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1. The S,C-Tracial Range and the S, C-Determinantal
Range

Let A € M, the algebra of n x n complex matrices, and S € M, be a
Hermitian matrix. The S-numerical range of A is denoted and defined by

Az

z*Sx

Vs(A) = { e C 2"Sy # 0} .

For convenience, consider the sets
Vi (A) = {z* Az : 2 € C", x*Sx = £1},
which have been studied by other researchers [6, 12]. It is easy to verify that
V*i(A) = Vg (A4) and Vs(A) = Vi (A) U =V (A).

If S is the identity matrix I,, then Vg (A) is the empty set and the S-
numerical range Vg(A) = Vi (A) reduces to the classical numerical range,
usually denoted by W (A).

The sets Ws(A) = Vg(SA) and W5 (A) = VF(SA) have also been investi-
gated. When S is a nonsingular indefinite Hermitian matrix, some authors
use Wg(A) or W (A) as the definition for a numerical range of A associ-
ated with the indefinite inner product (z,y)s = y*Sz. In [12, 13, 14], these
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sets were investigated in connection with the cone generated by the joint
numerical range of three Hermitian matrices (H, G, S):

W(H,G,S) ={(z"Hz, "Gz, z"Sx) : © € C", z*x =1},

where SA = H + iG. Our study does not follow such an approach. Instead,
we focus directly on the concepts under investigation.

We list some basic properties of the S-numerical range that follow easily
from the definition:

P1. Vs(A) = Vg(U*AU), for any matrix U € M, and any nonsingular
Hermitian S such that U*SU = S.

P2. Vs(aS + BA) = a+ fVs(A), for any «, 5 € C.

P3. Vs(A*) = Vs(A).

P4. Vs(A+ B) C Vs(A) + Vs(B).

P5. Vs(A) = {\} if and only if S # 0 and A = \S, for A € C, that is, A
is a S-scalar matriz.

P6. Vs(A) C R if and only if A is Hermitian.

The same properties are valid when Vs is replaced by Vsi7 except P2 and

P5. For these sets, the following properties hold:

P2. V& (aS + BA) = a + BV (A), for any o, 3 € C.

P5. V& (A) = {A\} if and only if A = £\S, for A € C, and S has at least
one positive (or negative) eigenvalue.

Denote by og(A) the set of the eigenvalues of A that have S-anisotropic
eigenvectors, that is, vectors x for which z*Sx # 0. For S invertible, we
obtain:

pr. 05(5_1A) C Vs(A).

If S = I,, then 05(S7'A) = o(A), the spectrum of A, and the previous
property reduces to the spectral inclusion of the classical numerical range.

The classical numerical range W (A) is a compact set. In contrast with
the classical case, when S is nonsingular indefinite and A is not a S-scalar
matrix, the set Vg(A) is unbounded and may not be closed [12, 13].

By the celebrated Toeplitz-Hausdorff theorem, W(A) is a convex set [8].
The sets V5 (A) are also convex; however Vg(A) may not be convex. Nev-
ertheless, Vg(A) is p-conver [12]; that is, for any pair of distinct points
z,y € Vg(A), either V5(A) contains the closed line segment joining z and
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y, or Vg(A) contains the line defined by x and y, except the open line seg-
ment joining z and y.

Motivated by theory and applications, there are several generalizations of

the classical numerical range, such as the C-numerical range of A denoted
by We(A). For A, C € M, We(A) is defined by

We(A) ={Tr(CU*AU): U e M,, UU =1}.
This concept motivates the definition of the S, C-tracial range of A for A, C €
M,
Vsc(A) ={Tx(CU*AU) : U € M,, U'SU = S}. (1)

The following properties of the .S, C-tracial range are easily deduced:

QL. Vsc(A) = Vs (U*AU), for any matrix U € M,, and any nonsingular
Hermitian S such that U*SU = S.

Q2. Vso(aS + fA) =aTe(SC) + Vs c(A), for any «, F € C.

Q3. Vs (A*) = Vsco(A).

Q4. Vs (A) = Vg1 4(C), for S nonsingular Hermitian.

As a variation of (1), for A, C' € M,, we define the S, C-determinantal range
of A:
Dgc(A) ={det(C+U"AU) : U € M,, U'SU = S}.
When S = I,,, this concept reduces to the C-determinantal range Ac(A) [2].

The following properties of the S, C-determinantal range can be easily ver-
ified:
R1. Dgc(A) = Dgc(U*AU), for any matrix U € M,, and any nonsingular
Hermitian S such that U*SU = §S.
R2. Dgc-(A*) = Dgc(A).
R3. Dgc(A) = Dg a(C), for S nonsingular Hermitian, that is, the roles of
A and C are symmetric.

When C = diag(y1,...,7), We(A) and Ac(A) are usually denoted by
W.(A) and A (A), respectively, where ¢ = (71,...,7,) € C". The notations
Vsc(A) and Ag.(A) will be used in a similar way.

A matrix U € M,, is pseudo-unitary of signature (r,n—r), with 0 < r <n,
if the corresponding linear transformation preserves the quadratic Hermitian
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form

q(a) = e+ P = e P = e
The group of pseudo-unitary matrices of signature (r,n — r) will be denoted
by U7’,7L—7’~

Let J = P(I, ® —1I,_,)PT, where P is a permutation matrix. It can be
easily seen that U = [z --- x,], where z; denotes the jth column of U, is a
matrix in the pseudo-unitary group U,,—, if and only if U*JU = J, that is,

xiJxp =0, i#k, and xiJe; =g, i,k=1,...,n, (2)

where j; denotes the (7,4) entry of the matrix J.

If c=(71,...,7) € C", then we obtain directly from the definition of the
J, c-tracial range

Vie(A) = {Z vix; Az, : x; € C" satisfying (2)} .
i=1
If ¢ = e; denotes the ith vector of the standard basis of C”, it follows that
Ve, (A) reduces to ViF(A), according to j; = &1.

Since the pseudo-unitary group U, ,—, is connected and V¢ (A) (Djc(A))
is the range of the continuous mapping from U, ,_, to C defined by U
Tr(CU*AU) (U +— det(C + U*AU)), Vic(A) (Djc(A)) is a connected set,
for any A,C € M,,.

In this paper, we assume that the Hermitian matrix S is nonsingular and
we observe that, in this case, it is not a restriction to consider the matrix
J instead of S in the definition of the S-numerical range. In fact, recalling
Sylvester’s law of inertia [7], we can always choose a nonsingular matrix R,
such that R*SR = I,® —1I,,_,, the inertia matrix of S. Considering y = R™'z
and Ar = R*AR, we have

r*Ar  y'Apy

*Sx oy Jy
and this means that

Vs(A) = Vi(Ag), (3)
for J the inertia matrix of S. With respect to the S, C-tracial range and
the S, C-determinantal range, using again Sylvester’s law of inertia, we can
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easily check that the following relations hold:
Vso(A) = Vg, (Ar)  and  Dsc(A) = |det R[> Djc,(AR),
where Cr = R*CR.

The paper is organized as follows. In section 2, the equation in line co-
ordinates of the boundary generating curve of Vg(A) is obtained. This is a
generalization of a result due to Murnaghan and Kippenhahn [11, 16] con-
cerning the classical numerical range. Using a theorem of Tarski, we prove
that the boundaries of Vg (A) and Dgc(A) are a finite union of algebraic
arcs. In section 3, the hyperbolical range theorem is revisited and alternative
proofs to the one in [13] are given. In section 4, the J, c-tracial range and the
J, c-determinantal range of arbitrary 2 x 2 matrices are described. In section
5, the matrices A for which Vj.(A) is a singleton or a subset of a line are
characterized. In section 6, an analogous study is done for D;.(A), for diag-
onal matrices A. In section 7, some special boundary points (the corners) of
Vie(A) and Dy (A) are investigated. Finally, in section 8, a Matlab program
is developed to generate V;(A).

2. The Boundary Generating Curve of Vs(A)

Let z € Vg(A) be a boundary point of Vg(A). A line containing z and
defining two half planes, such that one of them does not contain Vg (A) or
—Vy (A) will be called a support line of Vg(A).

For any matrix A, ReA will denote the Hermitian matrix (A + A*)/2.
Throughout the paper, the following result will be used.

Proposition 2.1. Let A € M, and 6 € R. If the eigenvalues of JRe(e'A)
are not all real, then Vy(A) has not a support line in the direction 6.

Proof: For simplicity, denote Re(e’?A) by A’. It can be easily seen that if
X is a complex eigenvalue of JA’, then X also is. Now, we assume that the
eigenvalues of JA’ are all simple. Under this hypothesis, there exists a full
eigenbasis of JA', say fi,..., fn.

Denote by D € M, the matrix whose jth column is f;. It can be shown
that if f, f" are vectors of this eigenbasis, A’'f = A\J f, and A'f" = N J f', with
0# f,f€Ctand A # X, then f*Jf' =0. Let A € C and let 0 # u,v € C"
be vectors of this eigenbasis such that A'u = A\Ju, A'v = A\J v and u*Jv = .
Hence, the matrix D*JD is a diagonal block matrix of 2 x 2 and 1 x 1 blocks.
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The 2 x 2 blocks correspond to complex eigenvalues and have zero diagonal
entries while the 1 x 1 blocks correspond to real eingenvalues. Obviously,
det(D*JD) # 0 and this implies that v # 0.

For the above u,v, it is clear that u*A'v = v*A'v = 0, v*A'v = My and
v*A'u = \y. Consider the subset T}, of V;(A") defined by

P (u + ve®)* A (u + ve'?)
U (u A+ vei) T (u 4 vei)

. ¢ eR, (u—i—vew)*J(u—kvew);éO}.

By straightforward computations, it can be seen that 7),, = R and so V;(A)
has not a support line in the direction #. If the eigenvalues of JA’ are not
all simple, by a perturbation we can ensure that they become all simple and
the result follows by a continuity argument. [

We observe that the converse of Proposition 2.1 does not hold, in general,
as shown in Example 3 (Section 8). However, the converse is true in the 2 x 2
case, as will be seen in the proof of Theorem 3.2.

A boundary point g of a subset K in C is a corner of K if there exists a
sufficiently small € > 0 such that the intersection of K and the circular disc
D ={veC:|v—p| <e}is contained in a sector of D of degree less than 7.

The connection between the corners of Vg(A) and the eigenvalues of S~1A

is described in the next result, which will be used in the proof of Theorem
2.2.

Theorem 2.1. (Li and Rodman [14]) Let A € M,,. If z € Vs(A) is a corner
of Vs(A), then z is an eigenvalue of S™'A and there exists an eigenvector x
associated to z, such that Ax = zSx, A*x =zSx and v*Sx = £1.

Murnaghan [16] and Kippenhahn [11], independently, showed that the
boundary of the classical numerical range of a matrix A € M, is the set
of real points of the algebraic curve (of class n) with equation in line coordi-
nates

det(uH +vG + wl,) = 0,

where H and G are Hermitian matrices satisfying A = H + iG. The real
part of this algebraic curve is denoted by C'(A) and the n real foci of C'(A)
are the eigenvalues of A.

Now, we obtain a generalization of this result for the S-numerical range,
where S is a nonsingular Hermitian matrix.
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Theorem 2.2. Let uz+vy+w = 0 be the equation of a support line of Vs(A)
and let A= H +iG, where H and G are Hermitian matrices. Then

det(uH + vG + wS) = 0.
Proof. For A € M, and ¢ € R, Re (e "¥A) is a Hermitian matrix and its
S-numerical range is the projection of Vs(e™*?A) on the real line.

Consider the set Q of angles ¢ € R for which Vg(Re(e"?A)) is either a
line segment or the union of two disjoint closed half lines and denote their
endpoints by z;(e"?A), j = 1,2. Clearly,

:E:zj(e*WAL j=1,2, (4)
are support lines of Vg(e ?¥ A). Performing a rotation of angle ¢ on the lines
(4), we find that

cosp x +sing y = zj(e " A), ji=1,2

are support lines of '¥ V(e *? A) = V(A). As p varies in ), all the support
lines of the S-numerical range of A are obtained. That is, given the support
line of Vg(A) of equation ux + vy + w = 0, there exist an angle ¢y € Q, a
non-zero real scalar A and j = 1,2 such that

u = \ cos p, v =\ sin g and w=—-A\zj(e " A).  (5)
For A= H +iG, where H and GG are Hermitian matrices, we have
S Re(e™"?A) = cosp ST'H +sinp ST'G.
If p is an eigenvalue of this matrix, then it satisfies the equation
det (cos ST H +sinp S'G — uI,) = 0.
Taking into account that det .S # 0, we get
det (cosp H +sinp G — uS) = 0. (6)

Since z;j(e '?A) is a corner of Vg(Re(e™"¥A)), by Theorem 2.1, it is an
eigenvalue of the matrix S™'Re(e ¥ A) and therefore it satisfies (6). Taking
¢ = ¢p and recalling (5), we obtain

det(uH +vG +wS) =0. A

Remark 1) If the eigenvalues of S~'Re(e ?¥A) are all real only if p =
wo+nm, n € Z, Vg(A) is the whole complex plane, the complex plane except
the line (or a subset of the line) cos g = + singy y = z,,, where z,, is the
minimum or the maximum of the eigenvalues of S~ Re(e %0 A).
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2) Since det(uH +vG +wS) is a homogeneous polynomial of degree n, we
showed that the equation

det(uH + vG + wS) =0, (7)

with u,v,w viewed as homogeneous line coordinates, defines an algebraic
curve of class n, whose real part, in the sequel denoted by Cs(A), forms the
boundary of Vg(A). This curve has class n and has real coefficients, thus it
has n real foci [18, 19], corresponding to the eigenvalues of the matrix S~1A.

3) The dual curve of a conic is again a conic. Hence, if A is a 2 x 2 matrix,
the equation (7) defines a conic and so its real part is a hyperbola, a parabola
or an ellipse, possibly degenerate. If A is a S-scalar matrix, then by property
P5, Vs(A) is a singleton. Otherwise, if S is nonsingular indefinite, then Vg(A)
is unbounded and p-convex, hence Cs(A) must be an hyperbola, whose foci
are the eigenvalues of S~'A. Obviously, Vg(A) consists of the hyperbola and
its interior. If S is definite, then Vg(A) is bounded and convex, therefore the
convex hull of Cg(A) is an elliptical disc, with the eigenvalues of S~!'A as
foci.

4) If the inertia matrix of S is I,,, Theorem 2.2 reduces to the Murnaghan-
Kippenhahn theorem.

Using a theorem of Tarski, it was shown in [4] that the boundaries of W¢(A)
and A¢(A) are finite unions of algebraic arcs (see also [17]). We now apply
this result to prove that the boundaries of Vg (A) and Dg(A) are also finite
unions of algebraic arcs.

Consider Z[t1,...,t;;21,...,2s] the polynomial ring over the integers of
the polynomials f(ti,...,t,;21,...,xs) in the variables z1,...,x, and with
coefficients in Z[t, ..., t,]. Tarski proved the following theorem [9]:

Theorem 2.3. (Tarski Theorem) Let fi,..., fm and g1,...,gn be polyno-
mials in Z[t1,. .., ty;x1, ..., x4). It is possible to find, in a finite number of
steps, a finite collection 1, ... ,1,, where each vy is a set of polynomials

wl:{ﬂlﬂ"'vﬂ .G117-~-7qul}7

Py
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with Fy,, Gy, € Zty,...,t.], 1 <i < p, 1 < j < q, such that for any real
closed field R and (cq,...,¢,) € R,

filer, ey, o oyms) =050 flcry .oy epsmn, .o xg) = 0,

gi(er, .. ey, xs) > 0,000 gnlcr, .02, ) >0
have a solution if and only if there exists at least one [, 1 <1 < p, such that
F(eiy...,¢,) =0, 1<i<p, Gi(cr,...,c) >0, 1<j<q,
also have a solution.

Theorem 2.4. Let ¢ = (71,...,7) € C" and A = diag(ay, ..., a,) € M,.
The boundary of Vs.(A) is a finite union of algebraic arcs and so a curve of
class C*, except for a finite number of points.

Proof: Firstly, we show that the conditions of Tarski theorem are satisfied.
By definition, z € Vs.(A) if and only if there exists U € M,, such that
U*SU = S and

z = Tr(diag(vy1, . .., v) U diag(a, . .., a,)U).

Let U= [z + iyr;], S= [ar; + iby;], and z = 21 + iz9, where xyj, ynj, arj, b,
21,72 € R. The points of Vg.(A) satisfy the following conditions on the
variables xp; and y;:

21 + iz — Tr(diag(yi, . .., ) [Tk + dyi;] " diag(ou, . . ., o) [k + tyk;s]) = 0,

n

Z (ka —1 ykm)(akl +1 bkl)(xl'r +1 ylr) - (amr +1 bm'r) - 07 1 S m,r S n.
k=1
The left hand sides of these equations are polynomials on the parameters
Reay, Reyy, Imay,, Imy,, 21, 22, agj, br; and on the variables z; and yy;.
Considering the real and the imaginary parts of the left hand sides of the

previous equations and equating them to 0, we obtain a set of polynomial
equations with integer coefficients on the same parameters and variables. Let

w = ((Rean, Rev,, Imay,, Im~y,, h=1,...,n), (ar, by, k,j=1,...,n), (21, 22)).

Due to Tarski Theorem, we can conclude that there exists a finite collection
Y1, ... ,1,p, where each v is a set of polynomials

b= {Fu o i Gr i)

ny?
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with Fy,, Gy, € Zlt1, ..., ty2qans), 1 < s <my, 1 < g < my, such that for all
h, Y, Qkj +1bgj, Tr; +iykj, 2 € C, the initial equations have a solution if
and only if there exists at least one [, 1 <[ < p, such that

Fi(w)=0, 1<s<mny, Gi,(w) >0, 1<qg<my, (8)

have a solution. A point for which only the inequalities in (8) are satisfied
(and no equality) does not belong to the boundary of Vs .(A). The boundary
is formed by a finite number of algebraic arcs. The boundary points are
of class C*, unless they satisfy equations (8), for at least two values of
[. (Observe that the number of points for which this happens is finite [9,
p.325].) n

In an analogous way, the following result can be obtained for the S, c-
determinantal range.

Theorem 2.5. Let ¢ = (71,...,7) € C" and A = diag(ay, ..., a,) € M,.
The boundary of Dg.(A) is a finite union of algebraic arcs and so it is a
curve of class C™, except for a finite number of points.

Notice that the previous results can be easily generalized for arbitrary
matrices A € M,. They are also generalizable for Vgc(A) and Dgc(A),
where A,C € M,,.

3. The Hyperbolical Range Theorem

In the theory of classical numerical ranges and its generalizations, the re-
duction of problems to its bidimensional case is a very useful technique. For
instance, convexity results can be proved using such a reduction. In this the-
ory, the elliptical range theorem is a particularly important result. It asserts
that the classical numerical range of a 2 x 2 matrix A is an elliptical disc,
possibly degenerate, with the eigenvalues A1 and Ay of A as foci and minor
axis of length

VTr(AA) — M2 — [ A2

In this section, we consider J = I, & —Io_,, with 0 < r < 2, and give
a detailed geometric description of the J-numerical range of A (see [13] for
an alternative approach). Only r = 1 is considered, since for r = 0 and
r =2, Vj(A) = £W(A) is characterized by the elliptical range theorem. In
particular, for » = 1, a hyperbolical range theorem is explicitly obtained. In
the degenerate cases, V;(A) is a subset of a line, the whole complex plane or
the complex plane except a line.
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Firstly, we prove the hyperbolical range theorem for a certain class of ma-
trices.

Theorem 3.1. Let y
1 ae'
M, = [bew 1 ] ’
with a,b>0, a # b and 0 € R, and let
B =2y/1 — 2abcos(20) + a2b? + 2 — a* — b*.

(i) If B < 0, then V(M) is the whole complex plane.
(ii) If B =0, then Vj(My) is the whole complex plane except a line.
(iii) If B > 0, then V;(My) is bounded by a hyperbola centered at the origin
with transverse axis of length /j.

Proof: For ¢ € R, consider the matrix J Re(e!¥Mj). The eigenvalues of this
matrix are

Ailp) = :I:%\/2 —a? — b? 4 2cos(2p) — 2abcos(20 + 2¢p), i=1,2,
and the eigenvectors associated with \;(¢) are given by

ui(p) = (—2cosp — 2X(¢), (a + b) cos(8 + ¢) —i(a — b) sin(0 + ¢)).
These eigenvectors satisfy the following relation
ui(p)*J ui(p) = 4 (i) + cos ) (Ni(p) + cos ) — a® — b* — 2abcos(26 + 2p),

i=1,2.

Observe that 1 — 2abcos(26) + a?? = 0 if and only if ab = 1 and 0 =
nm, n € Z. Then a # 1 (otherwise a = b, contradicting the hypothesis).
Hence

2)2
= —% <0 and  M\(p) :j:\/—? i=1,2,
a 2
for all » € R, that is, the eigenvalues of JRe(e'¥M;) are pure imaginary
complex numbers. Thus, there does not exist any support line of V(M)
in any direction and so the J-numerical range of M is the whole complex
plane.

Now, suppose that ab # 1 or 6 # nmw, n € Z. Consider the function

i R — R defined by

p(p) =2 — a’ — b +2 cos(2¢) — 2abcos(260 + 2¢p).
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We easily check that
() = 2—a®>—b*+ 2|1 — abe*| cos(2¢ + 7)
< 2—a? =V 4211 —abe®| =3, ¢ €R,

where
absin(26)
abcos(20) — 1

Therefore, 3 is the maximum of p and is attained at ¢y = kr — v/2, k € Z.

tany =

We prove (i). If # < 0, it is clear that u(¢) < 0. It follows that

M) = £5V/ilg), i=1,2,

are pure imaginary complex numbers, for all ¢ € R. Hence V;(M;) = C.

Now, we prove (ii). If 3 = 0, then u(p) < 0, for all ¢ € R different
from ¢y. Recalling that p(¢o) = 0, we find that Ai(¢o) = A2(¢o) = 0. The
corresponding eigenvectors satisfy the condition

ui(po) Jui(po) =0,  i=1,2.

For ¢ € R different from ¢, the eigenvalues of J Re(e’? M;) are pure imagi-
nary complex numbers and so V(M) is the whole complex plane except the
line cos gz + sinpyy = 0.

Finally, we prove (iii). If § > 0, then u(¢) > 0, for any ¢ in an interval
containing ¢y, say (£,7), with ©(§) = p(n) = 0. In that interval, since a # b,
we have

0 < pu(p) <4cos® o — (a—b)? < 4dcos’ p

and the eigenvalues of JRe(e!?Mj) are non-zero real numbers. It can be
easily checked that

u; (@) Miui(p) = —2(Ni() +cos @) (€”(a + b)* cos(f + @) — ie"(a — b)*sin(f + @) — 4 cos p)
and
ui(p)"Jui(p) = 8Ai(@)(Xi(p) + cosp) #0,  i=1,2.
Let
u; (p) M ui(p)

= ui (@) J ui(p)
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((a+b)*cos(0 + ¢) cosf + (a — b)*sin(6 + @) sin — 4 cos ) , (9)

= m ((a+b)*cos(6 + @) sinf — (a — b)*sin(6 + @) cos§) (10)
Obviously, (x,y) belongs to the boundary of V(M;).
After some computations, from (9) and (10), we get

Aj cos(2¢) + By sin(2¢) = Cy
Ay cos(2¢) + Bysin(2p) = Cy

<

(11)

where
Ay =C?—-B?—-8Dx?, By =2B(C+42%), (), =8FEx*—- B*-(?
Ay = B> — A2 —8Dy?, By =2B(A+4y?), Cy=8Ey*— A*>—-B?

and

= a® + b — 2ab cos(26),

= —2ab sin(20),

a® + b* + 2ab cos(26) — 4,

= 2 —2abcos(20),

= 2—a’> -V

HoO QW
Il

Eliminating ¢ in (11), we get the quadratic equation
Ax* + 2Bry + Cy* + F = 0, (12)

with F = (a* — 1?)?/4 — A. Reducing the conic in (12) to its main axis, we
get
X2 Y2

1
ﬂ o 17 (13)

where

a = 2/1 — 2abcos(20) + a2b? — 2 + a® + b
It can be easily seen that a is nonnegative. Moreover, a = 0 if and only if
eithera =b=0ora=b<1and § = nw, n € Z. In this case, o > 0.
Hence, the equation (13) describing the boundary of V(M) is a hyperbola

centered at the origin, with transverse axis of length /3 and non-transverse
axis of length /a. [ |
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We observe that the complete characterization of the hyperbola in Theorem
3.1 (iii) is discussed in Theorem 3.2.
The following two lemmas are used in the proof of Theorem 3.2.

Lemma 3.1. Let a,b > 0, a # b. The envelope of the family of curves over
the parameter r € R, r?> > 1,

((x —7)sinf —ycosh)> ((x —r)cosh +ysinfh)? r*—1

(a—b) (a1 b) = W
m an adequate coordinate system is given by
aX?-pY?= O‘Tﬂ,
where
a = 24/1 —2abcos(260) + a2b? — 2 + a* + b*,
B = 2/1—2abcos(20) + a2b? + 2 — a* — b
Proof: Evaluating the envelope of the family of curves (14), we obtain
Ax* + 2Bry + Cy* + F = 0, (15)

where

= a4 b* — 2ab cos(26),

= —2ab sin(20),

= a® +b” + 2ab cos(20) — 4,
= (a* - b*)?/4 - A.

—~ T QW
\

Reducing the conic in (15) to its main axis, we get

aX?-pYy?= O‘—ﬂ,
4
where o and — are the eigenvalues of the real symmetric matrix associated
with the quadratic form Ax? + 2Bzy + Cy?,

s_[gg]. (16)

It is now straightforward to complete the proof. [
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Lemma 3.2. For A = (a;j) € My, there exists a pseudo-unitary matriz U
such that y
(2
U*AU — arl i, |a12| €
lax | e a?

where 29 is the sum of the arguments of a12 and a9y .

Proof: The diagonal matrix U = diag(e'”, e*), such that 2(n—u) = arg a;a—
arg as, is pseudo-unitary and satisfies the asserted property. [

Theorem 3.2. (Hyperbolical Range Theorem) The J-numerical range
of a matriz A € My is bounded by a (possibly degenerate) hyperbola, with the
eigenvalues \y and A2 of JA as foci and with non-transverse axis of length

VAL + [ Xo|? — Tr(A*JAJ).

For the degenerate cases, Vj(A) is a singleton, a line, a subset of a line, the
whole complex plane, or the complex plane except a line.

Proof: Let A = (a;j) be a zero trace matrix in M. By Lemma 3.2, there
exists a pseudo-unitary matrix U such that

(17)

1 10
U%U_iﬂMﬂJ+[0 “6},

be 0
where a and b are the moduli of a12 and a9, respectively, and 20 = arg aio +
arg asy .-

Now, let A = (a;j) be a non-zero trace matrix in M,. By Lemma 3.2, there
exists a pseudo-unitary matrix U such that

2 Tr(AJ) 1 ae’
AU — - ]
Tr(A) v 1mmj [ww 1]’

where a and b are the moduli of 2a15/Tr(A) and 2ag; /Tr(A), respectively,
and

(18)

20 = argajy + argag — 2arg Tr(A).

Without loss of generality, we may concentrate on the study of the J-
numerical range of the matrices

k i
Mk—[bew " } k=0,1.

The eigenvalues of JMj are of the form +vk% — abe?i?.
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Using properties P1 and P2, the J-numerical range of the matrix A can be
easily obtained from
k 2 k 2 — b 16
V(M) = { |21 |* + E|xs —;(afble—F T1T3)e
|71]? — |2

Dy, x0 €C, o] # |ff2|}a

(19)
where k = 0, if A is a zero trace matrix and k = 1, otherwise. Taking
_ | A ol _
= ¢ = argxy — arg vy,
|71]? — |2o
(19) can be written in the form

1 . o
V,](Mk)z{rk+§\/r2—1(ael¢+be_l¢)e“9: r2—1>0, ngR}.

Consider, firstly, ¥ = 0. If @ = b = 0, then clearly V;(M,) = {0}. If
a =b# 0, the eigenvalues of JM; are +aie’® and so V(M) = e’ R, the
line passing through 0 and perpendicular to the line segment joining these
eigenvalues. For a # b, e'?(z +iy) € V;(My) if and only if

72 y? 77"2—1

@t0? T a—bE 4
with 72 — 1 > 0, and so V;(M,) = C.

Now, let k = 1. Two cases are possible: I) a # b; II) a = b.
I) Clearly x +iy € V;(M,) if and only if

1
r = r+§\/r2— 1 ((a+b) cosfcos¢p — (a— b)sinfsin @),
1

y = 5\/142 —1((a+b) sinfcos ¢+ (a—b)cosfsing).

Since a # b, after some computations, we obtain
((x —7)sind — y cos)? N ((z —r) cosf + ysinf)? _ r?—1
(a —b)? (a+0b)? 4
where the parameter r is such that 7> — 1 > 0. By Lemma 3.1, the envelope
of this family of curves is given by

aXZ—ﬂYZ:%ﬂ, (20)
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where

a = 2v/1 —2abcos(20) + a2b? — 2 + a* + b*,
B = 2y/1—2abcos(20) + a2b? + 2 — a® — V%

As already seen in the proof of Theorem 3.1 (iii), since a # b, « is positive.
Obviously,
Tr(MyJM;J) =2 —a® — b*.
Since the eigenvalues \] and A, of JM; are of the form +v/1 — abe?i?, we
have

a = NP+ X = Te(MyJMT),
B o= NP+ [Ny|* + Te(MyJJM; ).

The eigenvectors of the matrix S in (16), associated with «, have the direction
of the vector in R?

u = (IN;|* — 1+ abcos(26), absin(26)).

Identifying vectors in R? with complex numbers, the following condition for
complexes is satisfied

u? = 2(1 — abeos(26) — [N |\,

Thus, the line defined by the eigenvalues \] and A, has the direction of the
vector u. We now classify the conic describing the boundary of V;(M),
according to the sign of a3, which depends only on the sign of 3, due to the
positivity of a.
i) If >0, (20) is just

X2 Y2 o1

Ié; a 4
the equation of a hyperbola centered at the origin, with transverse and non-
transverse axis of length /3 and /a, respectively, and semi-focal distance
given by || = |A\;|. The direction of the transverse axis of the hyperbola is
that of the vector u. This means that the foci of the hyperbola are precisely
the eigenvalues A} and A, of JM.

ii) If 8 = 0, then equation (20) reduces to X = 0, that is, the line through
the origin perpendicular to the line segment defined by the eigenvalues \] and
Ay of the matrix JM;. By Theorem 3.1 (ii), V;(M;) is the whole complex
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plane except this line. (This line is the boundary of the open half plane
representing V" (M;).)

iii) If § < 0, due to Theorem 3.1 (i), V;(M;) = C.
This finishes the proof of I).
ITI) If a = b =0, then obviously V;(M;) = R\ |—1,1[. Now, let a = b # 0.

If 0 =nm, n€Z, it is clear that V(M) is a subset of the real line. We
observe that the elements in V" (M;) (—V; (M) are given by the ranges of
the family of functions fy : [1,400) — R (f, : (—o0, —1] — R) defined by

fo(r)=r+r2—1cos¢ a, 6 € R.

We observe that fo(—r) = —fz(r) and fr(—r) = —fo(r). Since fr < fs < fo,
we just evaluate the extreme values of the functions f; and fy. For a < 1,
we conclude that v/1 —a? is the minimum of fr |1 o), While fo | o) does
not have a maximum, and so V;"(M;) = [V1 — a?,+00). Thus,

Vi(My) =R\] - vV1—a,v1—a[

This is just the line defined by the eigenvalues of JMj, except the open
line segment with these eigenvalues as endpoints. For a > 1, neither f;
admits minimum nor fy maximum. In particular, when a = 1, we have
V(M) =R\ {0}. (In fact, if 0 € V; (M), there exist 7 > 1 and ¢ € R such

that
O=r++vVr2—1lcos¢p>r—r2—1>0,

a contradiction. In an analogous way, if 0 € —V; (M), we get a contra-
diction.) If @ > 1, then V;(M;) = R. (We observe that, in this case, the
eigenvalues of JM; are pure imaginary complex numbers.)

If 6 # nm, n € Z, then the elements in V;(M;) are characterized by the
family of line segments contained in ycos# = (x — r)sin 6, where 7> —1 >0
and with endpoints at ¥y = £+/r2 — 1asin6. Eliminating the parameter r
between these two equations, we get

2
oot~ () -1
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It is straightforward to verify that this equation describes a hyperbola, which
is the equation (15) in the case a = b. Since 5 > 0, V(M) is a hyperbola
like the one in I) i).

We have finished the description of the J-numerical range of the matrices
M, for k = 0,1. Now, we give a detailed description of V;(A). Before that,
we observe that the eigenvalues A; and Ay of JA are given by

%Tr(AJ) + % V(Tr(A))? — 4arpag.

If A is a zero trace matrix, having in mind (17) and properties P1 and P2,
we get

Vi(A) = 3 TH(AJ) + V().

From the above discussion, we conclude that V;(A) is a point, Tr(AJ)/2, if
A is a J-scalar matrix; the line passing through Tr(A.J)/2 and perpendicular
to the line segment joining the eigenvalues of JA, if |ajs| = |agi| # 0; and
the whole complex plane, otherwise.

Now, if A is a non-zero trace matrix, from (18) and properties P1 and P2,

it follows that

Let A; and Ay be the eigenvalues of JA. Taking into account (18) and the
fact that U is pseudo-unitary, the following relation holds

A = %Tr(AJ) + %Tr(A) A i=1,2.

If V(M) contains the eigenvalues \| and A, of JMj, then V;(A) contains
A1 and Ay. Therefore, it follows that

TP IXP 4 %) = P+ ol = ST (An?. (1)
On the other hand, it can be easily checked that
Tr(AJA"J) = i ITe(A)[2 Tr(M, J M T) + % ITe(AT)|2. (22)
From (21) and (22), we obtain
1

M = Z|Tr(A)|2a:|/\1|2+|A2|2—Tr(AJA*J),
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1
N = Z|Tr(,4)|2ﬁ:1A1|2+|A2|2+T]f(,4JA’&])—|T1r(AJ)|2
= Tr(AJA*J) — 2Re(A1 \o).

If |aia| # |agi1|, having in mind the discussion in I), we have:

a) If N > 0, V;(A) is bounded by a hyperbola centered at Tr(AJ)/2,
with the eigenvalues A; and Ay of JA as foci and with transverse and
non-transverse axis of length v/ N and v/M, respectively.

b) If N =0, V;(A) is the complex plane, except the line passing through
the point Tr(A.J)/2 and perpendicular to the line segment joining A;
and Ay. (In particular, V;7(A) is one of the open half planes defined
by that line.)

¢) If N <0, V;(A) is the whole complex plane.

If |a1a| = a2 | #0, either argajs + argan #2arg Tr(A) and V;(A) is bounded
by a hyperbola like the one described in a), or arg a12 + arg as; =2 arg Tr(A)
and V;(A) is a subset of the line defined by

1 1
ay] = 5 TI'(A(J -+ ])) and — Q99 = 5 TI‘(A(J — I)),

which are the diagonal elements of JA. More precisely:

d) V;(A) is the whole line, if 2|aj2| > |Tr(A)|. (In this case, this line is
perpendicular to the line segment joining A; and \y);

e) Vj(A) is the whole line except the middle point Tr(A.J)/2, if 2|a12| =
|Tr(A)|. (In this case, the eigenvalues of JA are just this middle
point);

f) V;(A) is the line defined by the eigenvalues of JA, except the open
line segment with these eigenvalues as endpoints, if 2|ajs| < |Tr(A)].

Finally, if A is a diagonal matrix of non-zero trace, then V;(A) is, as in f),
the line through the eigenvalues of JA, except the open line segment whose
endpoints are these eigenvalues. ]

For the sake of completeness, we restate the hyperbolical range theorem
for Vg(A), when the inertia matrix of S is J = diag(1,—1). For that pur-
pose, recall the relation (3) between the S-numerical range of A and the
J-numerical range of Ap = R*AR, where R*SR = J. We observe that
the eigenvalues of JApR coincide with the eigenvalues of S~'A and that
Tr(A5LJARJ) = Tr(A*S7TAS™!). Then Vs(A), for A € M, is bounded by a
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(possibly degenerate) hyperbola, with the eigenvalues A\; and Ay of S™1A as
foci and with the length of non-transverse axis equal to

VMNP A+ A2 = Tr(AS—TAST),

4.V;.(A) and D, (A) for 2 x 2 Matrices

The elliptical range theorems concerning W.(A) and A (A), for ¢ = (y1,72) €
C? and A € Ms, are well known (see [5] and [2]). Supposing that A; and
Ay are the eigenvalues of A, W,.(A) is an elliptical disc (possibly degenerate)
with foci 1 A\1 +92A2 and y1 A2 +72A1, and A (A) is an elliptical disc (possibly
degenerate) with foci (71 + A1)(72 + A2) and (71 + A2)(y2 + A1). Both discs
have minor axis of length

I = el T (A A) — [N = Pl

Now, we characterize the J, c-tracial range and the J, c-determinantal range
of 2 x 2 arbitrary matrices, for J = diag(1, —1).

Theorem 4.1. Let ¢ = (71,72) € C%, A € My and let \i and Xy be the
eigenvalues of JA. Then

i) the J, c-tracial range of A is bounded by a branch of a (possibly degenerate)
hyperbola, with foci Y1 A1 — Yoo and Y1 Ao — Vo1,

i) the J,c-determinantal range of A is bounded by a branch of a (possibly
degenerate) hyperbola, with foci (y1 + M\ )(72 — A2) and (71 + A2) (72 — A1).

Both hyperbolas have non-transverse azis of length
[+ 2 VMR + el — Te(A*JAT). (23)

For the degenerate cases, we may have a singleton, a line, a subset of a line,
an open half plane or the whole complex plane.

Proof: i) Let C = diag(v1,72). For any A € My, we have Vj i, (A) = V7 (A).
Since C' = (1 + 72) E11 — 72 J, by properties Q2 and Q4, we get

Vie(A) = (11 +72) Vi (A) — 12 Tr(AJ).
If C'is a J-scalar matrix, it has trace zero and Tr(CJ) = —2v,. Hence

Vie(A) = {Tr(AJ)Te(CJ)/2} .

If C is not a J-scalar matrix, the result follows from Theorem 3.2.
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ii) For C' = diag(y1,72), A € My, U a pseudo-unitary matrix in Uy ; and
0 —1
=17
the following expansion for the determinant of the sum of two 2 x 2 matrices
holds:

det(C + U*AU) = det(C) + det(U*AU) 4 Tr(Z7CZU* AU).

Using this expansion, since det(A4) = —det(JA) and ZTCZ = diag(y2,71),
we have

DJJJ(A) =172 — )\1)\2 + VJJ,’/(A)?
where ¢ = (y2,71). That is, the J, c-determinantal range of A is obtained
from the J, ¢-tracial range by a translation. From i), it follows that this set
is bounded by a branch of a (possibly degenerate) hyperbola, with foci

Y172 — M2 + A1 — 1A = (71 + A1) (2 — Aa),

Y2 = Atd2 + Y2de — 1A = (11 + A2) (2 — Ar)
and non-transverse axis of length given in (23). ]

5. J,c-Tracial Ranges with Special Shapes

It is well known that the classical numerical range W (A) of a matrix is a
singleton if and only if A is a scalar matrix. Moreover, W(A) C R if and only
if A is Hermitian. Similar studies have been carried out for the J-numerical
range [12]. In this section, analogous results are obtained for the J, c-tracial
range, for J = P(I, & —1I,_,)P', with 0 < r < n. For simplicity, we will
consider in the next sections P = I,,, since the other cases are obtained in an
analogous way.

In the sequel, we adopt the following notation. Let A € M, and o C
{1,...,n}. We denote by A[a] the principal submatrix of A that lies in the
rows and columns indexed by a.

Lemma 5.1. Let ¢ = (71,...,7) € C" and A = (a;;) € M,,. Then V;.(A)
contains the sets
Vi, e (Ann) + Z YiQii,
itk
where ¢ = (v, ), J2 = JIkl] and Ay = A[kl], for 1 <k <l <n.
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Proof: Let C' = diag(v1,...,7v,). For 1 < k < 1 < n, consider the principal
submatrices of J, C' and A that lie in rows and columns k and [: respectively,
Jo = J[kl], C11 = C[kl] and Ay = A[kl]. Let M be a matrix in M, satisfying
M*JoM =Jy. Now, consider the matrices

;| A A A G TR
A_[Am Azz} and C_[O 022]

obtained from A and C, respectively, by permuting rows and columns 1 and
2 by rows and columns k and [. Let z be an element of the form

z = TI“(CHM*AHM) + Z YiQis -
ikl
We observe that
(MEBI )*A/(MEBI ): M*AHM M*Alg
n—2 n—2 A21M A22 .
Consider the matrix Uy; obtained from M & I,_o by permuting rows and
columns 1 and 2 by rows and columns k and [, respectively. Easy computa-
tions show that
z = TI“(CHM*AMM) + TI'(CQQAQz)
= Tr(C'"(M & I, 2)*A'(M & I,,_5)) = Te(C U AU).
Since Uy is a unitary, or a pseudo-unitary, matrix satisfying the condition
Uy JUn = J, we conclude that z € Vj.(A). [

Theorem 5.1. Let j; denote the ith diagonal element of J, and let ¢ =
(M, - +,7m) € C", where the ~;j; are pairwise distinct, for i =1,...,n. For
A e M,, Vi.(A) is a singleton if and only if A is J-scalar.

Proof: (<) Let C' = diag(y1,...,7vn). If A is J-scalar, then JA = &I, for
some ¢ € C and
Vie(A) = {{Tr(JCO)} = {Tx(JA)Te(JC) /n} .

(=) Now, suppose A = [a;;] is not J-scalar. It is possible to find a principal
submatrix Ayj; = A[kl] of A, with 1 < k < [ < n, such that Aj; is not
Jo-scalar, for Jo = J[kl|. By Lemma 5.1, V;.(A) contains the subset

I'=V5e(An) + Z YiQii,
ik,
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where ¢ = (Y, ). Since Yijr # Viji, the matrix diag(vk,7;) is not Jo-scalar.
By the elliptical range theorem concerning Wy (A1), the subset I' of V;.(A)
is an elliptical disc (possibly degenerate) or, by Theorem 4.1 ¢), a branch of
a hyperbola (possibly degenerate) with interior, but never a point. In any
case, Vj.(A) is not a singleton. |

Theorem 5.2. Let A € M,, and ¢ = (71,...,7) € R", with the v;j; pairwise
distinct, fori=1,...,n. Then V;.(A) C R if and only if A is Hermitian.

Proof: («=) Let C' = diag(y1,...,7) € M,(R). If A is a Hermitian matrix,
then every z € V. (A) satisfies

2= Tre(CU*AU) = Te(CU* A*U) = Tr(CU*AU) = %,

where U € M, is such that U*JU = J. Therefore, V;.(A) is a subset of the
real line.

(=) Suppose that A is not a Hermitian matrix. Then A contains a non-
Hermitian principal submatrix, say Ay; = A[kl], for 1 < k <1 < n. Using
Lemma 5.1 and a similar argument to the one used in the proof of Theorem
5.1, we find a subset of V;.(A) that is not contained in the real line, a
contradiction. n

A matrix A € M, is said to be essentially J-Hermitian if pA + vJ is
Hermitian for some 0 # u € C and v € C.

Theorem 5.3. Let ¢ = (y1,...,7v,) € R", with the 7;j; pairwise distinct, for
i=1,...,n, and A € M,. Then V;.(A) is a subset of a straight line if and
only if A is essentially J-Hermitian.

Proof: (<) By definition, A is essentially J-Hermitian if and only if A +vJ
is a Hermitian matrix for some 0 # p € C and v € C. By property Q2 and
Theorem 5.2, the result follows.

(=) Now, suppose that V;.(A) is a subset of a straight line. By property
Q2, we may rotate and translate V;.(A), so it becomes a subset of the real
line, that is, Vj.(uA+vJ) C R, for some 0 # p € C and v € C. By Theorem
5.2, pA +vJ is Hermitian and so A is essentially J-Hermitian. ]

6. J, c-Determinantal Ranges with Special Shapes

Since A¢(A) may be seen as the range of a function from U, to C, A¢(A)
may be considered a variation on the concept of W¢(A). In fact, these two
sets have many common properties. As will be seen in the next results as well
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as in their proofs, a certain parallelism still exists between the sets V.(A)
and D,]’C(A).

Lemma 6.1. Let ¢ = (7y1,...,7,) € C" and A = diag(ay,...,q,) € M,.
Then Dy (A) contains the sets

Dy, o(Ar) H (Vi + ),
ikl

where d = (v, M), J2 = diag(jx, i) and Ay = diag(ag, oy), for1 <k <l <n.

Proof: Let C = diag(v1,...,7,). For 1 < k < [ < n, consider C; =
diag(yk, ) and

z=det(Cy + M A M) [T (i + w),
i#kl
with M a matrix in M, satisfying M*JoM = Jy. The matrix Uy, obtained
from the identity I,, by replacing its principal submatrix lying in rows and
columns k and [ by M, satisfies the condition Uj;JUy = J. Now, let Ay and
C5 be the submatrices obtained from A and C', respectively, by deleting rows
and columns k£ and [. We easily verify that

z = det(Cy + M* A1 M) det(Cy + As) = det(C' + Uy AUnr) € Dy (A)
and this completes the proof. [

Theorem 6.1. Letc = (71, ...,7,) € C", where the 7;j; are pairwise distinct,
fori=1,...,n, and A = diag(a,...,a,) € M,,. Then Dj.(A) is a singleton
if and only if A is J-scalar.

Proof: (<) Let C' = diag(71,...,7). If Ais J-scalar, then A = £J, for some
£ e Cand
Djo(A) = {det(A+ C)}.

(=) Now, suppose that A is not J-scalar. It is possible to find two entries of
the matrix A, say ay, and oy, with 1 < k <1 < n, such that A; = diag(ay, )
is not Jy-scalar, where Jo = diag(ji, 7;). By Lemma 6.1, D;.(A) contains the
subset

2= Dye(A) ] (i + e,
ikl
where ¢ = (7k,7). The subset ¥ of Dj.(A) is either an elliptical disc, by
the elliptical range theorem for A.(A;), or a branch of a hyperbola with
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interior, by Theorem 4.1 4i). As diag(~yx, ) is not Jo-scalar, both sets are
possibly degenerate, but they are never a point. In any case, D ;.(A) is not
a singleton, contradicting the hypothesis. [

Theorem 6.2. Let ¢ = (71, ... ,7,) €ER", where the v;j; are pairwise distinct,
fori=1,...,n, and A = diag(a,...,ay). Then Dj.(A) C R if and only if
A € M,(R).

Proof: (<) If A is a diagonal matrix in M, (R), then it is clear that D;.(A)
is a subset of the real line.

(=) Suppose that A is a diagonal matrix with at least one non-real prin-
cipal entry, say aj. Then A contains a non-Hermitian principal submatrix,
say Ay = diag(ag, ;). Using Lemma 6.1 and similar arguments to the proof
of the previous theorem, we obtain a subset of D;.(A) that is not contained
in the real line, a contradiction. Thus, A € M, (R). |

7. Special Boundary Points

Some special boundary points of the numerical ranges have interesting
properties. For instance, every non-differentiable boundary point of W (A) is
an eigenvalue of A [3, 11]. Moreover, every corner of Vg(A) is an eigenvalue
of S7'A (see Theorem 2.1).

In [1] and [2], the corners of W,.(A) and A.(A) were investigated. Similar
results will be obtained for V;.(A) and Dy .(A).

Theorem 7.1. Let A and C' be matrices in M, such that
CJ:’Yl[nl@"'@’YpIn,,7 ny+---+n, =n,

where the ~; are pairwise distinct, for i = 1,...,p, and let U be a pseudo-
unitary matriz in Upp_,. If z = Te(CU*AU) is a corner of Vyc(A), then
U*AU is a direct sum A1 @ --- @ A, where A; € M,,, i =1,...,p, and

P
z = Z Yi TI‘(JLAL),
i=1
where J; € M,,, i =1,...,p, are such that J = J, & --- © J,,.
Proof. For simplicity of notation, write Ay = U*AU. Since J = I, & —1,,_,,
we have J/2 = I, @ iI,_,. For any Hermitian matrix S, and for any t € R
in a neighborhood of zero, the matrix

HIESTE [ it STV 4 O(1)
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is a pseudo-unitary matrix in U, ,_,. Consider the differentiable function
f(t) =Tx(C e it IS T AUeitJl/ZSJl/Z)

where JV/% = JJY2. Since z = Tr(C'Ay) is a corner, the derivative of f with
respect to t at ¢ = 0, that is,

f1(0) = iTe(CAyJY2SJY? — C TV STV Ay)
= i Te(JV2SJ2(CAy — JAuCJ))

is zero. Since S is arbitrary, we conclude that
JYVHCAy — JAGCT) JY? =0

and so CAy = JAyCJ. Therefore CJ commutes with JAy, or using the
usual notation for the commutator of two matrices

[CJ, JAy] =0, (24)

Y

Since CJ is a direct sum of p scalar matrices 7;1,,, with all the 7, distinct,
fori=1,...,p, from (24) it follows that Ay is a direct sum, A; & --- & A,
where A; € M,,,, i =1,...,p. Now, let J; € M,,,, i =1,...,p, be such that
J=J1® - J,. We easily see that

p
z=Te(CJJAy) =Y 7 Tr(JA). B
i=1

The following corollary is a straightforward consequence of Theorem 7.1.

Corollary 7.1. Let CJ = I;, & 0pp, 1 <k <mn, and A € M,. If z €
Vic(A) is a corner of Vic(A), then there exists a pseudo-unitary matriz
U € Uy such that U*AU is a direct sum A & A,_j and z = Tr(JpAr),
where Jp = J[1--- k] and Ay, € M.

We observe that Corollary 7.1 is a generalization of Theorem 2.1 on the
corners of V;(A). In fact, if z € V;(A) is a corner of V;(A), by Corollary
7.1 with k = 1, there exists a pseudo-unitary matrix U € U, ,_,, such that
U AU = [zj1] ® An—1, where A,y € M,,_1. Therefore, U*A*U = [Zj;] ® A} _;.
Then U*AUe; = zJe; and U*A*Ue; = ZJe;, where ejJe; = £1. Since
(U t=JUJ and J*=1,, we have AUe;=2JUe; and A*Ue;=2JUe;, that
is, z is an eigenvalue of JA and x = Ue; is an eigenvector of JA associated
to z, such that z*Jxr = +1.
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Theorem 7.2. Let A and C' be matrices in M, such that
CJ:’Yl[nl@"'@’YpIn,,7 ni+---+n, =n,

where the ~y; are pairwise distinct, for i = 1,....p, and let U be a pseudo-
unitary matriz in Uy, If 0 # 2z = det(C' + U*AU) is a corner of Djc(A),
then U*AU s a direct sum of matrices Ay @ --- @ A,, where A; € M,,,
1=1,...,p, and

P
z= H det(viJ; + Aj),
i=1
where Jy € My,, 1 =1,...,p, are such that J = J, @ --- © J).
Proof: For simplicity of notation, write Ay = U*AU. For any Hermitian S,
consider the differentiable function

F(t) = det(Ay + eit.]1/25,]1/206—1'25.]1/2*5.]1/2*)
where J/% = JJ'2. The following expansion can be easily obtained

f(t) = det(Ay + C +it(JV2STV2C — CTV*SJV*) 4 O(t?))
= det(Ay + C)[1 + it Te((Ay + O) H(JV2S JV2C — CJV*STY*)] + O(t?),

for real ¢ sufficiently close to zero. Since 0 # z = det(C + Ay) is a corner,
the derivative of f(t) with respect to ¢t at ¢ = 0 vanishes, that is,

Tr (JY2S TV C(Ay + C) ™ = J(Ap + C)~LCT)) = 0.
Since S is arbitrary, we obtain
JC(Ay +C) = (Ap +O) 'O
This last equation implies
(A +C)JCJT =CJ(Ap+C)J
and so C'J commutes with Ay J and the result follows. [ ]

The analysis of the J, c-tracial range for 2 x 2 matrices leads to the char-
acterization of those matrices A € M, for which V;.(A) is a singleton or a
subset of a straight line. The analysis of the 2 x 2 case is also useful in the
study of some special boundary points of the J, c-tracial range.

Theorem 7.3. Let ¢ = (71,...,7v) € C" and A= (aw) be an upper triangular
matriz in M, with diagonal elements o, . .., a,. If E;L:l Y 18 a boundary
point of Vi .(A) and vijr # viji, then ap =0, for 1 <k <1 <n.



ON GENERALIZED NUMERICAL RANGES 29

Proof: Let 1 < k <1 <mn, such that y4ji # 717;. Consider the following 2 x 2
principal submatrix of A,

_ | @k agl
A11_|: 0 al:|’

where aj; # 0. By Lemma 5.1, V;.(A) contains the subset

I'=V5e(An) + Z Vicvi,
oy

where ¢ = (v, ) and Jo = J[kl]. If ji = ji, then Vj, +(Aq;) is an elliptical
disc, by the elliptical range theorem for W.(Ay). If jz = —j;, then by
Theorem 4.1 3) V, (A1) is a branch of a hyperbola with interior. Since Ay
is not Hermitian and diag(+yx,7;) is not Jp-scalar, these conics have a focus
at yrap + o and may degenerate either into a circular disc, a half plane
or the whole complex plane; in any event, the focus is an interior point. In
any case, the subset I' of V;.(A) has an interior point at >, ; 4, which
contradicts the assumption of this point being on the boundary of V.(A),
unless ay; vanishes. ]

The following two corollaries are obvious consequences of this theorem.

Corollary 7.2. Let A be an upper triangular matriz in M,, and let
CJ:’YlImEB-.-EB’ypI”p, ny+ - +mn, =n,

where the 7,;7; are pairwise distinct, fori=1,...,p. If Tr(CA) is a boundary
point of Vic(A), then A = Ay & --- & A,, where each block A; is an upper
triangular matriz in My,, i =1,...,p.

Corollary 7.3. Let ¢ = (71,...,7) € C", with the ~;j; pairwise distinct, for
1 =1,...,p, and let A be an upper triangular matriz in M, with diagonal
elements oy, ..., an. If D01, viy is a boundary point of Vy.(A), then A is
a diagonal matriz.

8. Algorithm and Examples

The classical numerical range and its generalizations have been extensively
studied and many algorithms and computer programs for generating these
sets have been presented [10, 15]. In this section, we describe an algorithm
that will be used to plot an approximation for the J-numerical range.
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In [13], a Matlab program for generating the S-numerical range W (A),
for S a Hermitian matrix, has been developed. After generating the joint
numerical range of the Hermitian matrix triple (H,G,S), with SA = H +
iG, the points (x/z,y/z), where (x,y,z) € W(H,G,S) and z > 0, were
plotted. From such a collection of points, an approximation for W (A) was
easily obtained. Now, we generate the J-numerical range, using a different
approach.

Basically, the idea of the algorithm is to compute the eigenvalues of By =
JRe(e A), where 6, varies on a specified subset of [0,2x]. If there exist
directions e’ for which not all the eigenvalues of By are real, then no support
lines exist in those directions. Therefore, we search for those directions e’ for
which all the eigenvalues of B, are real. We also make sure that the J-norm
of the corresponding eigenvectors is different from 0. In these circumstances,
the boundary generating curves of V;(A) exist. By the p-convexity of the J-
numerical range, the representation of V;(A) is readily obtained. Otherwise,
this set is a line (in certain cases a subset of a line), or the whole complex
plane (in some cases, without a line).

Firstly, we present an algorithm providing the boundary generating curve
of the J-numerical range. Matlab programs have been written to plot this
curve and to draw an approximation for V;(A).

Figure 1

Step 1: Consider the directions e, where

QS:M’ s=1,....,4m +1,
2m
for some positive integer m > 20. For A € M,, and for each choice of s,
compute the eigenvalues of B, = JRe(e’ A). If these eigenvalues are all real
and the J-norm of the corresponding eigenvectors is not 0, put the value
s in a vector denoted by direc = (t1,...,t;). Observe that the number of
eigenvectors with positive J-norm is fixed by the inertia of J, independently

of 0.

Step 2: If the vector direc is empty, the following cases are possible:

(i) If A is Hermitian, then V;(A) = R;
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Curve that Generates the Boundary of \/J(A)

The J-Numerical Range
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(ii) If A is essentially J-Hermitian, that is, A = aS + §J, for some Her-
mitian matrix S € M,, 0 # a € C and € C, then V;(A) is a line
passing through § and with direction arg «;

(iii) Otherwise, V;(A) is the whole complex plane, possibly without a line.

Figure 2
Curve that Generates the Boundary of VJ(A) The J-Numerical Range
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Step 3: If the situations referred to in the previous step do not occur, then
for each entry ¢; of the vector direc, compute n linearly independent eigenvec-
tors associated with the eigenvalues of By,. (The linear independence of the
eigenvectors ensures that all the generating boundary curves are considered.)
Denote these eigenvectors by w;(t;), for i = 1,...,n, and evaluate

u; (t;) A ui(t))
i (ty)J wi(ty)’

—~

for w}(t;)J ui(t;) > 0 and u!(t;)J u;(t;) < 0. Suppose that r of these eigen-
vectors have positive J-norm while n—r have negative J-norm. Then r points
in V;7(A) and n—r points in —V; (A) are generated. Thus, for all the ¢;,
j=1,....k, rk points in V;(A) (possibly coincident) and (n —r)k points in
—V; (A) (possibly coincident) are represented.

To generate an approximation of V;(A) we proceed as follows.

Step 4: For any distinct points z,y € V; (A), compute ax + (1 — a)y, for

0 < a < 1. Repeat this step for =V (A). The algorithm draws (72k> line

segments connecting points in V;(A4) and ('lk;’k) line segments between

points in =V (A).

Step 5: For any distinct points z € V;(A) and y € —V; (A), compute
ar + (1 —a)y, for @ <0 or a > 1. Here, the number of lines is r(n — r)k2

The set obtained in Step 4 and Step 5 is the pseudo-convexr hull of the
boundary generating curves of V;(A).

In some cases, the Matlab program, instead of plotting V;(A), may present
a message describing the shape of the set. This is the case when A is es-
sentially J-Hermitian and the boundary generating curve of V;(A) does not
exist; nevertheless, for all the other cases of essentially J-Hermitian matrices
a plot is always given (see Figure 2).

When V;(A) is the whole complex plane an approximation for V;(A) is
plotted, being clearly seen that this set is C (see Figure 3).

Now, some examples are considered.
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Figure 3
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Example 1: Let J = diag(1,—1,1) and

10
A=10b
00

— o

with a,b € R. We easily check that if 1 — %|a| <-b<1+ %|a|, Vi(A) is the
whole complex plane. Otherwise, the boundary generating curves of V;(A)
are the singleton {—b} and the circle

2 , @

(x =14y = 1

(more precisely, two superimposed circles). Hence, V;(A) is the pseudo-
convex hull of these curves.

Example 2: Consider J = diag(—1,1,1) and the same matrix A of the

previous example. It can be easily seen that if either %2 >1lor -1+ “7‘2 > b,

then Vj(A) reduces to the whole complex plane. Otherwise, the singleton

{b} and the two branches of the hyperbola

2 2
1 a2 a2
T 1

are the boundary generating curves of Vj;(A), which is the pseudo-convex
hull of these curves.
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Figure 4

Curve that Generates the Boundary of \/J(A) The J-Numerical Range
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Figure 1 and Figure 4 represent V;(A) for the matrices in the Examples 2
and 1, respectively, in the particular case a = 1 and b = 2.

Example 3: Consider, now, J = diag(l,—1,—1) and

1 0 0
A=10 -1 b |,
00 -1

with b € R. The boundary generating curves of V;(A) are the singleton {1}

and the circle )

(I—1)2+y2=bz
For the particular case b = 2, see Figure 3. In this example, the pseudo-
convex hull of these curves gives the whole complex plane.
The eigenvalues of JRe (ewA), f# € R, when b = 2, are the real numbers
cosf and cos @ + 1. Nevertheless, V;(A) does not have support lines in any
direction, and so the converse of Proposition 2.1 does not hold.

Example 4: Let J = diag(1,—1) and A be the following essentially J-
Hermitian matrix:

A_(1+¢)[1 “],

a 1
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with @ > 0. If @ > 1, then V;(A) = /R and if @ = 1, then V;(A) =
™R\ {0}. If 0 < a < 1, the boundary generating curve of V;;(A) is formed
by the points +¢/*/1 — a2. For the particular case a = 1/2, V;(A) is the
line defined by +ei™/*1/3/2, except the open line segment joining these points
(see Figure 2).
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