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1. Introduction

The method of constructing compatible quasi-uniformities for an arbitrary
frame, introduced in [8], naturally raises the question of its functoriality.
The purpose of the present paper is to address this question, together with
a unified treatment of functorial quasi-uniformities on frames.

To put this in perspective, we recall that a topological space (X,7) is
uniformizable if there exists a uniformity £ on X such that the correspond-
ing induced topology 7 (£) coincides with the given topology 7. As it is
well-known, the topological spaces that are uniformizable are precisely the
completely regular ones. This result has a perfect analog in the two-sided
theory of quasi-uniform spaces (where they are considered over their induced
bitopologies): a bitopological space (X,7;,7s) is quasi-uniformizable, i.e.
there exists a quasi-uniformity £ on X such that 7(€) = 7; and T (E71) = T,
if and only if it is pairwise completely regular. However, in the one-sided the-
ory, where a quasi-uniformity is considered over a single underlying topology,
the resemblance with the symmetric case is over and one gets a striking re-
sult: every topological space is quasi-uniformizable, that is, every topological
space (X, T) gives rise to a (transitive) quasi-uniformity £p(7°) on X which
generates as one of its topologies the given topology 7. This result was
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firstly proved by Pervin [14] and Ep(7) is nowadays called the (Csdszdr-
)Pervin quasi-uniformity. So, every topological space (X,7) gives rise to a
bitopological space (X, T (Ep(T)), T (Ep(T)1)), where T(Ep(T)) = T. The
join T(Ep(T)) VT (Ep(T)™!) of the two topologies is called the Skula topol-
ogy and the above bitopological space is referred to as the Skula bitopological
space.

Let T denote the forgetful functor from the category QUnif of quasi-uniform
spaces and uniformly continuous maps to the category Top of topological
spaces and continuous maps which assigns to each (X,€&) € QUnif its first
topology 7T (£). A functorial quasi-uniformity [4] on the topological spaces
is a T-section, that is, a functor F' : Top — QUnif such that TF = 1.
In other words, F' assigns a compatible quasi-uniformity to each topological
space in such a way that continuous maps become uniformly continuous.

In [4], Britmmer proved that the Pervin quasi-uniformity defines the coars-
est T-section Cj : Top — QUnif. In [18], Salbany proved that, for any
T-section F', the join of the two topologies generated by the quasi-uniformity
of F(X,T) is precisely the Skula topology T (Ep(7T)) V T (Ep(T)71).

Transitive quasi-uniform spaces form an important subcategory of QUnif
and they play a role almost as general as that of quasi-uniform spaces in
the study of topological properties. The most striking aspect of transitive
functorial quasi-uniformities, as Brimmer proved in [6], is that they can all
be obtained by a construction due to Fletcher [9], considering the interior-
preserving open covers of their associated topological spaces.

The present paper is devoted to placing these results in a pointfree con-
text. It is part of a larger program started in [8], motivated by Problem
3 of Briimmer [7], asking for a pointfree formulation of the classical the-
ory of functorial transitive quasi-uniformities. After recalling some basics
on frames and quasi-uniform frames (Section 2), we study general functo-
rial frame quasi-uniformities (Section 3). In the remaining sections we apply
the general method of constructing compatible transitive quasi-uniformities
on an arbitrary frame, introduced in [8], to describe all functorial transitive
quasi-uniformities.



FUNCTORIAL QUASI-UNIFORMITIES ON FRAMES 3

2. Preliminaries

2.1. Frames and biframes. Pointfree topology is part of the study of
frames (or locales), that is, complete lattices L satisfying the infinite dis-

tributive law
J:/\\/S:\/{x/\S]SES}

for every x € L and every S C L. This notion generalizes both the lattice
of open sets of a topological space and that of a Boolean algebra. A frame
homomorphism f : L — M is a map between frames which preserves finite
meets (including the top element 1) and arbitrary joins (including the bottom
element 0). The corresponding category will be denoted by Frm. If L is a
frame and x € L then

x*::\/{aeL|a/\:)::O}

is the pseudocomplement of x. Obviously, if x V x* = 1, x is complemented
and we denote the complement x* by —x. Note that, in any frame, the first

De Morgan law
V) = At

iel iel
holds but for infima we have only the trivial inequality

iel iel

Recall also that a biframe is a triple (Lg, L1, L2) where L; and Ly are
subframes of the frame Ly, which together generate Lg. A biframe homo-
morphism, f : (Lo, L1, Ly) — (Mo, My, M), is a frame homomorphism
f : Ly — My which maps L; into M; (i = 1,2) and BiFrm denotes the
resulting category.

Further, a biframe (L, L1, L) is strictly zero-dimensional [1] if it satisfies
the following condition or its counterpart with L; and Lo reversed: each
x € Ly is complemented in Ly, with complement in Ly, and Lo is generated
by these complements. Along this paper, we always assume that strictly
zero-dimensional biframes satisfy this condition, not its counterpart with L,
and L» reversed.

For general facts concerning frames we refer to Johnstone [12] or Vickers
[19]. Additional information concerning biframes may be found in [1] and

3]



4 M. J. FERREIRA AND J. PICADO

2.2. The Skula biframe Sk(L) of a frame L. The lattice of frame
congruences on L under set inclusion is a frame, denoted by €L. A good
presentation of the congruence frame is given by Frith [11]. Here, we shall
need the following properties:

(1) For any z € L, V, and A, are, respectively, the congruences defined
by {(a,b) € Lx L|aVae=0bVa}and {(a,b) € LXxL|aNz=0bAz}.

(2) Each V, is complemented in €L with complement A,.

(3) VL ={V, | x € L} is a subframe of €L. Let AL denote the subframe
of €L generated by {A, | x € L}. Since 0 = \/{V, AA, | (z,y) €
0,z <y}, for every 6 € €L, the triple (€L, VL, AL) is a biframe (usu-
ally referred to as the Skula biframe of L [11]). This is the analogue,
for frames, of the Skula bitopological space and it is, clearly, a strictly
zero-dimensional biframe.

(4) The correspondence x — V, defines an epimorphism and a monomor-
phism V : L — €L and gives an isomorphism L — VL, whereas the
map x — A, is a dual poset embedding L — AL taking finitary meets
to finitary joins and arbitrary joins to arbitrary meets.

The following result from [11] will be helpful in the sequel.
Lemma. (J. Frith [11]) Let h : L — M be a frame homomorphism. If each

element of hIL] is complemented then there exists a unique frame homomor-
phism h such that the diagram

L %er

=

h y
M
commutes.
Proof: Clearly, if there exists such an h, we must have
hV,) = h(z) (2.2.1)
h(A,) = h(=V,) = —h(z). (2.2.2)
Then, for any 6 € €L,

= \/{=h(z) Ab(y) | (z,y) € 0,2 < y}.
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This defines a frame homomorphism h : €L — M (for a proof see [11],
Theorem 5.17). The uniqueness follows from the fact that ¥V is an epimor-
phism. [

For any frame homomorphism h : L — M, consider the map h := V- h

L—¢ (2.2.3)

|
hl v‘/h,
M Vo cM
given by the Lemma. Clearly, by (2.2.1) and (2.2.2), h is a biframe map

Sk(L) — Sk(M). We refer to the functor

Sk : Frm — BiFrm
L — Sk(L)
(h:L—-M) — (E:Sk(L)—»Sk:(M))

as the Skula functor.

2.3. Weil entourages. For a frame L consider the frame D(L x L) of all
non-void decreasing subsets of L x L, ordered by inclusion. The coproduct
L & L will be represented as usual (cf. [12]), as the subset of D(L x L)
consisting of all C-ideals, that is, of sets A for which

{z}xSCA = (z,\/9eA

and
Sx{ypcA = (\/SyeA

Since the premise is trivially satisfied if S = (), each C-ideal A contains O :=
{(0,a),(a,0) | @ € L}, and O is the bottom element of L& L. Obviously, each
r®y =] (r,y) U O is a C-ideal. The coproduct injections v} : L — L & L
are defined by ul'(r) = x®1 and uk(x) = 1®x so that v dy = ul(z) Aul(y).

For any frame homomorphism h : L. — M, the definition of coproduct
ensures us the existence (and uniqueness) of a frame homomorphism h @ h :
L®L— M@ M such that (h @ h)-uF =uM-h (i=1,2).

A Weil entourage [15] on L is just an element E of L & L for which \/{z €
L | (xz,z) € E} = 1. The collection WEnt(L) of all Weil entourages of L
with the inclusion is a partially ordered set with finitary meets (including a
unit 1 = L@ L).
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If E and F are elements of L @& L then
EoF :=\/{z®y|3z€ L\{0}: (z,2) € E, (z,y) € F}.
A Weil entourage F is called transitive if Eo E = F.
2.4. Quasi-uniform frames. Let £ C L@ L and =, y € L. If
Eo(x®x) Cydy for some E € &,

. & .
we write x <; y. Similarly, we define

xqggyz(:):@x)oEgy@y, for some F € €£.

A filter € of WEnt(L) is a quasi-uniformity on the frame L if it satisfies
the following conditions:

(QU1) For every E € &€ there exists F' € € such that F o F' C E.
(QU2) Forevery z € L,z =\/{ye L |y qgl r}, where € := EUEL.

Note that, since € is a symmetric filter, the partial orders 21 and ilg do
coincide.

A quasi-uniform frame is just a pair (L,E) where L is a frame and & is
a quasi-uniformity on L. If (L,&;) and (M, &) are quasi-uniform frames,
f (L&) — (M, &) is a uniform homomorphism if f : L — M is a frame
homomorphism such that (f @ f)(E) € &, for all E € &;. The resulting
category is denoted by QUFrm.

A quasi-uniform frame (L, &) is called transitive if £ has a base consisting of
transitive entourages. For more information on transitive quasi-uniformities
we refer to [13].

B B
We note further that the partial orders <; and <y induce the following
important subframes of L:

Li(E) = {x eL|x= \/{y €L nglx}}

g
La(E) = {a; eLle=\/{yel| yqﬂ}}.
It is worth pointing that the admissibility condition (QU2) is equivalent to
saying that the triple (L, £1(£), L2(€)) is a biframe [16]. This is the pointfree
expression of the classical fact that each quasi-uniform space (X, ) induces

a bitopological structure (71(£), 72(€)) = (T (€),T7(£71)) on X.

&
We also note that <; and < may be characterized in the following way [17]:
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o <§1 y if and only if there exists £ € £ such that
sti(z, E) : \/{a€L| (o, ) € E,fNx#0} <vy; (2.4.1)

o <12 y if and only if there exists E € £ such that
sto(z, E) : \/{ﬁGL| (a,B) € E,anz #0} <. (2.4.2)
The elements st;(x, E), i = 1,2, satisfy the following properties, for every
z,y € L [15]:
(S1) z <y = sti(z, E) < sti(y, E), for every E € L & L;
(S2) For every Weil entourage E, x < sti(x, E) A sto(z, E);
(S3) For every E,F € L& L, sti(x, ENF) < sti(x, E) A sti(z, F);
(S4) For every E,F € L® L,

sty(sty(z, E), F) < sti(x, F o E)
and
sto(sta(x, E), F) < sto(z, E o F);

(S5) For every quasi-uniformity &, st;(z, E) < y for some E € £ implies
the existence of z € £;(€), j # i, such that z Az =0and zVy = 1;

(S6) For every E € L& L, sti(\/;x;,E) =\ sti(zj, E);

(S7) For every E € L @ L and every frame homomorphism h : L — M,

sti(h(z),(h ® h)(E)) < h(sti(z, E)).

3. Functorial compatible quasi-uniformities

3.1. The forgetful functor 7" : QUFrm — Frm. For each quasi-uniform
frame (L, &) consider the first part £1(€) of the biframe (L, L1(E), L2(E))
associated to (L,€). This correspondence defines a forgetful functor 7' :
QUFrm — Frm. Indeed, for any uniform homomorphism A : (L,&;) —

(M, &), h maps L1(&) 1nto L1(&): forany x € L1(&1), z=\{y e L |y 211
z},so h(z) = V{h(y) |y 41 x}; but, by property (S7), h(y) % h(z) whenever
Yy 5115 z (i =1,2), thus
&
hiz) = \[{hy) |y <z}

\/{h(y) | hly) & hix)}

IN
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< \{z e M|z h(x)} < h(x)

and, consequently, h(z) € £1(&).
Note that, similarly, » maps £2(&) into L2(&2) and thus A is even a biframe
map from (L7 [,1(51), [:2(51)) into (M, 51(52)7 [,2(52))

3.2. The Frith quasi-uniformity. Let (Lg, L1, Ls) be a strictly zero-
dimensional biframe. For any a € L let

E,=(a® 1)V (1® —a).

This is obviously a transitive Weil entourage of Lg. It is also worth pointing
that, since (a®1)U(1®a) is already a C-ideal, E, is simply (a®1)U(1®—a).
The following result, which is a particular case of Theorem 5.5 of [13], is of
central importance in the sequel.

Theorem. (Hunsaker and Picado [13]) For any strictly zero-dimensional bi-
frame (Lo, L1, La), the family S = {E, | a € L1} is a subbase for a transitive,
totally bounded, quasi-uniformity F on Lo, for which L;(F) = L; (i =1,2).
O

The quasi-uniformity F is called the Frith quasi-uniformity on L.

3.3. The functor C; : Frm — QUFrm. Following [8], we say that a quasi-
uniformity £ on €L is compatible with L whenever £1(£) = VL = L. More
generally, we say that a quasi-uniformity £ on a frame M is compatible with
L if £1(€) = L. For any frame L, the Skula biframe Sk(L) is clearly strictly
zero-dimensional. Therefore, by Theorem 3.2, {Ey, | a € L} is a subbase for
a transitive, totally bounded, quasi-uniformity F¢z, on €L, compatible with
L.

Remark. Note that this is the pointfree counterpart of the Pervin quasi-
uniformity: starting with a frame L we have a quasi-uniformity on €L which
generates, as its first subframe, an isomorphic copy of the given frame L.

Let us show that the correspondence L —— (€L, F¢r) defines a functor
Ci : Frm — QUFrm. For any frame homomorphism h : L — M, take the
map h given by (2.2.3). It suffices to check that

h: (€L, Fer) — (€M, Ferr)
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is a uniform homomorphism, which is easy:

(h@h)(Ey,) = (hoh) (V. @1)V(Rah) (18 A,)
= (h(Va) @ h(1)) V (h(1) © h(A,))
- (vh(a) S 1) \ (1 @ Aha ) S f{]v[
In conclusion,
Ci: Frm — QUFrm
L — (CL, Fer)

(h:L— M) — (h:(CL, Fer) — (EM, Ferr))

is a functor such that TCi(L) = L£1(Fer) = VL = L, that is, TC{ = lgm.
This suggests the following definition.

3.4. T-sections. We say that a functor F' : Frm — QUFrm is a section
of T' (briefly, T-section) if TF = 1gm, that is, if there is a natural isomor-
phism iz : 1gm = TF. In other words, T-sections correspond exactly to
quasi-uniformities on frames which are functorial in the sense that any frame
homomorphism L — M is uniform relative to the quasi-uniformities assigned
to L and M respectively.

If I and GG are T-sections, we say that F'is coarser than G, written F' < G,
if there is a natural transformation 7 : F' = G such that T(;L)'iF(L) = igr) for
every frame L. This is a reflexive and transitive relation, that is, a preorder,
and so it can be made a partial order in the standard way.

A T-section F' is transitive if F(L) is a transitive quasi-uniform frame for
every frame L.

3.5. T-sections induce strictly zero-dimensional biframes. Let F' be
a T-section and let F'(L) = (Fy(L), Ep(ry) for each frame L. We denote by

Br(L) = (Fo(L), L1(Erry), L2(Er(r)))

the biframe associated to the quasi-uniform frame F'(L) and by B the cor-
responding functor Frm — BiFrm.

Let 3 denote the three-element frame {0 < a < 1}. It is clear that €3 is
just the Boolean algebra with four elements
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It is also an easy exercise to conclude that €3 has a unique quasi-uniform
structure, generated by the entourage Ey,_ . We refer to it as the Sierpinski
quasi-uniform frame.

Lemma. For each T-section F, Br(3) = Sk(3).

Proof: Clearly £1(Epm)) =3 = V3. Let 2 = ip@3)(a) denote the non-trivial
element of the frame £(Ep(3)). Since

Err)
v=\/{y€Lilérm) |y @ =}

and L1(Ep(z)) = 3, then = 52(13) z. By (S5), this means that there is some
b € Ly(Epes)) such that bAx =0 and bV 2 = 1. This shows that £1(Ep)) is
complemented by elements of Lo(Ep3)).

Now consider y € Lo(Ep(z)). Similarly

£F3
y= \/{Z € Ly(Ep)) | 2 <1(2) y}

and, for each such z, there exists w € L1(Ep(3)) satisfying 2 A w = 0 and
yVw = 1. We know already that w has a complement —w € L3(Ep(3)). This
complement satisfies z < —w < y thus y is a join of complements of members
of £1(Er(3)). In conclusion Br(3) is a strictly zero-dimensional biframe. This
implies that Ly(Epe3)) = {0, ~z,1} = A3, ]

More generally, we have the following important result:
Proposition. For each T-section F, Bp(L) = Sk(L).

Proof: First, let us show that Bp(L) is strictly zero-dimensional, that is,

(1) L1(Ep(r)) is complemented with complements in Lo(Ep(r));
(2) Every element of Ly(Ep(z)) is a join of complements of members of

Li(Err).
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(1) For each a € L consider f, : 3 — L defined by f,(a) = a. Since the
diagram

3 o L (3.5.1)

iF@3) l liF(L)

El(gF(?;))]W)El(EF(L))

commutes, we have ipy(a) = (TF(fa) - ipm)(a) = TF(fa)(x). By the
Lemma we know that ip@s) () = 2 is complemented with complement in
L5(Ep)). Then, obviously, TF(f,)(x) has a complement T'F(f,)(—x). Since
ip(z) is an isomorphism we may conclude that every element of £1(Ep(z)) has
a complement in Lo(Ep(r)).

(2) Let y € Lo(Epry). For each z € Lo(Ep(r)) satisfying z gg;) y there exists
w € L1(Ep(ry) such that zAw = 0 and yVw = 1. By (1), w is complemented
with complement in £5(Ep(r)). Obviously z < —w < y. The conclusion now
follows from the fact that

gFL
y=\/{z € La(Erw)) | 2 Syl

This shows that Bp(L) is strictly zero-dimensional.

By the definition of T-section, £i(Ep)) = L = VL. Since Frm is an
algebraic category, it has presentations by generators and relations. By what
we have seen above, both £2(Ep()) and AL are models for the presentation
Frm < G | R >, for generators

G = {—|x | x € El(gF(L))}
and relations
“(wAy)=-zV-y  (zy € Li(Erw))
(Vi) = Nwi) (25 € Li(Erwy)).
Therefore Fy(L) = L1(Epr)) V L2(Epry) = €L and Bp(L) = Sk(L). ]

3.6. Properties of T-sections. Let I’ be a T-section. By Theorem 3.2, we
may endow Fy(L) with the Frith quasi-uniformity Fp,(z), which is compatible
with Lg. This transitive quasi-uniformity is coarser than the original quasi-
uniformity Epr):

Lemma. Fg, 1) C Ep(r).
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Proof: We need to show that, for each a € L£1(Ep(r)), Eu € Ep(ry. For this,
consider the frame homomorphism f, : 3 — L defined by f,(«a) = i}%L)(a).
By Lemma 3.5, Br(3) = Sk(3) so F(3) is necessarily isomorphic to the
Sierpiiski quasi-uniform frame. On the other hand, F(f,) : F'(3) — F(L) is
a quasi-uniform homomorphism thus (F(f.) ® F(fa))(Ev.) € Epr)- By the
commutativity of diagram (3.5.1),

Then F(fa)(As) = —a since F(fo)(Aa) Va = (fa)(Aw) V F(fa)(Va
g(fa)(l) =1and F(fu)(Aa) Na = (fa)(AOz) A F(fa)(Va) = F(fa)(
(F(fa) D F(fa))(EVQ) = (F(fa)(voz) D 1) \4 (1 @ F(fa)(Aoz))
= (a®1)V(1®a)
- £,
and E, € Ep(r), as required. [
By Lemma 3.2 and Proposition 3.5, for each frame L there exists a biframe

isomorphism ip(z) : Sk(L) — Bp(L) such that the diagram

Vi

L ¢cL
iP(L) J{ ,/
£ (SF(L))/ F(L)
L
Fy(L)

comimutes.

Proposition. Let F' be a T-section. Then, for each frame L, we have:
(1) ipw) : C{(L) — (Fo(L), Fryr)) is a uniform isomorphism;
(2) ipry : C{(L) — F(L) is a uniform homomorphism.

Proof: (1) We have
(irw) ® i) (Bv,) = (ipw) @ ipw)(Va® 1)V (ipg) @ ipe) (1 © Ad)

= (EF (Vo) @ 1) V(1@ ipry(Ad))
= (ir@y(@) ®1)V (1® —ip@(a))
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= E;

ipy(a ) € f Fo(L
(2) It follows immediately from (1) and Lemma 3.6. ]

We end this section with the pointfree version of the classical result that
the Pervin quasi-uniformity defines the coarsest T-section [4].

Theorem. C} is the coarsest section of T'.

Proof: Let F be a T-section. It suffices to verify that the maps EF(L) of (2)
in the Proposition define a natural transformation ip : C; = F satisfying
T(ipr)) - Vi =ip) for each frame L.

Let h: L — M be a frame map. We need to show that the diagram

F(L)
Ci(L )H F(L)
Ci(h) _ lF
Ci (M) ™ F(M)
commutes. Let § € €L. Then

F(h) -ipp(0) = F(h) iru) \/{A AV | (a,b) € 6,a < b})

= F(h)(\/{irw(Ad) Aipm)(Vs) | (a,b) € 0,a < b})
= F(h )(\/{w >(a> Nirp(b) | (a,b) € 0,a < b})
= \/{=F(W)(irw)(@) A F(h)(ipwy(b)) | (a,b) € 6,a < b}

= \/{~iran(h(a)) Aipan(h(®)) | (a,b) € 0,a < b}.
On the other hand,
EF(M) Ci(h)(0) = EF(]W)(W<\/{A& AV | (a,b) € 0,a < b}))
= Gron(\V{-2h@ A Vig) | (a,b) € 6,0 < b})
= VA{iran(Bnw) Adran(Vae) | (a,b) € 6,a < b},
= \/{=iran(h(a)) Aipan(h(®)) | (a,b) € 6,a < b}.
Thus %F(M) -Ci‘(h)(@) = F<h) ‘5F(L)(9)-

Trivially, (T(ipr)) - Vi)(a) =ipr)(Va) = ipu(a), for every a € L. [ ]
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4. Functorial aspects of the Fletcher construction

4.1. Interior-preserving and Fletcher covers. We recall from [8] that
a cover A of L is interior-preserving if, for each B C A,

\/ Ay = App.
beB
More generally, A is weakly interior-preserving if, for each B C A,
/\ Vb = V/\ B-
beB
Further, a cover A is a Fletcher cover whenever
Ry=[(Ve@ 1) U1 DA,
acA
is a Weil entourage of €L or, equivalently,
\/{( /\ Vo) A ( /\ A,) | AiUAy = A} =1 ([8], Proposition 4.1).
acA, a€Asy

Examples of interior-preserving Fletcher covers are finite covers, locally
finite covers, spectra and well-monotone covers (see [8] for the details).
It is also worth pointing out that, for any covers A, B of L,

RaN Rp = Ranp ([8], Lemma 4.1) (4.1.1)

For the remainder of the paper we shall denote the entourage By, = (V,®
1)U (1 & A,) simply by E, and, for each frame homomorphism h: L — M,
we denote by h : €L — €M the morphism given by (2.2.3). Note that
(h 52 h)(Ea) = E/L(a)~

Interior-preserving covers and Fletcher covers behave well with respect to
morphisms:

Proposition. Let h : L — M be a frame homomorphism. Then:

(1) For every Fletcher cover A of L, h[A] is a Fletcher cover of M;
(2) For every interior-preserving cover A of L, h|A] is an interior-preser-
ving cover of M.

Proof: (1) Since R4 is a Weil entourage of L, (E_@ h)(Ry4) is a Weil entourage
of M. But, clearly, (h® h)(Ra) € Nyealh @ h)(Ea) = Nuca By = Rija):
Thus Ry 4 is also a Weil entourage of M.
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(2) For each B C A we have, using the hypothesis,
\ Auey = V(A =B\ Ay) = B(ApB) = Aups) = Apus).

beB beB beB
The reverse inequality \/;cp App) < Appp) is always true. [

In general h does not preserve arbitrary meets. But, clearly, h( A,z As) =
Noep h(Ap), for any B C L. Moreover:

Lemma. Let A be an interior-preserving cover of L. Then:

(1) E(/\beB V) = /\beBE(vb) Jor every B C A.

(2) (h@h)(Ra) = Ry _
(3) For each x € L, sti(h(Vy), (h @ h)(Ra)) < h(st1(Va, Ra))
(4) For each x € L, sta(h(Ay), (h @ h)(Ra)) < h(sta(Ay, Ra))
Proof: (1)
A V) = W(Vpp) =hAp5)" =R\ &)
beB beB
= (V) = \ h(Vy).
beB beB

(2) The inclusion (k@ h)(Ra) € R4 is trivial.

On the other hand, let («, 3) € Rjy4. This means that, for every a € A,
a < Vi) or B < Ay, that is, @ < A,y Vi) and 8 < Ay, Aig) for
some partition A; U Ap of A. Consequently, by (1), & < h(A,c4, Va), and,
on the other hand, § < h(A,c4, Aa). But (Asea, Vas Asen, Do) € Ra thus

< (R N\ V), h( N\ Ad)) € (h @ R)(Ra).

acA, a€Asy

(3) It suffices to check that st1(Vp(), Rypa) < h(st1(Va, Ra)). Let (o, 3) €
Ry with A Vi) # 0. Then a < Ay, Vi) and 8 < /\aEAg_Ah(a) for
some partition Ay U Ay of A. But, by (1), Ay, Vi = Nsea, MVa) =
h(A4ea, Va) so we only need to show that A ., Vi, < st1(V,, Ra) which is

easy since
(A Vo /\ Ad) € Ra

acAy acAs



16 M. J. FERREIRA AND J. PICADO

and 3 A V) # 0 implies E(/\aeAQ AuAVe) = N, D) N Vi) # 0, that
is, Ngea, Da A Vi #0.

(4) Similar to (3). ]

4.2. The Fletcher construction is functorial. It is now our goal to
study the functoriality of the pointfree version of Fletcher’s construction
presented by the authors in [8]. We begin by briefly recalling this method of
constructing compatible quasi-uniformities for arbitrary frames.

For any frame L, let Ay be a collection of (weakly) interior-preserving
Fletcher covers of L and let £4, be the filter of W Ent(€L) generated by

{RA | A€ AL}
In general,
{A\Vo|BCAA€A}CLi(Ea,) CVL (4.2.1)
beB
and
{\ 2| BCAA€EAL}C Ly(Es,) CAL (4.2.2)
beB

If £1(€a,) = VL and Lo(€4,) = AL, &4, is a quasi-uniformity on €L.
Otherwise, it is not; there is, however, an easy way of obtaining a quasi-
uniform frame by modifying £4, (and €L): denoting by €L’ the subframe
of €L generated by L£1(E4,) U L2(E4,), each Ry := Ry N (EL x €L') is
a Weil entourage of €L" and {R/; | A € AL} generates a transitive quasi-
uniformity £’y on €L’ such that £1(E),) = L1(Ea,) and Lo(Ey ) = La(Ea,)
(see [8] for the details). The quasi-uniform frame (€L', £ ) is not, in general,
compatible with L. However, by Lemma 6.2 of 8], when [J.Ay is a subbase
for L, we have £1(y,) = £1(€4,) = VL and the compatibility of £, with
the given L is ensured.

Following the classical terminology, we say that a natural kind of covers in
Frm is an indexed class A = (AL)Lerm such that:

(1) Each Ay is a set of interior-preserving Fletcher covers of L;
(2) For every frame homomorphism h : L — M and every A € Ap,
hlA] € Ay
Lemma 1. Let A = (AL)Lerm be a natural kind of covers and let h : L — M

be a frame homomorphism. Then:

Ap

Ea, — Eayy —
(1) V, 4f V, implies h(V,) 4" 7(Va).
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&y, —
(2 )_A A, implies h(A,) 2142 h(A,).
(3) h(L: (EAL)) C Li(&y,,) (i=12).
Proof: (1) Consider Ay,..., A, € A such that st1(V,, L, Ra,) < V,.
Then h(st1(V,, (i, Ba)) < h(V,). But
(Stl(vy’ﬂizl Ry,)) = h(Stl(VyaR/\;"zlAi)) by (4.1.1)

> sty(R(V,), (R @) (Ryr 1)) by Lemma 4.1(3).

Clearly, each A; being interior-preserving, A, 4; is also interior-preserving.
Thus, by Lemma 4.1(2), we get

W(sti(Vy,(VRa)) = sti(B(V,), Bypr, a))

1=1

= st1(h(V,), R/\" hA;])

= Stl mRhA]

_ Eay

In conclusion, st1(h(Vy), i Rua)) < A(V,), which shows that h(V,) <
(V).
(2) Similar to (1).

2 L
(3) Let V, € £4(€,) = L1(Ea,) € VL. Then V, = V{V, | V, & V,}
and, by (1), it follows that

RV = VRV, |V, 3 V)

< \{veeL|o DRV

< (V).
Hence 5(V,) = V{0 € €L | 6 ‘4 7(V.)}, which means that (V) €
[’1(5441»1) [’1(5./4]\4) n

It follows immediately from Lemma 1 that h : €L — &M defines, by
restriction, a biframe map

E : (Q:LI7 51(554[1)7£2(5j4[l)) - (Q:M/7£1(5.f41\1)’ [:2(514]\1))
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Statement (2) of Lemma 4.1 is also true for the restricted entourages Ry =
Ran (€L x €L):

Lemma 2. Let A = (AL)Lerm be a natural kind of covers and let h : L — M
be a frame homomorphism. Then, for each A € Ar, (h® h)(R)) = R}y

Proof: The inclusion (h @ h)(R!,) C R,y is trivial.

Let (o, B) € R%[A]' This means that, for every a € A, a < V) or § <
Ap(a); thatis, a < A,y Vi and 8 < A, 4, An(a) for some partition AU A,
of A. Consequently, by Lemma 4.1(1), a < h(/\,c4, Va), and, on the other
hand, 3 < A(A,c4, Da)- But (Aues, Var Auea, Do) € R) since it belongs to
Ry and, by (4.2.1) and (4.2.2), A,cq, Vo € L1(E),) and A4, Au € L2(E))).
Thus

a€A,

(@, 8) < (B N\ Vo). h( N D)) € (R R)(RY). .

acA, a€Asy

a€As

Proposition. & is a uniform homomorphism from (€L, £, ) to (EM',E), ).
Proof: Let £ € &,,. Then (;_, R, C E for some Ay,..., A, € Az, from
which it follows that (k& h)(N; R),) € (h®h)(E). On the other hand, by
Lemma 2,

(hoh)((\Ry) = (R &h)(Ry) = ()R € Eny
i=1 i=1 i=1
Hence (h & h)(E) € £, [ |
This defines a (transitive) functor @ 4 : Frm — QUFrm.

4.3. When does the Fletcher construction induce a T-section? Of
course, we are interested in the case when, for every L, Q4(L) is a quasi-
uniform frame compatible with L, that is, when @) 4 is a T-section. First, we
need to recall the following from [8]:

Let &€ be a transitive quasi-uniformity on a subframe €L’ of €L, compatible
with L, and consider a transitive subbase S of £. Since each £ € § is
transitive,

sti(6, E) <18i sti(0, E) for every 0 € €L" (i =1,2).

Therefore, st1(0, E) € £1(€) and sto(0, E) € Lo(E). So, by the isomorphism
L1(€) = VL, each sty (0, E) corresponds to V gjg for some element E[f] € L.
Set CovE = {EI[f] | (0,0) € E}.
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Proposition. Let £ be a transitive quasi-uniformity on a subframe €L of
CL, compatible with L, and consider a transitive subbase S of €. Then:

(1) Each CovE is an interior-preserving cover of L.
(2) Uges CovE is a subbase for L.

Proof: (1) Proposition 7.3 of [8].
(2) Proposition 7.2 of [8]. |

When £ is the quasi-uniformity £’y generated by a family Ay of (weakly)
interior-preserving Fletcher covers of L, constructed in 4.2, we have:

Lemma. Let Ay, be a family of (weakly) interior-preserving Fletcher covers

of L. If U{CovR!y | A € AL} is a subbase for L then L£1(E)y,) = VL.
Proof: Let x € L. By hypothesis, we may write
v=\/(RyB:]A... AR [6,))

icl

for some A% € A and (6;,6;) € RlAﬁ' (iel,je{l,...,n;}). Then

V. = \/(VR’A&[QI] VARRIAN VRIA;,,_WW]) = \/(Stl(eh R;li) AN sti(On,, RIA%))
iel ‘ iel
So, in order to show that V, € £1(&,) it suffices to check that, for each i,
&,
st1(917 R;li) VANPAN Stl(en” RIA;I) <y V..

For each i, take ()i, R';; € &}, Then, by properties (S3) and (S4),

n;

stl(st1(01, R//lll) VAN Stl(enia R;lf,)’ ﬂ R/ 1)
i J:1 J

T,

S /\ stl(st1(01, R;lll) VANPIRAN stl(ﬁm, R;l;l), R;ll)
j:l i J

< /\ sti(st1(0;, Ry), R)yi) < /\ st1(6;, Ry o ;)
J=1 j=1

<

= Stl(eja R;}l) < V..

j=1
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The following statements are a reformulation of results in [8].

Theorem. Let Aj be a set of covers of a frame L. Then {R, | A € AL}
is a subbase for a transitive quasi-uniformity on the subframe €L’ of €L,
compatible with L, if and only if Ap is a set of weakly interior-preserving
Fletcher covers of L such that | J{CovR/, | A € AL} is a subbase for L.

Proof: Let & denote the quasi-uniformity generated by S = {R/; | A €
Apr}. Since each R/, is an entourage, each A € Ay is a Fletcher cover. By
(2) in the Proposition, [J{CovR/, | A € AL} is a subbase of L. Finally, each
A € Ay is weakly interior-preserving. Indeed, by Lemma 6.1.1 (a) of [8],

sti(\ Vi, Ry) < sti( \ Vi, Ra) = \ V,
beB beB beB
for every B C A, thus A\,.5 Vi, € L1(€]y,) = VL, by the compatibility of the
quasi-uniformity.
The converse is obvious: the quasi-uniformity £, of 4.2, which as {R/ |
A € AL} as a subbase, is compatible with L, by the Lemma. [

Corollary. Let A be a natural kind of covers. The induced transitive functor
Q4 is a T-section if and only if, for each frame L, | J{CovRy | A € AL} is
a subbase for L. [

5. The construction of all transitive T-sections

Finally, with the help of results from [8], we may conclude that the functor
@ 4 induced by Fletcher’s construction describes all transitive T-sections.

We say that a natural kind of covers A = (AL)Lerm 1S an adequate kind of
covers if, for each frame L, | J Ar is a subbase for L. Then we have:

Theorem 1. For each adequate kind of covers A, the induced transitive
functor Q4 is a transitive T-section.

Proof: By Proposition 4.2, Q4 is a transitive functor. The conclusion that it
is a T-section follows immediately from Theorem 6.3 of [8], which asserts that,
for every nonempty family Ay of weakly interior-preserving Fletcher covers
of L such that [ J Az is a subbase for L, £, is a transitive quasi-uniformity
on €L/, compatible with L. [ |

Then, by Proposition 3.5, when @ 4 is a T-section, each @ 4(L) is isomor-
phic to the Skula biframe so €L" = €L and &) = €4, that is, Qa(L) =
(CL,E4,). More generally, for any T-section F, also by Proposition 3.5,
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Brp(L) = (€L, VL,AL), and we may assume, to simplify notation, that
F(L) = (Q:LagF(L))-

Theorem 2. Let F' be a transitive T-section. For each frame L, let
Ar = {A| A interior-preserving cover of L, Ry € Ep(r)}.

Then A = (AL)Lerm 1S an adequate kind of covers such that Qyq = F.
Moreover, A is the largest adequate kind of covers whose induced functor is
the given F.

Proof: We prove that A is adequate. Trivially each A € Ay is an interior-
preserving Fletcher cover of L. Let h : L — M be a frame homomorphism.
Then, for each A € Az, Ry € Ep(r) thus (h @ h)(Ry) € Ep(v)- By Lemma
4.1(2), this means that Rj4 € Epar). Consequently, h[A] € Ay

Since {CovR4 | A € AL} C Ay, it follows from Proposition 4.3(2) that
\J AL is a subbase for L. The remaining claim follows from Theorem 7.4.2(a)
of [8] that asserts that for any compatible transitive quasi-uniformity £ on
CL, A, = {A| A € CovL,Rs € £} is the largest set of covers of L that
induces £. ]

Examples. Many kinds of interior-preserving Fletcher covers induce transi-
tive T-sections. The following are examples of adequate kinds of covers and
of their induced transitive T-sections.

kind A of covers Transitive T-section Q) 4
Interior-preserving Fletcher covers | F7: “Fine transitive section”
Finite F: “Frith section”

Locally finite LF: “Locally finite section”
Well-monotone W: “Well-monotone section”
Spectra SC: “Semi-continuous section”

Indeed, they are examples of collections Ay, of interior-preserving Fletcher
covers such that | J. Az is a subbase of L, as we proved in the last section of
8], thus adequateness follows from the following result.

Proposition. Let h : L — M be a frame homomorphism. For every locally
finite (resp. spectrum, well-monotone) cover A of L, h[A] is a locally finite
(resp. spectrum, well-monotone) cover of M.
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Proof: (1) Let A be a locally finite cover, that is, a cover for which there
exists a cover C such that A, := {a € A | aAc # 0} is finite for every c € C.
Then h[C] is a cover of M and, for every c € C, h[A]) C {h(a) | a € A},
since h(a) A h(c) # 0 implies a A ¢ # 0. Thus h[A] is locally finite.

(2) In case A = {a, | n € Z} is a spectrum cover of L, that is, a cover of L
satisfying a, < an41, for each n € Z, and \/, ., Aa, = 1, then, immediately,
h[A] is a cover of M, h(a,) < h(ayi1), for each n € Z, and \/, oy Apa,) =

\/nEZ h(Aan,) = E(\/HEZ Aan) = h(l) =1.

(3) Finally, the case when A is well-monotone, that is, well-ordered by the
partial order of L, is obvious. [

nez
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