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ON FIRST AND SECOND COUNTABLE SPACES AND THE
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Abstract: In this paper it is studied the role of the axiom of choice in some
theorems in which the concepts of first and second countability are used. Results
such as the following are established:

(1) In ZF (Zermelo-Fraenkel set theory without the axiom of choice), equivalent
are:

(i) every base of a second countable space has a countable subfamily which
is a base;

(ii) the axiom of countable choice for sets of real numbers.
(2) In ZF, equivalent are:

(i) every local base at a point x, in a first countable space, contains a
countable base at x;

(ii) the axiom of countable choice (CC).
(3) In ZF, equivalent are:

(i) for every local base system (B(x))x∈X of a first countable space X,

there is a local base system (V(x))x∈X such that, for each x ∈ X, V(x)
is countable and V(x) ⊆ B(x);

(ii) for every family (Xi)i∈I of non-empty sets there is a family (Ai)i∈I of
non-empty, at most countable sets, such that Ai ⊆ Xi for every i ∈ I

(ω–MC) and CC.
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1. Introduction

The idea that triggered the investigations on this paper was to find out the
set theoretic status of the following Theorem of ZFC, i.e. Zermelo-Fraenkel
set theory including the axiom of choice.

Theorem 1.1. (ZFC) Every base of a second countable space has a countable
subfamily which is a base.

We will see that this theorem is not provable in ZF, Zermelo-Fraenkel set
theory without the axiom of choice, by proving its equivalence to the axiom
of countable choice for sets of reals.

The author acknowledges partial financial assistance by Fundação para a Ciência e Tecnologia
and Centro de Matemática da Universidade de Coimbra.
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It is clear that Theorem 1.1 provides an alternative definition of second
countability that, in the absence of the axiom of choice, turns out to be
non-equivalent to the familiar definition. Starting from these two definitions
of second countability, we will discuss the consequences of replacing one by
another in some well-known theorems. Namely, we will study the relations
between this “new” class of second countable spaces, and the classes of sep-
arable, Lindelöf spaces.

In the literature it may be found a discussion of the equivalence, in ZF, of
different ways of defining some well known topological notions. As interesting
examples of this kind of study, we have that the relations between different
notions of compactness (e.g. [9, 3]) or of Lindelöfness ([18, 10]) were studied.

We also present two different attempts to generalize Theorem 1.1 to the
class of first countable spaces, as well as their relations with the axiom of
choice.

The following forms of choice will be used throughout this paper. Their
definitions, as everything else in this work, take place in the setting of ZF.

Definition 1.2. The axiom of countable choice (CC) states that every count-
able family of non-empty sets has a choice function.

Definition 1.3. CC(R) is the axiom of countable choice restricted to families
of sets of real numbers.

Proposition 1.4. ([6,p.76], [11]) Equivalent are:

(i) CC (respectively CC(R));
(ii) every countable family of non-empty sets (resp. subsets of R) has an

infinite subfamily with a choice function;
(iii) for every countable family (Xn)n of non-empty sets (resp. subsets of

R), there is a sequence that meets infinitely many of the Xn’s.

Lemma 1.5.

(a) If (X, T) is a second countable space, then |T| ≤ |R| = 2ℵ0.

(b) If (X, T) is a second countable T0–space, then |X| ≤ |R| = 2ℵ0.

2. Second countable spaces

We start this section recalling some definitions.

Definitions 2.1.

(a) A topological space is separable if it contains an at most countable
dense subset.
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(b) A topological space X is Lindelöf if every open cover of X has an at
most countable subcover.

The next lemma will play an important role in the proof the main result
of the section, Theorem 2.3.

Lemma 2.2. Equivalent are:

(i) CC(R);
(ii) the axiom of countable choice holds for families of dense subspaces of

R;
(iii) every subspace of R is separable;
(iv) every dense subspace of R is separable.

Proof: The equivalence between (i) and (iii) was proved by K. H. Diener –
cited in [5,p.128] (see also [12]). That (i) implies (ii) and that (iii) implies
(iv) is clear.

We consider the base of R consisting of open intervals ((qn, rn))n∈N

with rational endpoints. For each n ∈ N, one can define a bijection
fn : R −→ (qn, rn) between R and (qn, rn).

(iv) ⇒ (i) Let (An)n be a countable family of non-empty subsets of R and
define the sets Bn := fn(An) and B :=

⋃

n Bn. The space B is dense in R.

By (iv), there is C := {xn : n ∈ N} countable and dense in B, which implies
that it is also dense in R.

Infinitely many of the sets Bn ∩ C are not empty, otherwise C would be
bounded and then not dense in R. For each element of M := {n ∈ N :
Bn ∩C 6= ∅}, we define φ(m) := min{k ∈ N : xk ∈ Bm}. The set {f−1

m (xφ(m) :
m ∈ M} induces a choice function in the infinite subfamily (Am)m∈M of
(An)n∈N. In view of Proposition 1.4, the proof is complete.

(ii) ⇒ (iv) Let A be a dense subspace of R. For every n ∈ N, f−1
n (A∩(qn, rn))

is dense in R. A choice function in this family gives us a countable dense
subspace of A.

Theorem 2.3. Equivalent are:

(i) CC(R);
(ii) every base of a second countable space has a countable subfamily which

is a base;
(iii) every base for the open sets of R has a countable subfamily which is a

base.
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Proof: (i) ⇒ (ii) Following the usual proof of (ii) (e.g., [2,2.4.17]), [8,1.1.20]),
we easily see that the only use of the axiom of choice is a countable choice in
a family of subsets of the topology T of the second countable space. Lemma
1.5 says that |T| ≤ |R|, and then CC(R) is enough to prove (ii).

(ii) ⇒ (iii) Clear.
(iii) ⇒ (ii) Let A be a dense subset of R. By Lemma 2.2, it suffices to

prove that A is separable. The fact that A is dense in R implies that
C := {(a, b) : a < b and a, b ∈ A} is a base for the open sets of R. By
(iii), there is a countable base {(an, bn) : n ∈ N} contained in C. The set
{an : n ∈ N} is countable and dense in A.

It is well-known that, in ZFC, for (pseudo)metric spaces the notions of
second countability, separability and Lindelöfness are equivalent. C. Good
and I. J. Tree [7] asked under which conditions these equivalences or implica-
tions remain valid in ZF. These questions are almost all answered (see [12],
[1] and [17]).

Motivated by condition (ii) of Theorem 2.3, we will introduce a definition
of second countable space that is stronger than the usual one in ZF, but
equivalent in ZFC.

We will look into the relations between this “new” class of topological
spaces and the classes of separable, Lindelöf spaces.

Definition 2.4. A topological space is called super second countable (SSC)
if every base has a countable subfamily which is a base.

Corollary 2.5. Equivalent are:

(i) CC(R);
(ii) R is SSC;
(iii) every separable (pseudo)metric space is SSC.

Note that, in ZF, every separable pseudometric space is second countable
(see, e.g., [19,16.11]).

The statement “Every SSC topological (or pseudometric) space is separa-
ble” is equivalent to CC. The proof remains the same as the one for second
countable spaces ([1]). It may seem surprising that, for subsets of R, this
implication is provable in ZF.

Theorem 2.6. Every SSC subspace of R is separable.
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Proof: Let A ⊆ R be a SSC space. Without loss of generality, we consider
that every point of A is an accumulation point of A. If a ∈ A is not an
accumulation point of A, {a} must be in each base for the open sets of A.

The set B := {(a, b) ∩ A : a, b ∈ A} ∪ {[c, d) ∩ A : c, d ∈ A and (∃δ > 0)
(c − δ, c) ∩ A = ∅} ∪ {(e, f ] ∩ A : e, f ∈ A and (∃δ > 0) (f, f + δ) ∩ A = ∅}
is a base for the open sets of A. Since A is SSC, there is a countable base
(Bn)n contained in B. For sn := inf Bn, the set {sn : n ∈ N} is countable
and dense in A.

Since R is second countable and second-countability is hereditary, every
second countable subspace of R is separable if and only if every subspace of
R is separable, which turns out to be equivalent to CC(R) – Lemma 2.2.

This last fact, together with Lemma 1.5, implies that CC(R) is equivalent
to: “Every second countable metric (or T0) space is separable” (see also [17]).

In view of Theorem 2.6, the proof of this latter result cannot be adapted
for SSC spaces.

After these considerations, one can ask the following questions:

(1) Is SSC hereditary?
(2) Are there non-separable SSC metric spaces? Are there uncountable

SSC T0–spaces?

The set theoretic status of the condition “Every Lindelöf metric space is
second countable” is, to my knowledge, still unknown. It is known, however,
that this condition implies the axiom of countable choice for finite sets ([7,
1, 17]).

For SSC spaces, we can go further.

Theorem 2.7. Every Lindelöf subspace of R is SSC if and only if CC(R)
holds.

Proof: If CC(R) holds, trivially, every subspace of R is SSC (Theorem 2.3).
One can prove similarly to the proof of Theorem 2.3, that CC(R) is equiv-

alent to the fact that the closed interval [0, 1] is SSC. So, if CC(R) fails, [0, 1]
is Lindelöf, but not SSC.

Note that, if CC(R) fails, the only Lindelöf subspaces of R are the compact
spaces, i.e. the closed and bounded ones (see [10]).

Corollary 2.8. If every Lindelöf metric space is SSC, then CC(R) holds.
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CC(R) is equivalent to the condition “N is Lindelöf”, and thus also equiva-
lent to the condition “Every second countable space is Lindelöf” ([12]). Cor-
respondingly, “Every SSC space is Lindelöf” if and only if CC(R) holds,
since N is SSC.

3. First countable spaces

It is natural to ask whether the result of Theorem 2.3 can be generalized
to the class of first countable spaces.

There are two obvious ways of attempting this: a local one, considering
a local base at a point, and a global one, considering, at the same time, a
local base for each point of a first countable space. The next results are an
attempt to answer these questions.

Theorem 3.1. Equivalent are:

(i) CC;
(ii) if a topological space has a countable local base at a point x, then every

local base at x contains a countable base at x;
(iii) every local base at a point x, in a first countable space, contains a

countable base at x.

Proof: A proof that (i) implies (ii) can be seen in [2,2.4.12] and (ii) ⇒ (iii)
is clear.

(iii) ⇒ (i) Let (Xn)n be a countable family of non-empty sets. Without
loss of generality, we consider the sets Xn disjoint. By Proposition 1.4, it is
enough to prove that there is a sequence that meets infinitely many of the
Xn’s.

Define Y :=
⋃

n Xn ∪ {0}, with 0 6∈
⋃

n Xn, and for each n ∈ N, Yn :=
⋃∞

k=n+1 Xk ∪ {0}. The topology on Y, defined by the local base system:

B(x) :=

{

{{x}} if x 6= 0
{Yn : n ∈ N} if x = 0,

is first countable.
Since, for all n ∈ N and x ∈ Xn+1, Yn+1 ⊆ Yn+1 ∪ {x} ⊆ Yn, the family

C(0) := {Yn ∪ {x} : x ∈ Xn, n ∈ N} is a local base at 0.
By (iii), there is a countable local base at 0, D := {Dn : n ∈ N} ⊆ C(0).

Define, for every n ∈ N, Cn := {Yn ∪ {x} : x ∈ Xn}.
For each n ∈ N, there is exactly one φ(n) ∈ N such that Dn ∈ Cφ(n),

because C(0) is the disjoint union of all Cn’s. For every n ∈ N, let xn be the
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element of the singleton set Dn \ Yφ(n). The sequence (xn)n meets infinitely
many of the Xn’s, otherwise D would not be a base.

Definition 3.2. ([13], [14,Form 76]) ω–MC states that, for every family
(Xi)i∈I of non-empty sets, there is a family (Ai)i∈I of non-empty at most
countable sets such that Ai ⊆ Xi for every i ∈ I.

Theorem 3.3. If ω–MC holds, then every first countable space X has a local
base system (D(x))x∈X such that, for each x ∈ X, D(x) is countable.

Proof: Let X be a first countable space and consider the set A(x) of all
functions f : N −→ P(X) such that f(N) is a local base at x ∈ X. Since X

is first countable, (A(x))x∈X is a family of non-empty sets. So, by ω–MC,
there is (C(x))x∈X, with C(x) countable and ∅ 6= C(x) ⊆ A(x) for each x in
X.

Since C(x) is countable, one easily shows that D(x) := {f(n) : f ∈
C(x), n ∈ N} is also countable and then (D(x))x∈X is a local base system
with the local base at each point countable.

Definition 3.4. The countable union theorem (CUT) says that countable
unions of countable sets are countable.

Theorem 3.5. Equivalent are:

(i) ω–MC and CC;
(ii) ω–MC and CUT;
(iii) ω–MC and the axiom of countable choice holds for families of count-

able sets (CC(ℵ0));
(iv) for every local base system (B(x))x∈X of a first countable space X,

there is a local base system (V(x))x∈X such that, for each x ∈ X, V(x)
is countable and V(x) ⊆ B(x);

(v) if a topological space X has a local base system (D(x))x∈X with each
D(x) countable, then for every local base system (B(x))x∈X of X, there
is a local base system (V(x))x∈X such that, for each x ∈ X, V(x) is
countable and V(x) ⊆ B(x).

Proof: (i) ⇔ (ii) ⇔ (iii) It is obvious that CC ⇒ CUT ⇒ CC(ℵ0), and if
ω–MC holds, then CC is equivalent CC(ℵ0).

(iv) ⇒ (v) Apparent.
(ii) ⇒ (iv) Let (B(x))x∈X be a local base system of a first countable space

X. Theorem 3.3 says that X has a local base system (D(x))x∈X with the
local base at each point countable.
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For each x ∈ X and U ∈ D(x), define the sets M(U, x) := {B ∈ B(x) :
B ⊆ U} and I :=

⋃

x∈X D(x) × {x}.
Since each B(x) is a local base, it is clear that (M(U, x))(U,x)∈I is a family of

non-empty sets. Then ω–MC implies that there is a family (E(U, x))(U,x)∈I

such that each E(U, x) is countable and contained in M(U, x). Thus, by CUT,
the sets V(x) :=

⋃

U∈D(x) E(U, x) are countable.

Finally, (V(x))x∈X is a family of countable sets with V(x) ⊆ B(x) for each
x ∈ X, since E(U, x) ⊆ M(U, x) ⊆ B(x) for every pair (U, x) ∈ I. From the
way it was defined, (V(x))x∈X is also a local base system, which concludes
the proof.

(v) ⇒ (i) From Theorem 3.1 we know that condition (v) implies CC.
Let (Xi)i∈I be a family of non-empty sets. Without loss of generality,

consider the family disjoint with its union disjoint from I.

Define the sets Yi := (Xi × N) ∪ {i}, Y :=
⋃

i∈I Yi and D(i, n) := {(x, k) :
x ∈ Xi and k ≥ n + 1} ∪ {i}. The local base system

D(x) :=

{

{{x}} if x 6∈ I

{D(x, n) : n ∈ N} if x ∈ I

defines a (first countable) topology on Y. It is clear that, for each point, the
given local base is countable.

Since for each x 6∈ I, the singleton set {x} must belong to every local base at
x, for simplicity we consider (B(i) := {D(i, n)∪{(x, n)} : x ∈ Xi, n ∈ N})i∈I

as a local base system of Y.

By (v), there exists a family (V(i))i∈I such that for every i ∈ I, V(i) ⊆ B(i)
and V(i) is at most countable and also non-empty, because it is a local base
at i.

Finally, for each i ∈ I we define the set Yi := {x ∈ Xi : (∃C ∈ V(i))
C \ D(i, n) = {(x, n)} for some n ∈ N}. This process gives a family (Yi)i∈I

of non-empty at most countable sets, with Yi ⊆ Xi.

The equivalent conditions of Theorem 3.5 are properly weaker than the
axiom of choice itself (Cohen/Pincus model – M1(<ω1 >) in [14]). In Part
III of [14] other models with these characteristics can be found.
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4. Hausdorff spaces

This section is motivated by the question: “Are there first countable non-
Hausdorff spaces in which every sequence has at most one limit?” As we will
see, the answer to this question is affirmative.

Theorem 4.1. Equivalent are:

(i) CC ;
(ii) a first countable space is Hausdorff if and only if every sequence has

at most one limit.

Proof: (i) ⇒ (ii) Condition (ii) is Proposition 1.6.17 in [4]. It is not difficult
to see that no condition stronger than CC is used in the proof.

(ii) ⇒ (i) Let (Xn)n be a countable family of non-empty disjoint sets. In a
similar way to the proof of Theorem 3.1, we construct the sets Yn :=

⋃∞
k=n Xk

and Y :=
⋃

n Xn ∪ {a, b}, with a 6= b and both not in
⋃

n Xn. The local base
system

B(x) :=

{

{{x}} if x 6∈ {a, b}
{Yn ∪ {x} : n ∈ N} if x ∈ {a, b}

defines a first countable topology on Y.

Clearly, the space Y is not Hausdorff. Thus, by (ii), there is a sequence in
Y with at least two limit points. Such a sequence must converge to a and to
b. A sequence converging, simultaneously, to these two points meets infinitely
many of the Xn’s.

This fact together with Proposition 1.4 concludes the proof.

Theorem 4.2. Equivalent are:

(i) CC(R);
(ii) a second countable space is Hausdorff if and only if every sequence has

at most one limit.

Proof: (i) ⇒ (ii) That in a Hausdorff space every sequence (net) has at most
one limit is a theorem of ZF (cf. [4,1.6.7]).

If, in a topological space X, every sequence has at most one limit, then X is
a T1–space (see, e.g., [4,1.6.16]). Lemma 1.5 implies that, if X is a T1–space
with a countable base, then |X| ≤ |R|. The usual proof (see [4,1.6.17]) only
uses a countable choice for subsets of X.
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(ii) ⇒ (i) Let (Xn)n be a countable family of non-empty subsets of R. We
may consider each Xn as a subset of ( 1

n+1 ,
1
n
). Define the sets Y and (Yn)n as

in the proof of Theorem 4.1.
We define a topology in Y in which Y \{a, b} is open and has the topology

of subspace of R, and the points a and b have the same local bases as before.
With this topology Y is a second countable non-Hausdorff space. From this
point, the proof proceeds as the proof of Theorem 4.1.

It is well known that the condition (ii) of Theorem 4.1 may be generalized
to the class of topological spaces, replacing sequences by filters (or nets).
This result is still valid in ZF.

Under the Ultrafilter Theorem, i.e. every filter over a set can be extended
to an ultrafilter, the convergence of ultrafilters may also be used. We will see
that we cannot avoid the Ultrafilter Theorem.

The Ultrafilter Theorem is equivalent to the Boolean Prime Ideal Theorem
(see [15,p.17]).

Theorem 4.3. Equivalent are:

(i) Ultrafilter Theorem;
(ii) a topological space X is Hausdorff if and only if, in X, every ultrafilter

has at most one limit.

Proof: (i) ⇒ (ii) In [4,1.6.7], (ii) is proved for filters (nets). If (i) does hold,
it is clear that the proof can be done with ultrafilters.

(ii) ⇒ (i) Let F be a free filter over X, and a, b two distinct points of X.

Once again, we define a local base system for a topology on X :

B(x) :=

{

{{x}} if x 6∈ {a, b}
{F ∪ {x} : F ∈ F} if x ∈ {a, b}.

With this topology, X is not Hausdorff. So, by (ii) there is an ultrafilter
converging for two different points in X. These two points can only be a and
b, which means that such an ultrafilter must contain F.

5. Countable products

The last part of this paper is devoted to the study of the countable pro-
ductivity of the class of second countable spaces. Such a property is provable
in ZFC. The question was studied by K. Keremedis [16] in the absence of
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the axiom of choice. He arrived at some interesting results, although not de-
finitive ones. Indeed, an equivalence to a set-theoretic statement is missing.
In Theorems 5.1 and 5.2 below, we will narrow the gap between the (known)
necessary and sufficient conditions to prove of the countable productivity of
the class of second countable spaces. We prove this property, using a choice
principle properly weaker than CC.

Theorem 5.1. If countable products of second countable spaces are second
countable, then the countable union theorem does hold.

Proof: Without loss of generality, let (Xn)n be a family of countable disjoint
sets and consider the discrete spaces Yn := Xn ∪ {n}.

Clearly every Yn is second countable and then, by hypothesis, Y :=
∏

n Yn

is also second countable. Let B := {Bk : k ∈ N} be a base for Y. For
each n in N, {pn(Bk) : k ∈ N} is a base for Yn, since the projections pn

are open surjections. This induces the injective function fn : Xn −→ N

defined by fn(x) := min{k ∈ N : pn(Bk) = {x}}. Now, it is easy to see that
f :

⋃

n Xn −→ N × N with f(x) := (n, k) if x ∈ Xn and fn(x) = k is an
injection, which concludes the proof.

Theorem 5.2. If the axiom of countable choice holds for families of sets
with cardinality at most 2ℵ0 (CC(≤ 2ℵ0)), then countable products of second
countable spaces are second countable.

Proof: Let ((Xn, Tn))n be a family of second countable spaces. We will prove
that

∏

n(Xn, Tn) has a countable base.
By Lemma 1.5, we know that |Tn| ≤ 2ℵ0, for every n ∈ N. Consider the

sets Cn := {(f : N −→ Tn) : f(N) is a base of (Xn, Tn)}. We have that, for
all n ∈ N, |Cn| ≤ |(Tn)

N| ≤ (2ℵ0)ℵ0 = 2ℵ0. By CC(≤ 2ℵ0), there is (fn)n with
each fn an element of Cn.

The subbase C := {p−1
n (fn(k)) : n, k ∈ N} of

∏

n Xn is countable, and then
the base generated by C is also countable.

In a analogous way to the proofs of Theorems 5.1 and 5.2, one can prove
the following corollary.

Corollary 5.3. Equivalent are:

(i) the axiom of countable choice holds for families of finite sets (CC(fin));
(ii) countable products of spaces with finite topologies are second countable.



12 GONÇALO GUTIERRES

We recall that the countable union theorem for finite sets – Form 10 A in
[14] – is equivalent to CC(fin) – Form 10 in [14].
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Math. Univ. Carol. 43 (2002), 319-333.
[11] H. Herrlich and J. Steprāns, Maximal filters, continuity and choice principles, Quaest. Math.

20 (1997), 697-705.
[12] H. Herrlich and G. E. Strecker, When N is Lindelöf?, Commentat. Math. Univ. Carol. 38
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