∈A\Bi
∆a, which implies

θ ∧
∧n

i=1

∧

a∈A\Bi
∆a ≥ θ ∧ β 6= 0. This shows that

st1(θ,
n

⋂

i=1

RAi
) ≤

∨

{
n

∧

i=1

∧

a∈Bi

∇a | Bi ⊆ Ai, (
n

∧

i=1

∧

a∈A\Bi

∆a) ∧ θ 6= 0}.
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For the reverse inequality, it suffices to observe that

(
n

∧

i=1

∧

a∈Bi

∇a,

n
∧

i=1

∧

a∈A\Bi

∆a) ∈
n

⋂

i=1

RAi
.

(b) Similar.

It follows immediately from Lemma 2 that

Proposition. Let θ ∈ CL and let Ai (i = 1, 2, . . . , n) be covers of L. Then:

(a) st1(θ,
⋂n

i=1 RAi
) ∈ ∇L whenever each Ai is weakly interior-preserving.

(b) st2(θ,
⋂n

i=1 RAi
) ∈ ∆L.

6.2. Let A be a collection of weakly interior-preserving Fletcher covers of a
given frame L and consider the family SA = {RA | A ∈ A} of Weil entourages
of CL. We denote by EA the filter of WEnt(CL) generated by SA. Recall
that a subbase of a frame L is a subset S ⊆ L such that

x =
∨

{s1 ∧ · · · ∧ sn | n ∈ N, si ∈ S, s1 ∧ · · · ∧ sn ≤ x}

for every x ∈ L.

Lemma. If
⋃

A is a subbase for L then L1(EA) = ∇L.

Proof : Let x ∈ L. By hypothesis, we may write x =
∨

i∈I(a
i
1 ∧ · · · ∧ ai

ni
) for

some ai
j ∈

⋃

A (i ∈ I, j ∈ {1, . . . , ni}). Then

∇x =
∨

i∈I

(∇ai
1
∧ · · · ∧ ∇ai

ni
).

So, in order to show that ∇x ∈ L1(EA) it suffices to check that, for every i,

∇ai
1
∧ · · · ∧ ∇ai

ni

EA
/1 ∇x.

For each i take
⋂ni

j=1 RAi
j
∈ EA, where ai

j ∈ Ai
j ∈ A. Then

st1(∇ai
1
∧ · · · ∧ ∇ai

ni
,

ni
⋂

j=1

RAi
j
) ≤

ni
∧

j=1

st1(∇ai
1
∧ · · · ∧ ∇ai

ni
, RAi

j
)

≤
ni
∧

j=1

st1(∇ai
j
, RAi

j
).
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Now, by Lemma 6.1.1(a), it follows that

st1(∇ai
1
∧ · · · ∧ ∇ai

ni
,

ni
⋂

j=1

RAi
j
) ≤ ∇ai

1
∧ · · · ∧ ∇ai

ni
≤ ∇x.

Finally, let us prove the reverse inclusion L1(EA) ⊆ ∇L. Let θ ∈ L1(EA),

i.e., θ =
∨

{α ∈ CL | α
EA
/1 θ}. We only need to show that, for each such α,

there exists ∇x ∈ ∇L satisfying α ≤ ∇x

EA
/1 θ (since, then, θ is the join of all

those ∇x, which belongs to ∇L). So, let α
EA
/1 θ. This means that there are

A1, . . . , An ∈ A such that α ≤ st1(α,
⋂n

i=1 RAi
) ≤ θ. Since each Ai is weakly

interior-preserving, Proposition 6.1(a) ensures us that st1(α,
⋂n

i=1 RAi
) ∈ ∇L,

as required.

In view of this lemma, EA appears to be a good candidate for the compatible
quasi-uniformity that we are looking for. However, there is a slight problem
with EA: the triple (CL,L1(EA),L2(EA)) need not be a biframe; in other
words, (L1(EA) ∨ L2(EA),L1(EA),L2(EA)) may not be the Skula biframe (in
fact, in spite of L1(EA) = ∇L, L2(EA) may not coincide with ∆L).

So, one should expect, for the biframe structure (L0, L1, L2) induced by
our quasi-uniformity, L1 = ∇L ∼= L but the second part L2 to be, in general,
a subframe of ∆L (and, consequently, L0 to be the corresponding subframe
of CL generated by ∇L ∪ L2).

Remarks. (1) This should not come as a surprise: in the one-sided approach
to quasi-uniformities, where a quasi-uniformity is considered over a single
underlying topology, one only cares about the first topology; more precisely,
starting with a space (X, T ) and a collection A of “nice” covers, Fletcher
constructed a quasi-uniformity EA by imposing only conditions on the first
topology T1(EA), which has to coincide with the given T ; then T2(EA) and
the corresponding bispace

(T1(EA) ∨ T2(EA), T1(EA), T2(EA))

are automatically defined.
(2) On the other hand, we show in [7] that, by imposing the functoriality
in our construction, the induced biframe (L1(EA) ∨ L2(EA),L1(EA),L2(EA))
do coincide with the Skula biframe. This is the pointfree expression of the
classical fact, due to Salbany [17], that for any functorial quasi-uniformity
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F on the topological spaces, the join of the two topologies generated by the
quasi-uniformity of F (X, T ) is precisely the Skula topology

T (EP(T )) ∨ T (EP(T )−1).

This is the reason why, in all our guiding examples, as we shall see in Section
8, L2(EA) = ∆L and (CL,L1(EA),L2(EA)) is already the Skula biframe and
we get a compatible quasi-uniformity on CL.

Here, in the general case, without assuming functoriality, we may have to
go to a subframe of CL. Theorem 5.1 gives us the way to modify EA in order
to get a compatible quasi-uniformity, as we shall see below.

6.3. Let A be a collection of weakly interior-preserving Fletcher covers of L

such that
⋃

A is a subbase for L and let CL′ be the subframe of CL generated
by L1(EA) ∪ L2(EA) = ∇L ∪ L2(EA). Note that, by Lemma 6.1.1(b),

{∆a | a ∈
⋃

A} ⊆ L2(EA),

and, therefore, CL′ contains ∇L and {∆a | a ∈
⋃

A}. Then consider

R′
A = RA ∩ (CL′ × CL′)

and

S ′
A = {R′

A | A ∈ A}.

Lemma. Each R′
A is a Weil entourage of CL′.

Proof : Let us denote by
⊔

i∈I θi and i∈I θi, respectively, the joins and meets
in CL′. Of course,

⊔

i∈I θi =
∨

i∈I θi but, in general, i∈I θi ≤
∧

i∈I θi.
As for RA (recall Proposition 4.1), R′

A ∈ WEnt(CL′) if and only if
⊔

A1∪A2=A

((
a∈A1

∇a) u (
a∈A2

∆a)) = 1.

Since each A is weakly interior-preserving,
∧

a∈A1
∇a = ∇∧

A1
∈ ∇L ⊆ CL′.

Therefore a∈A1
∇a =

∧

a∈A1
∇a. On the other hand, a∈A2

∆a =
∧

a∈A2
∆a

because, by Lemma 6.1.1(c),
∧

a∈A2
∆a = ∆∨

A2
belongs to L2(EA) ⊆ CL′.

In conclusion,
⊔

A1∪A2=A

((
a∈A1

∇a) u (
a∈A2

∆a)) =
∨

A1∪A2=A

((
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a)) = d(A) = 1.
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Thus S ′
A ⊆ WEnt(CL′). Let E ′

A denote the filter of WEnt(CL′) generated
by S ′

A.

Theorem. Let A be a nonempty family of weakly interior-preserving Fletcher
covers of L such that

⋃

A is a subbase for L. Then E ′
A is a transitive quasi-

uniformity on CL′, compatible with L.

Proof : We know already that S ′
A ⊆ WEnt(CL′). So, we may apply Theo-

rem 5.1 and conclude that E ′
A is a transitive quasi-uniformity on CL′, whose

underlying biframe is (CL′,∇L,L2(EA)), after we check that SA satisfies con-
ditions (Q1)-(Q3):

(Q1) For every E ∈ EA there exists F ∈ EA such that F ◦ F ⊆ E;
(Q2) L1(EA) = ∇L;
(Q3) L2(EA) ⊆ ∆L.

Condition (Q1) is trivial because, for each A ∈ A, RA is transitive.
Condition (Q2) was already proved in Lemma 6.2.

(Q3): Let θ ∈ L2(EA), that is, θ =
∨

{α ∈ CL | α
EA
/2 θ}. It is evident

that it suffices to show that, for every such α, there exists β ∈ ∆L satisfying

α ≤ β
EA
/2 θ. The existence of such β is guaranteed by Proposition 6.1;

indeed, take A1, . . . , An ∈
⋃

A for which α ≤ st2(α,
⋂n

i=1 RAi
) ≤ θ. The

element st2(α,
⋂n

i=1 RAi
) belongs to ∆L by Proposition 6.1(b).

We note that our construction could be performed in any strictly zero-

dimensional biframe (L0, L1, L2) satisfying L1

ϕ
∼= L, instead of the Skula

biframe. In that approach we have to take as “interior-preserving covers” all
covers A of L such that, for every B ⊆ A:

(a) the meet of ϕ[B] in L0,
∧

b∈B ϕ(b), belongs to L1 (this condition defines
the “weakly interior-preserving covers” in this context);

(b)
∨

b∈B ¬ϕ(b) = ¬
∧

b∈B ϕ(b) (i.e., the second De Morgan law holds in
L0 inside each cover ϕ[A]).

7. The construction accounts for all transitive quasi-uni-

formities

7.1. Let E be a transitive quasi-uniformity on a subframe CL′ of CL, com-
patible with L, and consider a transitive subbase S of E . Since each E ∈ S
is transitive,

sti(θ, E)
E
/i sti(θ, E) for every θ ∈ CL′ (i = 1, 2).
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Therefore, st1(θ, E) ∈ L1(E) = ∇L and st2(θ, E) ∈ L2(E). In particular, this
implies that st1(θ, E) = ∇E[θ] for some element E[θ] ∈ L. Set

CovE = {E[θ] | (θ, θ) ∈ E}.

Proposition. For each E ∈ S, we have:

(a) CovE is a weakly interior-preserving cover of L;
(b) RCovE = E.

Proof : (a) First, let us see that CovE is a cover of L. Consider (θ, θ) ∈ E.
Since θ =

∨

{∇y ∧ ∆x | (x, y) ∈ θ, x ≤ y},
∨

{∇y ∧ ∆x | (x, y) ∈ θ, x ≤ y, (θ, θ) ∈ E} = 1. (7.1.1)

Further, since each pair (∇y ∧ ∆x,∇y ∧ ∆x) belongs to E,
∨

(θ,θ)∈E

E[θ] ≥
∨

{E[∇y ∧ ∆x] | (x, y) ∈ θ, x ≤ y, (θ, θ) ∈ E}. (7.1.2)

On the other hand, ∇y ∧∆x ≤ st1(∇y ∧∆x, E) = ∇E[∇y∧∆x]. So, by
(7.1.1),

∨

{∇E[∇y∧∆x] | (x, y) ∈ θ, x ≤ y, (θ, θ) ∈ E} = 1,

that is,
∨

{E[∇y ∧ ∆x] | (x, y) ∈ θ, x ≤ y, (θ, θ) ∈ E} = 1.

Hence, by (7.1.2),
∨

(θ,θ)∈E E[θ] = 1.
Next we are going to prove that CovE is weakly interior-preserving,

that is,
∧

θ∈C

∇E[θ] ∈ ∇L, for every C ⊆ {θ | (θ, θ) ∈ E}.

Since ∇L = L1(E), it suffices to show that st1(
∧

θ∈C ∇E[θ], E) ≤
∧

θ∈C ∇E[θ]:
Let (α, β) ∈ E with β ∧

∧

θ∈C ∇E[θ] 6= 0. Then, for every θ ∈ C,
β∧st1(θ, E) 6= 0, which is easily seen to be equivalent to st2(β, E)∧θ 6=
0. But, by (S6), (α, st2(β, E)) ∈ E2 = E, thus α ≤ st1(θ, E).

(b) Let (α, β) ∈ RCovE =
⋂

(θ,θ)∈E(∇E[θ] ⊕ 1) ∪ (1 ⊕ ∆E[θ]). Since

β =
∨

{β ∧ θ | (θ, θ) ∈ E, β ∧ θ 6= 0},
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checking that (α, β ∧ θ) ∈ E, for every such θ, is sufficient to conclude
that (α, β) ∈ E. So, consider (θ, θ) ∈ E such that β ∧ θ 6= 0. By
hypothesis, α ≤ ∇E[θ] = st1(θ, E) or β ≤ ∆E[θ] = ¬st1(θ, E). How-
ever, the latter is impossible because ¬st1(θ, E) ≤ θ∗ and β ∧ θ 6= 0.
Therefore, α ≤ st1(θ, E) and then (α, β∧θ) ≤ (st1(θ, E), θ) ∈ E2 = E.

To prove the reverse inclusion, consider (α, β) ∈ E and (θ, θ) ∈ E for
which β 6≤ ∆E[θ]. Then β ∧∇E[θ] 6= 0, that is, there exists (γ1, γ2) ∈ E

such that γ2 ∧ θ 6= 0 and β ∧ γ1 6= 0. This implies (α, γ2) ∈ E2 = E

and, consequently, α ≤ st1(θ, E) = ∇E[θ].

It follows from (b) that CovE is always a Fletcher cover of L.

7.2. Property (S3) asserts that st1(x, E ∩ F ) ≤ st1(x, E) ∧ st1(x, F ). How-
ever, if (x, x) ∈ E and (y, y) ∈ F , with x∧y 6= 0, and E and F are transitive,
the equality

st1(x ∧ y, E ∩ F ) = st1(x, E) ∧ st1(y, F )

holds: indeed, if (α1, α2) ∈ E is such that α2 ∧ x 6= 0 and (β1, β2) ∈ F is
such that β2 ∧ y 6= 0, (α1, x) ∈ E2 = E and (β1, y) ∈ F 2 = F and, therefore,
(α1 ∧ β1, x ∧ y) ∈ E ∩ F , which proves the inequality st1(x ∧ y, E ∩ F ) ≥
st1(x, E) ∧ st1(y, F ) (the reverse one is trivial).

It follows, in particular, that, for every (x, x) ∈ E ∩ F ,

st1(x, E ∩ F ) = st1(x, E) ∧ st1(x, F ). (7.2.1)

Proposition.
⋃

E∈S CovE is a subbase for L.

Proof : For every x ∈ L, since ∇x ∈ ∇L = L1(E), we have ∇x =
∨

{∇y |

∇y
E
/1 ∇x}. For each such y there exist E1, E2, . . . , En ∈ S satisfying

∇y ≤ st1(∇y,

n
⋂

i=1

Ei) ≤ ∇x.

The fact that
⋂n

i=1 Ei is a Weil entourage implies that ∇y =
∨

{∇y ∧ θ |
(θ, θ) ∈

⋂n
i=1 Ei}. Thus, using (7.2.1),

st1(∇y,

n
⋂

i=1

Ei) =
∨

{
n

∧

i=1

st1(∇y ∧ θ, Ei) | (θ, θ) ∈
n

⋂

i=1

Ei}
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and we may conclude that

∇x =
∨

{
n

∧

i=1

st1(α, Ei) | n ∈ N, Ei ∈ S, (α, α) ∈ Ei,

n
∧

i=1

st1(α, Ei) ≤ ∇x}

i.e.

x =
∨

{
n

∧

i=1

Ei[α] | n ∈ N, Ei ∈ S, (α, α) ∈ Ei,

n
∧

i=1

Ei[α] ≤ x},

where each Ei[α] ∈ CovEi.

7.3. Proposition 7.1.(a) may be improved with the help of the following
lemma.

Lemma. For every E ∈ S and every (θ, θ) ∈ E, st2(∆E[θ], E) = ∆E[θ].

Proof : Consider (α, β) ∈ E with α ∧ ∆E[θ] 6= 0. By Proposition 7.1(b),
(α, β) ∈ RCovE , so β ≤ ∆E[θ].

In particular, this implies that ∆E[θ] ∈ L2(E). Moreover, by (S5),

st2(
∨

(θ,θ)∈F

∆E[θ], E) =
∨

(θ,θ)∈F

∆E[θ] for every F ⊆ E. (7.3.1)

Proposition. For each E ∈ S, CovE is interior-preserving.

Proof : We need to prove that
∨

(θ,θ)∈F

∆E[θ] = ∆∧

(θ,θ)∈F E[θ] for every F ⊆ E.

By (7.3.1),
∨

(θ,θ)∈F

∆E[θ]
E
/2

∨

(θ,θ)∈F

∆E[θ].

Then (recall 2.1)
∨

(θ,θ)∈F

∆E[θ] ≺2

∨

(θ,θ)∈F

∆E[θ]

or, equivalently,
∨

(θ,θ)∈F ∆E[θ] is complemented. On the other hand, since

CovE is weakly interior-preserving,
∧

(θ,θ)∈F ∇E[θ] is also complemented. Thus
∨

(θ,θ)∈F ∆E[θ] and
∧

(θ,θ)∈F ∇E[θ] are complemented to each other and, in con-
clusion,

∨

(θ,θ)∈F

∆E[θ] = ¬(
∧

(θ,θ)∈F

∇E[θ]) = ¬(∇∧

(θ,θ)∈F E[θ]) = ∆∧

(θ,θ)∈F E[θ].
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7.4. We say that a set A of covers of L induces a quasi-uniformity E if
{RA | A ∈ A} is a subbase for E . Now we are able to establish

Theorem 1. Every compatible transitive quasi-uniformity on a subframe
CL′ of CL is induced by a set A of interior-preserving Fletcher covers of L

such that
⋃

A is a subbase for L.

Proof : Let S be any subbase of transitive entourages for the quasi-uniformity
and take A = {CovE | E ∈ S}. It follows immediately from Propositions
7.1, 7.2 and 7.3 that A has the required properties.

Remarks. (1) If we start with a set A of weakly interior-preserving covers of
L, Theorem 6.3 gives us a compatible quasi-uniformity EA on some subframe
CL′ of CL. Then, by Theorem 1 above, B = {CovRA | A ∈ A} is a set
of interior-preserving covers of L inducing the same quasi-uniformity as the
given A.
(2) Many different A may induce the same quasi-uniformity. The result below
gives us the construction for the largest A that induces E . This construction
is very useful in the functorial study of transitive quasi-uniformities that we
pursue in the forthcoming paper [7].

Theorem 2. Let E be a compatible transitive quasi-uniformity on a subframe
CL′ of CL and let

A = {A | A ∈ CovL and RA ∈ E}.

Then:

(a) A is the largest set of covers of L that induces E;
(b) Every A ∈ A is a weakly interior-preserving Fletcher cover of L;
(c)

⋃

A is a base for L.

Proof : (a) First note that {RA | A ∈ A} is closed under finite intersec-
tions, by Lemma 4.1. For each E ∈ E , there exists a transitive F ∈ E
satisfying F ⊆ E. By Proposition 7.1(b), RCovF = F ⊆ E. Since
CovF ∈ A, this implies that {RA | A ∈} is a base for E , so A induces
E .

It is clear that A is the largest such set of covers of L.
(b) Let A ∈ A. Since each RA belongs to E , then it is a Weil entourage,

that is, A is a Fletcher cover of L. Further, for each B ⊆ A,

st1(
∧

a∈B

∇a, RA) ≤
∧

a∈B

∇a
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(by Lemma 6.1.1(a)) and, consequently,
∧

a∈B ∇a ∈ L1(E) = ∇L and
A is weakly interior-preserving.

(c) Since {CovRA | A ∈ A} ⊆ A, it follows from Proposition 7.2 that
⋃

A is a subbase for L. But, by Lemma 4.1,
⋃

A is closed under finite
meets (in fact, for every a ∈ A ∈ A and b ∈ B ∈ B, a∧ b ∈ A∧B and
RA∧B = RA ∩ RB ∈ E so a ∧ b ∈

⋃

A). Hence
⋃

A is a base for L.

8. Examples and applications

In closing, we describe various examples and applications of the construc-
tion presented here.

8.1. Let A be one of the following collections of covers:

(1) finite covers;
(2) locally finite covers;
(3) well-ordered covers;
(4) interior-preserving Fletcher covers;
(5) open spectra.

In each case, since A contains all finite covers, we have L2(EA) = ∆L.
Indeed: for each x ∈ L, consider Ax = {x, 1} ∈ A, in cases (1)-(4), or, in
case (5), Ax = {an | n ∈ Z} with an = 0 if n < 0, a0 = x and an = 1
if n > 0. Then, by Lemma 6.1.1(b), st2(∆x, RAx

) = ∆x and, consequently,
∆x ∈ L2(EA).

Hence, in each case, E ′
A = EA is a quasi-uniformity on CL, whose underlying

biframe is the Skula biframe.

8.2. Quasi-uniformities LF and W. In case (2) (resp. (3)) EA is called
the locally finite (resp. well-monotone) covering quasi-uniformity and is de-
noted by LF (resp. W).

8.3. The fine transitive quasi-uniformity FT . Theorem 7.4.1 gives us
immediately:

Corollary. Let A be the collection of all interior-preserving Fletcher covers
of L. Then EA is the finest transitive quasi-uniformity on CL compatible with
L.

The finest transitive quasi-uniformity for CL, whose existence is guaranteed
by the corollary above, is denoted by FT and is called the fine transitive
quasi-uniformity.



26 M. J. FERREIRA AND J. PICADO

8.4. The Frith quasi-uniformity F . Let (L0, L1, L2) be a strictly zero-di-
mensional biframe. By Theorem 5.5 of [12], the family {(a⊕1)∪(1⊕¬a) | a ∈
L1} is a subbase for a transitive, totally bounded, quasi-uniformity on L0,
called the Frith quasi-uniformity on L0. Clearly, the Frith quasi-uniformity
F on CL can be obtained from the construction given in Theorem 6.3.

Proposition. Let L be a frame and let A be the collection of all finite covers
of L. Then EA = F .

This is a totally bounded quasi-uniformity. Next result characterizes all
EA that are totally bounded.

Theorem. Let L be a frame and let A be a set of interior-preserving Fletcher
covers such that

⋃

A is a subbase for L. Then EA is totally bounded if and
only if each A ∈ A is finite.

Proof : If A ∈ A is finite then RA is a finite entourage. Indeed, if A =
{a1, . . . , an} then, clearly,

∨

{(
∧

i∈I1

∇ai
∧

∧

i∈I2

∆ai
) ⊕ (

∧

i∈I1

∇ai
∧

∧

i∈I2

∆ai
) | I1 ∪ I2 = {1, . . . , n}} ⊆ RA

and

{
∧

i∈I1

∇ai
∧

∧

i∈I2

∆ai
| I1 ∪ I2 = {1, . . . , n}}

is a finite cover of CL. Therefore, since {RA | A ∈ A} is a subbase for EA,
this is a totally bounded quasi-uniformity whenever each A ∈ A is finite.

Conversely, let EA be totally bounded. This means that there exists a
finite cover {α1, . . . , αn} of CL such that

∨n
i=1(αi ⊕αi) ⊆ RA. Let a ∈ A. By

Lemma 6.1.1, ∇a = st1(∇a, RA), that is, RA[∇a] = a. Thus, by the claim
below, A is contained in

{RA[
∨

i∈I

αi] | I ⊆ {1, . . . , n}},

which is finite.
Claim. Let θ ∈ CL, θ 6= 0, and let Iθ = {i ∈ {1, . . . , n} | θ ∧ αi 6= 0} 6= ∅.
Then RA[θ] = RA[

∨

i∈Iθ
αi].

Proof of the claim. We need to show that st1(θ, RA) = st1(
∨

i∈Iθ
αi, RA). Let

(α, β) ∈ RA with β ∧ θ 6= 0. Then, since {α1, . . . , αn} is a cover, there exists
i ∈ Iθ such that β ∧ θ ∧ αi 6= 0, from which it follows that α ≤ st1(αi, RA) ≤
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st1(
∨

i∈Iθ
αi, RA). For the reverse inequality, since each (αi, αi) belongs to

RA, αi ≤ st1(θ, RA) for every i ∈ Iθ. Thus, for every i ∈ Iθ,

st1(αi, RA) ≤ st1(st1(θ, RA), RA) = st1(θ, R
2
A) = st1(θ, RA).

Corollary. Let L be a frame. Then F = FT if and only if every weakly
interior-preserving Fletcher cover of L is finite.

8.5. The semi-continuous quasi-uniformity SC. Let L(R) denote the
frame of reals [1]. This frame carries several natural quasi-uniformities; one
of such, that we denote by Q, is generated by the entourages

Qn =
∨

{(p,−) ⊕ (−, q) | p, q ∈ Q, 0 < q − p <
1

n
} (n ∈ N).

The first subframe L1(Q) is the “lower frame of reals” Ll(R), that is, the
subframe of L(R) generated by elements (p,−) =

∨

{(p, q) | q ∈ Q}. In fact,
the underlying biframe of (L(R),Q) is the biframe of reals [14]

L(Rb) = (L(R),Ll(R),Lu(R)).

Recall that a map f : (X, T ) → R is lower semi-continuous if f : (X, T ) →
(R, l) is continuous, where l denotes the lower topology {(a,∞) | a ∈ R}.
This motivates us to adopt the following definition: a lower semi-continuous
real function on a frame L is a frame homomorphism Ll(R) → L.

Let SC be the coarsest quasi-uniformity on CL for which each lower semi-

continuous real function h : Ll(R) → L (more precisely, each Ll(R)
h

−→

L
∇L−→ ∇L) extends uniquely to a continuous real function h : L(R) → CL

that is a uniform homomorphism h : (L(R),Q) → (CL,SC). (We omit the
description of the basic entourages of SC, which can be given in terms of the
lower semi-continuous real functions h and n ∈ N.)
SC is transitive and can be obtained by our construction of Theorem 6.3:

Theorem. Let A be the collection of all open spectra in L. Then EA = SC.

The details (which are rather long and technical) and some ramifications
of this will appear elsewhere.

8.6. In conclusion, we have the table:
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Quasi-uniformity Subbase

FT {RA | A interior-preserving Fletcher cover of L}
F {RA | A finite cover of L}
LF {RA | A locally finite cover of L}
W {RA | A cover of L, well-ordered by ≤}
SC {RA | A open spectrum of L}
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