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Universidade de Coimbra
Preprint Number 03–11

FUNCTORIAL QUASI-UNIFORMITIES ON FRAMES
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1. Introduction

The method of constructing compatible quasi-uniformities for an arbitrary
frame, introduced in [8], naturally raises the question of its functoriality.
The purpose of the present paper is to address this question, together with
a unified treatment of functorial quasi-uniformities on frames.

To put this in perspective, we recall that a topological space (X, T ) is
uniformizable if there exists a uniformity E on X such that the correspond-
ing induced topology T (E) coincides with the given topology T . As it is
well-known, the topological spaces that are uniformizable are precisely the
completely regular ones. This result has a perfect analog in the two-sided
theory of quasi-uniform spaces (where they are considered over their induced
bitopologies): a bitopological space (X, T1, T2) is quasi-uniformizable, i.e.
there exists a quasi-uniformity E on X such that T (E) = T1 and T (E−1) = T2,
if and only if it is pairwise completely regular. However, in the one-sided the-
ory, where a quasi-uniformity is considered over a single underlying topology,
the resemblance with the symmetric case is over and one gets a striking re-
sult: every topological space is quasi-uniformizable, that is, every topological
space (X, T ) gives rise to a (transitive) quasi-uniformity EP (T ) on X which
generates as one of its topologies the given topology T . This result was
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firstly proved by Pervin [14] and EP (T ) is nowadays called the (Császár-
)Pervin quasi-uniformity. So, every topological space (X, T ) gives rise to a
bitopological space (X, T (EP (T )), T (EP (T )−1)), where T (EP (T )) = T . The
join T (EP (T )) ∨ T (EP (T )−1) of the two topologies is called the Skula topol-
ogy and the above bitopological space is referred to as the Skula bitopological
space.

Let T denote the forgetful functor from the category QUnif of quasi-uniform
spaces and uniformly continuous maps to the category Top of topological
spaces and continuous maps which assigns to each (X, E) ∈ QUnif its first
topology T (E). A functorial quasi-uniformity [4] on the topological spaces
is a T -section, that is, a functor F : Top → QUnif such that TF = 1Top.
In other words, F assigns a compatible quasi-uniformity to each topological
space in such a way that continuous maps become uniformly continuous.

In [4], Brümmer proved that the Pervin quasi-uniformity defines the coars-
est T -section C∗

1 : Top → QUnif. In [18], Salbany proved that, for any
T -section F , the join of the two topologies generated by the quasi-uniformity
of F (X, T ) is precisely the Skula topology T (EP (T )) ∨ T (EP (T )−1).

Transitive quasi-uniform spaces form an important subcategory of QUnif

and they play a role almost as general as that of quasi-uniform spaces in
the study of topological properties. The most striking aspect of transitive
functorial quasi-uniformities, as Brümmer proved in [6], is that they can all
be obtained by a construction due to Fletcher [9], considering the interior-
preserving open covers of their associated topological spaces.

The present paper is devoted to placing these results in a pointfree con-
text. It is part of a larger program started in [8], motivated by Problem
3 of Brümmer [7], asking for a pointfree formulation of the classical the-
ory of functorial transitive quasi-uniformities. After recalling some basics
on frames and quasi-uniform frames (Section 2), we study general functo-
rial frame quasi-uniformities (Section 3). In the remaining sections we apply
the general method of constructing compatible transitive quasi-uniformities
on an arbitrary frame, introduced in [8], to describe all functorial transitive
quasi-uniformities.
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2. Preliminaries

2.1. Frames and biframes. Pointfree topology is part of the study of
frames (or locales), that is, complete lattices L satisfying the infinite dis-
tributive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}

for every x ∈ L and every S ⊆ L. This notion generalizes both the lattice
of open sets of a topological space and that of a Boolean algebra. A frame
homomorphism f : L → M is a map between frames which preserves finite
meets (including the top element 1) and arbitrary joins (including the bottom
element 0). The corresponding category will be denoted by Frm. If L is a
frame and x ∈ L then

x∗ :=
∨

{a ∈ L | a ∧ x = 0}

is the pseudocomplement of x. Obviously, if x ∨ x∗ = 1, x is complemented
and we denote the complement x∗ by ¬x. Note that, in any frame, the first
De Morgan law

(
∨

i∈I

xi)
∗ =

∧

i∈I

x∗
i

holds but for infima we have only the trivial inequality
∨

i∈I

x∗
i ≤ (

∧

i∈I

xi)
∗.

Recall also that a biframe is a triple (L0, L1, L2) where L1 and L2 are
subframes of the frame L0, which together generate L0. A biframe homo-
morphism, f : (L0, L1, L2) −→ (M0, M1, M2), is a frame homomorphism
f : L0 −→ M0 which maps Li into Mi (i = 1, 2) and BiFrm denotes the
resulting category.

Further, a biframe (L0, L1, L2) is strictly zero-dimensional [1] if it satisfies
the following condition or its counterpart with L1 and L2 reversed: each
x ∈ L1 is complemented in L0, with complement in L2, and L2 is generated
by these complements. Along this paper, we always assume that strictly
zero-dimensional biframes satisfy this condition, not its counterpart with L1

and L2 reversed.
For general facts concerning frames we refer to Johnstone [12] or Vickers

[19]. Additional information concerning biframes may be found in [1] and
[3].
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2.2. The Skula biframe Sk(L) of a frame L. The lattice of frame
congruences on L under set inclusion is a frame, denoted by CL. A good
presentation of the congruence frame is given by Frith [11]. Here, we shall
need the following properties:

(1) For any x ∈ L, ∇x and ∆x are, respectively, the congruences defined
by {(a, b) ∈ L×L | a∨x = b∨x} and {(a, b) ∈ L×L | a∧x = b∧x}.

(2) Each ∇x is complemented in CL with complement ∆x.
(3) ∇L = {∇x | x ∈ L} is a subframe of CL. Let ∆L denote the subframe

of CL generated by {∆x | x ∈ L}. Since θ =
∨

{∇y ∧ ∆x | (x, y) ∈
θ, x ≤ y}, for every θ ∈ CL, the triple (CL,∇L, ∆L) is a biframe (usu-
ally referred to as the Skula biframe of L [11]). This is the analogue,
for frames, of the Skula bitopological space and it is, clearly, a strictly
zero-dimensional biframe.

(4) The correspondence x 7→ ∇x defines an epimorphism and a monomor-
phism ∇L : L → CL and gives an isomorphism L → ∇L, whereas the
map x 7→ ∆x is a dual poset embedding L → ∆L taking finitary meets
to finitary joins and arbitrary joins to arbitrary meets.

The following result from [11] will be helpful in the sequel.

Lemma. (J. Frith [11]) Let h : L → M be a frame homomorphism. If each
element of h[L] is complemented then there exists a unique frame homomor-
phism h such that the diagram

L
∇L

//

h   B
BB

BB
BB

B CL

h
��
�
�
�

M

commutes.

Proof : Clearly, if there exists such an h, we must have

h(∇x) = h(x) (2.2.1)

h(∆x) = h(¬∇x) = ¬h(x). (2.2.2)

Then, for any θ ∈ CL,

h(θ) = h(
∨

{∆x ∧∇y | (x, y) ∈ θ, x ≤ y})

=
∨

{¬h(x) ∧ h(y) | (x, y) ∈ θ, x ≤ y}.
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This defines a frame homomorphism h : CL → M (for a proof see [11],
Theorem 5.17). The uniqueness follows from the fact that ∇L is an epimor-
phism.

For any frame homomorphism h : L → M , consider the map h := ∇M · h

L
∇L

//

h
��

CL

h
��
�
�
�

M
∇M

// CM

(2.2.3)

given by the Lemma. Clearly, by (2.2.1) and (2.2.2), h is a biframe map
Sk(L) → Sk(M). We refer to the functor

Sk : Frm −→ BiFrm

L 7−→ Sk(L)
(h : L → M) 7−→ (h : Sk(L) → Sk(M))

as the Skula functor.

2.3. Weil entourages. For a frame L consider the frame D(L × L) of all
non-void decreasing subsets of L × L, ordered by inclusion. The coproduct
L ⊕ L will be represented as usual (cf. [12]), as the subset of D(L × L)
consisting of all C-ideals, that is, of sets A for which

{x} × S ⊆ A ⇒ (x,
∨

S) ∈ A

and

S × {y} ⊆ A ⇒ (
∨

S, y) ∈ A.

Since the premise is trivially satisfied if S = ∅, each C-ideal A contains O :=
{(0, a), (a, 0) | a ∈ L}, and O is the bottom element of L⊕L. Obviously, each
x ⊕ y =↓ (x, y) ∪ O is a C-ideal. The coproduct injections uL

i : L → L ⊕ L

are defined by uL
1 (x) = x⊕1 and uL

2 (x) = 1⊕x so that x⊕y = uL
1 (x)∧uL

2 (y).
For any frame homomorphism h : L −→ M , the definition of coproduct

ensures us the existence (and uniqueness) of a frame homomorphism h⊕ h :
L ⊕ L −→ M ⊕ M such that (h ⊕ h) · uL

i = uM
i · h (i = 1, 2).

A Weil entourage [15] on L is just an element E of L⊕L for which
∨

{x ∈
L | (x, x) ∈ E} = 1. The collection WEnt(L) of all Weil entourages of L

with the inclusion is a partially ordered set with finitary meets (including a
unit 1 = L ⊕ L).
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If E and F are elements of L ⊕ L then

E ◦ F :=
∨

{x ⊕ y | ∃z ∈ L \ {0} : (x, z) ∈ E, (z, y) ∈ F}.

A Weil entourage E is called transitive if E ◦ E = E.

2.4. Quasi-uniform frames. Let E ⊆ L ⊕ L and x, y ∈ L. If

E ◦ (x ⊕ x) ⊆ y ⊕ y for some E ∈ E ,

we write x
E
/1 y. Similarly, we define

x
E
/2y ≡ (x ⊕ x) ◦ E ⊆ y ⊕ y, for some E ∈ E .

A filter E of WEnt(L) is a quasi-uniformity on the frame L if it satisfies
the following conditions:

(QU1) For every E ∈ E there exists F ∈ E such that F ◦ F ⊆ E.

(QU2) For every x ∈ L, x =
∨

{y ∈ L | y
E
/1 x}, where E := E ∪ E−1.

Note that, since E is a symmetric filter, the partial orders
E
/1 and

E
/2 do

coincide.
A quasi-uniform frame is just a pair (L, E) where L is a frame and E is

a quasi-uniformity on L. If (L, E1) and (M, E2) are quasi-uniform frames,
f : (L, E1) → (M, E2) is a uniform homomorphism if f : L → M is a frame
homomorphism such that (f ⊕ f)(E) ∈ E2, for all E ∈ E1. The resulting
category is denoted by QUFrm.

A quasi-uniform frame (L, E) is called transitive if E has a base consisting of
transitive entourages. For more information on transitive quasi-uniformities
we refer to [13].

We note further that the partial orders
E
/1 and

E
/2 induce the following

important subframes of L:

L1(E) :=
{

x ∈ L | x =
∨

{y ∈ L | y
E
/1x}

}

L2(E) :=
{

x ∈ L | x =
∨

{y ∈ L | y
E
/2x}

}

.

It is worth pointing that the admissibility condition (QU2) is equivalent to
saying that the triple (L,L1(E),L2(E)) is a biframe [16]. This is the pointfree
expression of the classical fact that each quasi-uniform space (X, E) induces
a bitopological structure (T1(E), T2(E)) = (T (E), T (E−1)) on X.

We also note that
E
/1 and

E
/2 may be characterized in the following way [17]:
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• x
E
/1 y if and only if there exists E ∈ E such that

st1(x, E) :=
∨

{α ∈ L | (α, β) ∈ E, β ∧ x 6= 0} ≤ y; (2.4.1)

• x
E
/2 y if and only if there exists E ∈ E such that

st2(x, E) :=
∨

{β ∈ L | (α, β) ∈ E, α ∧ x 6= 0} ≤ y. (2.4.2)

The elements sti(x, E), i = 1, 2, satisfy the following properties, for every
x, y ∈ L [15]:

(S1) x ≤ y ⇒ sti(x, E) ≤ sti(y, E), for every E ∈ L ⊕ L;
(S2) For every Weil entourage E, x ≤ st1(x, E) ∧ st2(x, E);
(S3) For every E, F ∈ L ⊕ L, sti(x, E ∩ F ) ≤ sti(x, E) ∧ sti(x, F );
(S4) For every E, F ∈ L ⊕ L,

st1(st1(x, E), F ) ≤ st1(x, F ◦ E)

and

st2(st2(x, E), F ) ≤ st2(x, E ◦ F );

(S5) For every quasi-uniformity E , sti(x, E) ≤ y for some E ∈ E implies
the existence of z ∈ Lj(E), j 6= i, such that z ∧ x = 0 and z ∨ y = 1;

(S6) For every E ∈ L ⊕ L, sti(
∨

J xj, E) =
∨

J sti(xj, E);
(S7) For every E ∈ L ⊕ L and every frame homomorphism h : L → M ,

sti(h(x), (h ⊕ h)(E)) ≤ h(sti(x, E)).

3. Functorial compatible quasi-uniformities

3.1. The forgetful functor T : QUFrm → Frm. For each quasi-uniform
frame (L, E) consider the first part L1(E) of the biframe (L,L1(E),L2(E))
associated to (L, E). This correspondence defines a forgetful functor T :
QUFrm −→ Frm. Indeed, for any uniform homomorphism h : (L, E1) →

(M, E2), h maps L1(E1) into L1(E2): for any x ∈ L1(E1), x =
∨

{y ∈ L | y
E1
/1

x}, so h(x) =
∨

{h(y) | y
E1
/1 x}; but, by property (S7), h(y)

E2
/i h(x) whenever

y
E1
/i x (i = 1, 2), thus

h(x) =
∨

{h(y) | y
E1
/1 x}

≤
∨

{h(y) | h(y)
E2
/1 h(x)}
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≤
∨

{z ∈ M | z
E2
/1 h(x)} ≤ h(x)

and, consequently, h(x) ∈ L1(E2).
Note that, similarly, h maps L2(E1) into L2(E2) and thus h is even a biframe

map from (L,L1(E1),L2(E1)) into (M,L1(E2),L2(E2)).

3.2. The Frith quasi-uniformity. Let (L0, L1, L2) be a strictly zero-
dimensional biframe. For any a ∈ L1 let

Ea = (a ⊕ 1) ∨ (1 ⊕ ¬a).

This is obviously a transitive Weil entourage of L0. It is also worth pointing
that, since (a⊕1)∪(1⊕a) is already a C-ideal, Ea is simply (a⊕1)∪(1⊕¬a).
The following result, which is a particular case of Theorem 5.5 of [13], is of
central importance in the sequel.

Theorem. (Hunsaker and Picado [13]) For any strictly zero-dimensional bi-
frame (L0, L1, L2), the family S = {Ea | a ∈ L1} is a subbase for a transitive,
totally bounded, quasi-uniformity F on L0, for which Li(F) = Li (i = 1, 2).
�

The quasi-uniformity F is called the Frith quasi-uniformity on L0.

3.3. The functor C∗
1 : Frm → QUFrm. Following [8], we say that a quasi-

uniformity E on CL is compatible with L whenever L1(E) = ∇L ∼= L. More
generally, we say that a quasi-uniformity E on a frame M is compatible with
L if L1(E) ∼= L. For any frame L, the Skula biframe Sk(L) is clearly strictly
zero-dimensional. Therefore, by Theorem 3.2, {E∇a

| a ∈ L} is a subbase for
a transitive, totally bounded, quasi-uniformity FCL on CL, compatible with
L.

Remark. Note that this is the pointfree counterpart of the Pervin quasi-
uniformity: starting with a frame L we have a quasi-uniformity on CL which
generates, as its first subframe, an isomorphic copy of the given frame L.

Let us show that the correspondence L 7−→ (CL,FCL) defines a functor
C∗

1 : Frm −→ QUFrm. For any frame homomorphism h : L → M , take the
map h given by (2.2.3). It suffices to check that

h : (CL,FCL) → (CM,FCM )
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is a uniform homomorphism, which is easy:

(h ⊕ h)(E∇a
) = (h ⊕ h)(∇a ⊕ 1) ∨ (h ⊕ h)(1 ⊕ ∆a)

= (h(∇a) ⊕ h(1)) ∨ (h(1) ⊕ h(∆a))

= (∇h(a) ⊕ 1) ∨ (1 ⊕ ∆h(a)) ∈ FCM .

In conclusion,

C∗
1 : Frm −→ QUFrm

L 7−→ (CL,FCL)
(h : L → M) 7−→ (h : (CL,FCL) → (CM,FCM ))

is a functor such that TC∗
1(L) = L1(FCL) = ∇L ∼= L, that is, TC∗

1
∼= 1Frm.

This suggests the following definition.

3.4. T -sections. We say that a functor F : Frm −→ QUFrm is a section
of T (briefly, T -section) if TF ∼= 1Frm, that is, if there is a natural isomor-
phism iF : 1Frm ⇒ TF . In other words, T -sections correspond exactly to
quasi-uniformities on frames which are functorial in the sense that any frame
homomorphism L → M is uniform relative to the quasi-uniformities assigned
to L and M respectively.

If F and G are T -sections, we say that F is coarser than G, written F ≤ G,
if there is a natural transformation i : F ⇒ G such that T (iL)·iF (L) = iG(L) for
every frame L. This is a reflexive and transitive relation, that is, a preorder,
and so it can be made a partial order in the standard way.

A T -section F is transitive if F (L) is a transitive quasi-uniform frame for
every frame L.

3.5. T -sections induce strictly zero-dimensional biframes. Let F be
a T -section and let F (L) = (F0(L), EF (L)) for each frame L. We denote by

BF (L) = (F0(L),L1(EF (L)),L2(EF (L)))

the biframe associated to the quasi-uniform frame F (L) and by BF the cor-
responding functor Frm → BiFrm.

Let 3 denote the three-element frame {0 < α < 1}. It is clear that C3 is
just the Boolean algebra with four elements
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�
�

�

@
@

@
@

@
@�

�
�

1•

∇α• ∆α•

0
•

It is also an easy exercise to conclude that C3 has a unique quasi-uniform
structure, generated by the entourage E∇α

. We refer to it as the Sierpiński
quasi-uniform frame.

Lemma. For each T -section F , BF (3) ∼= Sk(3).

Proof : Clearly L1(EF (3)) ∼= 3 ∼= ∇3. Let x = iF (3)(α) denote the non-trivial
element of the frame L1(EF (3)). Since

x =
∨

{y ∈ L1(EF (3)) | y
EF (L)

/1 x}

and L1(EF (3)) ∼= 3, then x
EF (3)

/1 x. By (S5), this means that there is some
b ∈ L2(EF (3)) such that b∧ x = 0 and b∨ x = 1. This shows that L1(EF (3)) is
complemented by elements of L2(EF (3)).

Now consider y ∈ L2(EF (3)). Similarly

y =
∨

{z ∈ L2(EF (3)) | z
EF (3)

/2 y}

and, for each such z, there exists w ∈ L1(EF (3)) satisfying z ∧ w = 0 and
y ∨w = 1. We know already that w has a complement ¬w ∈ L2(EF (3)). This
complement satisfies z ≤ ¬w ≤ y thus y is a join of complements of members
of L1(EF (3)). In conclusion BF (3) is a strictly zero-dimensional biframe. This
implies that L2(EF (3)) = {0,¬x, 1} ∼= ∆3.

More generally, we have the following important result:

Proposition. For each T -section F , BF (L) ∼= Sk(L).

Proof : First, let us show that BF (L) is strictly zero-dimensional, that is,

(1) L1(EF (L)) is complemented with complements in L2(EF (L));
(2) Every element of L2(EF (L)) is a join of complements of members of

L1(EF (L)).
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(1) For each a ∈ L consider fa : 3 → L defined by fa(α) = a. Since the
diagram

3
fa

//

iF (3)
��

L

iF (L)
��

L1(EF (3))
TF (fa)

// L1(EF (L))

(3.5.1)

commutes, we have iF (L)(a) = (TF (fa) · iF (3))(α) = TF (fa)(x). By the
Lemma we know that iF (3)(α) = x is complemented with complement in
L2(EF (3)). Then, obviously, TF (fa)(x) has a complement TF (fa)(¬x). Since
iF (L) is an isomorphism we may conclude that every element of L1(EF (L)) has
a complement in L2(EF (L)).

(2) Let y ∈ L2(EF (L)). For each z ∈ L2(EF (L)) satisfying z
EF (L)

/2 y there exists
w ∈ L1(EF (L)) such that z∧w = 0 and y∨w = 1. By (1), w is complemented
with complement in L2(EF (L)). Obviously z ≤ ¬w ≤ y. The conclusion now
follows from the fact that

y =
∨

{z ∈ L2(EF (L)) | z
EF (L)

/2 y}.

This shows that BF (L) is strictly zero-dimensional.
By the definition of T -section, L1(EF (L)) ∼= L ∼= ∇L. Since Frm is an

algebraic category, it has presentations by generators and relations. By what
we have seen above, both L2(EF (L)) and ∆L are models for the presentation
Frm < G | R >, for generators

G = {¬x | x ∈ L1(EF (L))}

and relations

¬(x ∧ y) = ¬x ∨ ¬y (x, y ∈ L1(EF (L)))

¬(
∨

xi) =
∧

(¬xi) (xi ∈ L1(EF (L))).

Therefore F0(L) = L1(EF (L)) ∨ L2(EF (L)) ∼= CL and BF (L) ∼= Sk(L).

3.6. Properties of T -sections. Let F be a T -section. By Theorem 3.2, we
may endow F0(L) with the Frith quasi-uniformity FF0(L), which is compatible
with L0. This transitive quasi-uniformity is coarser than the original quasi-
uniformity EF (L):

Lemma. FF0(L) ⊆ EF (L).
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Proof : We need to show that, for each a ∈ L1(EF (L)), Ea ∈ EF (L). For this,

consider the frame homomorphism fa : 3 → L defined by fa(α) = i−1
F (L)(a).

By Lemma 3.5, BF (3) ∼= Sk(3) so F (3) is necessarily isomorphic to the
Sierpiński quasi-uniform frame. On the other hand, F (fa) : F (3) → F (L) is
a quasi-uniform homomorphism thus (F (fa) ⊕ F (fa))(E∇α

) ∈ EF (L). By the
commutativity of diagram (3.5.1),

F (fa)(∇α) = TF (fa)(∇α) = TF (fa)(iF (3)(α)) = iF (L)(fa(α)) = a.

Then F (fa)(∆α) = ¬a since F (fa)(∆α) ∨ a = F (fa)(∆α) ∨ F (fa)(∇α) =
F (fa)(1) = 1 and F (fa)(∆α) ∧ a = F (fa)(∆α) ∧ F (fa)(∇α) = F (fa)(0) = 0.
Hence

(F (fa) ⊕ F (fa))(E∇α
) = (F (fa)(∇α) ⊕ 1) ∨ (1 ⊕ F (fa)(∆α))

= (a ⊕ 1) ∨ (1 ⊕ ¬a)

= Ea

and Ea ∈ EF (L), as required.

By Lemma 3.2 and Proposition 3.5, for each frame L there exists a biframe
isomorphism iF (L) : Sk(L) → BF (L) such that the diagram

L
∇L

//

iF (L)
��

CL

iF (L)

���
�

�
�

�
�

�
�

�
�

L1(EF (L))
� _

��

F0(L)

commutes.

Proposition. Let F be a T -section. Then, for each frame L, we have:

(1) iF (L) : C∗
1(L) → (F0(L),FF0(L)) is a uniform isomorphism;

(2) iF (L) : C∗
1(L) → F (L) is a uniform homomorphism.

Proof : (1) We have

(iF (L) ⊕ iF (L))(E∇a
) = (iF (L) ⊕ iF (L))(∇a ⊕ 1) ∨ (iF (L) ⊕ iF (L))(1 ⊕ ∆a)

= (iF (L)(∇a) ⊕ 1) ∨ (1 ⊕ iF (L)(∆a))

= (iF (L)(a) ⊕ 1) ∨ (1 ⊕ ¬iF (L)(a))
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= EiF (L)(a) ∈ FF0(L).

(2) It follows immediately from (1) and Lemma 3.6.

We end this section with the pointfree version of the classical result that
the Pervin quasi-uniformity defines the coarsest T -section [4].

Theorem. C∗
1 is the coarsest section of T .

Proof : Let F be a T -section. It suffices to verify that the maps iF (L) of (2)

in the Proposition define a natural transformation iF : C∗
1 ⇒ F satisfying

T (iF (L)) · ∇L = iF (L) for each frame L.
Let h : L → M be a frame map. We need to show that the diagram

C∗
1(L)

iF (L)
//

C∗
1(h)

��

F (L)

F (h)
��

C∗
1(M)

iF (M)
// F (M)

commutes. Let θ ∈ CL. Then

F (h) · iF (L)(θ) = F (h) · iF (L)(
∨

{∆a ∧∇b | (a, b) ∈ θ, a ≤ b})

= F (h)(
∨

{iF (L)(∆a) ∧ iF (L)(∇b) | (a, b) ∈ θ, a ≤ b})

= F (h)(
∨

{¬iF (L)(a) ∧ iFL(b) | (a, b) ∈ θ, a ≤ b})

=
∨

{¬F (h)(iF (L)(a)) ∧ F (h)(iF (L)(b)) | (a, b) ∈ θ, a ≤ b}

=
∨

{¬iF (M)(h(a)) ∧ iF (M)(h(b)) | (a, b) ∈ θ, a ≤ b}.

On the other hand,

iF (M) · C
∗
1(h)(θ) = iF (M)(∇M · h(

∨

{∆a ∧∇b | (a, b) ∈ θ, a ≤ b}))

= iF (M)(
∨

{¬∆h(a) ∧∇h(b) | (a, b) ∈ θ, a ≤ b})

=
∨

{iF (M)(∆h(a)) ∧ iF (M)(∇h(b)) | (a, b) ∈ θ, a ≤ b}.

=
∨

{¬iF (M)(h(a)) ∧ iF (M)(h(b)) | (a, b) ∈ θ, a ≤ b}.

Thus iF (M) · C
∗
1(h)(θ) = F (h) · iF (L)(θ).

Trivially, (T (iF (L)) · ∇L)(a) = iF (L)(∇a) = iF (L)(a), for every a ∈ L.
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4. Functorial aspects of the Fletcher construction

4.1. Interior-preserving and Fletcher covers. We recall from [8] that
a cover A of L is interior-preserving if, for each B ⊆ A,

∨

b∈B

∆b = ∆∧

B.

More generally, A is weakly interior-preserving if, for each B ⊆ A,
∧

b∈B

∇b = ∇∧

B.

Further, a cover A is a Fletcher cover whenever

RA :=
⋂

a∈A

(∇a ⊕ 1) ∪ (1 ⊕ ∆a)

is a Weil entourage of CL or, equivalently,
∨

{(
∧

a∈A1

∇a) ∧ (
∧

a∈A2

∆a) | A1 ∪ A2 = A} = 1 ([8], Proposition 4.1).

Examples of interior-preserving Fletcher covers are finite covers, locally
finite covers, spectra and well-monotone covers (see [8] for the details).

It is also worth pointing out that, for any covers A, B of L,

RA ∩ RB = RA∧B ([8], Lemma 4.1) (4.1.1)

For the remainder of the paper we shall denote the entourage E∇a
= (∇a⊕

1) ∪ (1 ⊕ ∆a) simply by Ea and, for each frame homomorphism h : L → M ,
we denote by h : CL → CM the morphism given by (2.2.3). Note that
(h ⊕ h)(Ea) = Eh(a).

Interior-preserving covers and Fletcher covers behave well with respect to
morphisms:

Proposition. Let h : L → M be a frame homomorphism. Then:

(1) For every Fletcher cover A of L, h[A] is a Fletcher cover of M ;
(2) For every interior-preserving cover A of L, h[A] is an interior-preser-

ving cover of M .

Proof : (1) Since RA is a Weil entourage of L, (h⊕h)(RA) is a Weil entourage
of M . But, clearly, (h ⊕ h)(RA) ⊆

⋂

a∈A(h ⊕ h)(Ea) =
⋂

a∈A Eh(a) = Rh[A].
Thus Rh[A] is also a Weil entourage of M .
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(2) For each B ⊆ A we have, using the hypothesis,
∨

b∈B

∆h(b) =
∨

b∈B

h(∆b) = h(
∨

b∈B

∆b) = h(∆∧

B) = ∆h(
∧

B) ≥ ∆∧

h[B].

The reverse inequality
∨

b∈B ∆h(b) ≤ ∆∧

h[B] is always true.

In general h does not preserve arbitrary meets. But, clearly, h(
∧

b∈B ∆b) =
∧

b∈B h(∆b), for any B ⊆ L. Moreover:

Lemma. Let A be an interior-preserving cover of L. Then:

(1) h(
∧

b∈B ∇b) =
∧

b∈B h(∇b) for every B ⊆ A.

(2) (h ⊕ h)(RA) = Rh[A].

(3) For each x ∈ L, st1(h(∇x), (h ⊕ h)(RA)) ≤ h(st1(∇x, RA)).
(4) For each x ∈ L, st2(h(∆x), (h ⊕ h)(RA)) ≤ h(st2(∆x, RA)).

Proof : (1)

h(
∧

b∈B

∇b) = h(∇∧

B) = h(∆∧

B)∗ = h(
∨

b∈B

∆b)
∗

= (
∨

b∈B

h(∆b))
∗ =

∧

b∈B

h(∇b).

(2) The inclusion (h ⊕ h)(RA) ⊆ Rh[A] is trivial.
On the other hand, let (α, β) ∈ Rh[A]. This means that, for every a ∈ A,

α ≤ ∇h(a) or β ≤ ∆h(a), that is, α ≤
∧

a∈A1
∇h(a) and β ≤

∧

a∈A2
∆h(a) for

some partition A1 ∪ A2 of A. Consequently, by (1), α ≤ h(
∧

a∈A1
∇a), and,

on the other hand, β ≤ h(
∧

a∈A2
∆a). But (

∧

a∈A1
∇a,

∧

a∈A2
∆a) ∈ RA thus

(α, β) ≤ (h(
∧

a∈A1

∇a), h(
∧

a∈A2

∆a)) ∈ (h ⊕ h)(RA).

(3) It suffices to check that st1(∇h(x), Rh[A]) ≤ h(st1(∇x, RA)). Let (α, β) ∈
Rh[A] with β ∧ ∇h(x) 6= 0. Then α ≤

∧

a∈A1
∇h(a) and β ≤

∧

a∈A2
∆h(a) for

some partition A1 ∪ A2 of A. But, by (1),
∧

a∈A1
∇h(a) =

∧

a∈A1
h(∇a) =

h(
∧

a∈A1
∇a) so we only need to show that

∧

a∈A1
∇a ≤ st1(∇x, RA) which is

easy since

(
∧

a∈A1

∇a,
∧

a∈A2

∆a) ∈ RA
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and β ∧∇h(x) 6= 0 implies h(
∧

a∈A2
∆a ∧∇x) =

∧

a∈A2
∆h(a) ∧∇h(x) 6= 0, that

is,
∧

a∈A2
∆a ∧∇x 6= 0.

(4) Similar to (3).

4.2. The Fletcher construction is functorial. It is now our goal to
study the functoriality of the pointfree version of Fletcher’s construction
presented by the authors in [8]. We begin by briefly recalling this method of
constructing compatible quasi-uniformities for arbitrary frames.

For any frame L, let AL be a collection of (weakly) interior-preserving
Fletcher covers of L and let EAL

be the filter of WEnt(CL) generated by
{RA | A ∈ AL}.

In general,

{
∧

b∈B

∇b | B ⊆ A, A ∈ AL} ⊆ L1(EAL
) ⊆ ∇L (4.2.1)

and

{
∧

b∈B

∆b | B ⊆ A, A ∈ AL} ⊆ L2(EAL
) ⊆ ∆L. (4.2.2)

If L1(EAL
) = ∇L and L2(EAL

) = ∆L, EAL
is a quasi-uniformity on CL.

Otherwise, it is not; there is, however, an easy way of obtaining a quasi-
uniform frame by modifying EAL

(and CL): denoting by CL′ the subframe
of CL generated by L1(EAL

) ∪ L2(EAL
), each R′

A := RA ∩ (CL′ × CL′) is
a Weil entourage of CL′ and {R′

A | A ∈ AL} generates a transitive quasi-
uniformity E ′

AL
on CL′ such that L1(E ′

AL
) = L1(EAL

) and L2(E ′
AL

) = L2(EAL
)

(see [8] for the details). The quasi-uniform frame (CL′, E ′
AL

) is not, in general,
compatible with L. However, by Lemma 6.2 of [8], when

⋃

AL is a subbase
for L, we have L1(E ′

AL
) = L1(EAL

) = ∇L and the compatibility of E ′
AL

with
the given L is ensured.

Following the classical terminology, we say that a natural kind of covers in
Frm is an indexed class A = (AL)L∈Frm such that:

(1) Each AL is a set of interior-preserving Fletcher covers of L;
(2) For every frame homomorphism h : L → M and every A ∈ AL,

h[A] ∈ AM .

Lemma 1. Let A = (AL)L∈Frm be a natural kind of covers and let h : L → M

be a frame homomorphism. Then:

(1) ∇y

EAL

/1 ∇x implies h(∇y)
EAM

/1 h(∇x).
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(2) ∆y

EAL

/2 ∆x implies h(∆y)
EAM

/2 h(∆x).
(3) h(Li(E

′
AL

)) ⊆ Li(E
′
AM

) (i = 1, 2).

Proof : (1) Consider A1, . . . , An ∈ AL such that st1(∇y,
⋂n

i=1 RAi
) ≤ ∇x.

Then h(st1(∇y,
⋂n

i=1 RAi
)) ≤ h(∇x). But

h(st1(∇y,
⋂n

i=1 RAi
)) = h(st1(∇y, R∧n

i=1 Ai
)) by (4.1.1)

≥ st1(h(∇y), (h ⊕ h)(R∧n

i=1 Ai
)) by Lemma 4.1(3).

Clearly, each Ai being interior-preserving,
∧n

i=1 Ai is also interior-preserving.
Thus, by Lemma 4.1(2), we get

h(st1(∇y,

n
⋂

i=1

RAi
)) ≥ st1(h(∇y), Rh[

∧n

i=1 Ai])

= st1(h(∇y), R∧n

i=1 h[Ai])

= st1(h(∇y),
n

⋂

i=1

Rh[Ai]).

In conclusion, st1(h(∇y),
⋂n

i=1 Rh[Ai]) ≤ h(∇x), which shows that h(∇y)
EAM

/1

h(∇x).

(2) Similar to (1).

(3) Let ∇x ∈ L1(E ′
AL

) = L1(EAL
) ⊆ ∇L. Then ∇x =

∨

{∇y | ∇y

EAL

/1 ∇x}
and, by (1), it follows that

h(∇x) =
∨

{h(∇y) | ∇y

EAL

/1 ∇x}

≤
∨

{θ ∈ CL | θ
EAM

/1 h(∇x)}

≤ h(∇x).

Hence h(∇x) =
∨

{θ ∈ CL | θ
EAM

/1 h(∇x)}, which means that h(∇x) ∈
L1(EAM

) = L1(E ′
AM

).

It follows immediately from Lemma 1 that h : CL → CM defines, by
restriction, a biframe map

h : (CL′,L1(E
′
AL

),L2(E
′
AL

)) → (CM ′,L1(E
′
AM

),L2(E
′
AM

)).
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Statement (2) of Lemma 4.1 is also true for the restricted entourages R′
A =

RA ∩ (CL′ × CL′):

Lemma 2. Let A = (AL)L∈Frm be a natural kind of covers and let h : L → M

be a frame homomorphism. Then, for each A ∈ AL, (h ⊕ h)(R′
A) = R′

h[A].

Proof : The inclusion (h ⊕ h)(R′
A) ⊆ R′

h[A] is trivial.

Let (α, β) ∈ R′
h[A]. This means that, for every a ∈ A, α ≤ ∇h(a) or β ≤

∆h(a), that is, α ≤
∧

a∈A1
∇h(a) and β ≤

∧

a∈A2
∆h(a) for some partition A1∪A2

of A. Consequently, by Lemma 4.1(1), α ≤ h(
∧

a∈A1
∇a), and, on the other

hand, β ≤ h(
∧

a∈A2
∆a). But (

∧

a∈A1
∇a,

∧

a∈A2
∆a) ∈ R′

A since it belongs to
RA and, by (4.2.1) and (4.2.2),

∧

a∈A1
∇a ∈ L1(E ′

AL
) and

∧

a∈A2
∆a ∈ L2(E ′

AL
).

Thus
(α, β) ≤ (h(

∧

a∈A1

∇a), h(
∧

a∈A2

∆a)) ∈ (h ⊕ h)(R′
A).

Proposition. h is a uniform homomorphism from (CL′, E ′
AL

) to (CM ′, E ′
AM

).

Proof : Let E ∈ E ′
AL

. Then
⋂n

i=1 R′
Ai

⊆ E for some A1, . . . , An ∈ AL, from

which it follows that (h⊕h)(
⋂n

i=1 R′
Ai

) ⊆ (h⊕h)(E). On the other hand, by
Lemma 2,

(h ⊕ h)(
n

⋂

i=1

R′
Ai

) =
n

⋂

i=1

(h ⊕ h)(R′
Ai

) =
n

⋂

i=1

R′
h[Ai]

∈ E ′
AM

.

Hence (h ⊕ h)(E) ∈ E ′
AM

.

This defines a (transitive) functor QA : Frm → QUFrm.

4.3. When does the Fletcher construction induce a T -section? Of
course, we are interested in the case when, for every L, QA(L) is a quasi-
uniform frame compatible with L, that is, when QA is a T -section. First, we
need to recall the following from [8]:

Let E be a transitive quasi-uniformity on a subframe CL′ of CL, compatible
with L, and consider a transitive subbase S of E . Since each E ∈ S is
transitive,

sti(θ, E)
E
/i sti(θ, E) for every θ ∈ CL′ (i = 1, 2).

Therefore, st1(θ, E) ∈ L1(E) and st2(θ, E) ∈ L2(E). So, by the isomorphism
L1(E) ∼= ∇L, each st1(θ, E) corresponds to ∇E[θ] for some element E[θ] ∈ L.
Set CovE = {E[θ] | (θ, θ) ∈ E}.
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Proposition. Let E be a transitive quasi-uniformity on a subframe CL′ of
CL, compatible with L, and consider a transitive subbase S of E. Then:

(1) Each CovE is an interior-preserving cover of L.
(2)

⋃

E∈S CovE is a subbase for L.

Proof : (1) Proposition 7.3 of [8].

(2) Proposition 7.2 of [8].

When E is the quasi-uniformity E ′
AL

generated by a family AL of (weakly)
interior-preserving Fletcher covers of L, constructed in 4.2, we have:

Lemma. Let AL be a family of (weakly) interior-preserving Fletcher covers
of L. If

⋃

{CovR′
A | A ∈ AL} is a subbase for L then L1(E

′
AL

) = ∇L.

Proof : Let x ∈ L. By hypothesis, we may write

x =
∨

i∈I

(R′
Ai

1
[θ1] ∧ . . . ∧ R′

Ai
ni

[θni
])

for some Ai
j ∈ A and (θj, θj) ∈ R′

Ai
j

(i ∈ I, j ∈ {1, . . . , ni}). Then

∇x =
∨

i∈I

(∇R′

Ai
1
[θ1] ∧ . . . ∧∇R′

Ai
ni

[θni
]) =

∨

i∈I

(st1(θ1, R
′
Ai

1
) ∧ . . . ∧ st1(θni

, R′
Ai

ni

)).

So, in order to show that ∇x ∈ L1(E ′
AL

) it suffices to check that, for each i,

st1(θ1, R
′
Ai

1
) ∧ . . . ∧ st1(θni

, R′
Ai

ni

)
E ′
AL

�1 ∇x.

For each i, take
⋂ni

j=1 R′
Ai

j

∈ E ′
AL

. Then, by properties (S3) and (S4),

st1(st1(θ1, R
′
Ai

1
) ∧ . . . ∧ st1(θni

, R′
Ai

ni

),

ni
⋂

j=1

R′
Ai

j
)

≤
ni
∧

j=1

st1(st1(θ1, R
′
Ai

1
) ∧ . . . ∧ st1(θni

, R′
Ai

ni

), R′
Ai

j
)

≤
ni
∧

j=1

st1(st1(θj, R
′
Ai

j
), R′

Ai
j
) ≤

ni
∧

j=1

st1(θj, R
′
Ai

j
◦ R′

Ai
j
)

=

ni
∧

j=1

st1(θj, R
′
Ai

j
) ≤ ∇x.
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The following statements are a reformulation of results in [8].

Theorem. Let AL be a set of covers of a frame L. Then {R′
A | A ∈ AL}

is a subbase for a transitive quasi-uniformity on the subframe CL′ of CL,
compatible with L, if and only if AL is a set of weakly interior-preserving
Fletcher covers of L such that

⋃

{CovR′
A | A ∈ AL} is a subbase for L.

Proof : Let E ′
AL

denote the quasi-uniformity generated by S = {R′
A | A ∈

AL}. Since each R′
A is an entourage, each A ∈ AL is a Fletcher cover. By

(2) in the Proposition,
⋃

{CovR′
A | A ∈ AL} is a subbase of L. Finally, each

A ∈ AL is weakly interior-preserving. Indeed, by Lemma 6.1.1 (a) of [8],

st1(
∧

b∈B

∇b, R
′
A) ≤ st1(

∧

b∈B

∇b, RA) =
∧

b∈B

∇b

for every B ⊆ A, thus
∧

b∈B ∇b ∈ L1(E
′
AL

) ∼= ∇L, by the compatibility of the
quasi-uniformity.

The converse is obvious: the quasi-uniformity E ′
AL

of 4.2, which as {R′
A |

A ∈ AL} as a subbase, is compatible with L, by the Lemma.

Corollary. Let A be a natural kind of covers. The induced transitive functor
QA is a T -section if and only if, for each frame L,

⋃

{CovR′
A | A ∈ AL} is

a subbase for L.

5. The construction of all transitive T -sections

Finally, with the help of results from [8], we may conclude that the functor
QA induced by Fletcher’s construction describes all transitive T -sections.

We say that a natural kind of covers A = (AL)L∈Frm is an adequate kind of
covers if, for each frame L,

⋃

AL is a subbase for L. Then we have:

Theorem 1. For each adequate kind of covers A, the induced transitive
functor QA is a transitive T -section.

Proof : By Proposition 4.2, QA is a transitive functor. The conclusion that it
is a T -section follows immediately from Theorem 6.3 of [8], which asserts that,
for every nonempty family AL of weakly interior-preserving Fletcher covers
of L such that

⋃

AL is a subbase for L, E ′
AL

is a transitive quasi-uniformity
on CL′, compatible with L.

Then, by Proposition 3.5, when QA is a T -section, each QA(L) is isomor-
phic to the Skula biframe so CL′ = CL and E ′

AL
= EAL

, that is, QA(L) =
(CL, EAL

). More generally, for any T -section F , also by Proposition 3.5,
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BF (L) ∼= (CL,∇L, ∆L), and we may assume, to simplify notation, that
F (L) = (CL, EF (L)).

Theorem 2. Let F be a transitive T -section. For each frame L, let

AL = {A | A interior-preserving cover of L, RA ∈ EF (L)}.

Then A = (AL)L∈Frm is an adequate kind of covers such that QA = F .
Moreover, A is the largest adequate kind of covers whose induced functor is
the given F .

Proof : We prove that A is adequate. Trivially each A ∈ AL is an interior-
preserving Fletcher cover of L. Let h : L → M be a frame homomorphism.
Then, for each A ∈ AL, RA ∈ EF (L) thus (h ⊕ h)(RA) ∈ EF (M). By Lemma
4.1(2), this means that Rh[A] ∈ EF (M). Consequently, h[A] ∈ AM .

Since {CovRA | A ∈ AL} ⊆ AL, it follows from Proposition 4.3(2) that
⋃

AL is a subbase for L. The remaining claim follows from Theorem 7.4.2(a)
of [8] that asserts that for any compatible transitive quasi-uniformity E on
CL, AL = {A | A ∈ CovL, RA ∈ E} is the largest set of covers of L that
induces E .

Examples. Many kinds of interior-preserving Fletcher covers induce transi-
tive T -sections. The following are examples of adequate kinds of covers and
of their induced transitive T -sections.

kind A of covers Transitive T -section QA

Interior-preserving Fletcher covers FT : “Fine transitive section”
Finite F : “Frith section”
Locally finite LF : “Locally finite section”
Well-monotone W: “Well-monotone section”
Spectra SC: “Semi-continuous section”

Indeed, they are examples of collections AL of interior-preserving Fletcher
covers such that

⋃

AL is a subbase of L, as we proved in the last section of
[8], thus adequateness follows from the following result.

Proposition. Let h : L → M be a frame homomorphism. For every locally
finite (resp. spectrum, well-monotone) cover A of L, h[A] is a locally finite
(resp. spectrum, well-monotone) cover of M .
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Proof : (1) Let A be a locally finite cover, that is, a cover for which there
exists a cover C such that Ac := {a ∈ A | a∧ c 6= 0} is finite for every c ∈ C.
Then h[C] is a cover of M and, for every c ∈ C, h[A]h(c) ⊆ {h(a) | a ∈ Ac},
since h(a) ∧ h(c) 6= 0 implies a ∧ c 6= 0. Thus h[A] is locally finite.

(2) In case A = {an | n ∈ Z} is a spectrum cover of L, that is, a cover of L

satisfying an ≤ an+1, for each n ∈ Z, and
∨

n∈Z
∆an

= 1, then, immediately,
h[A] is a cover of M , h(an) ≤ h(an+1), for each n ∈ Z, and

∨

n∈Z
∆h(an) =

∨

n∈Z
h(∆an

) = h(
∨

n∈Z
∆an

) = h(1) = 1.

(3) Finally, the case when A is well-monotone, that is, well-ordered by the
partial order of L, is obvious.
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