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TOPOLOGICAL SEMI-ABELIAN ALGEBRAS

F. BORCEUX AND MARIA MANUEL CLEMENTINO

Abstract: Given an algebraic theory T whose category of models is semi-abelian,
we study the category TopT of topological models of T and generalize to it various
results on topological groups. In particular TopT is regular, Mal’cev and protomod-
ular; every open subobject is closed and every quotient map is open. We devote
special attention to the Hausdorff, compact, locally compact, connected, totally
disconnected and profinite T-algebras.

Introduction
Semi-abelian categories have been introduced in [15] as a formal context

in which all diagram lemmas of universal algebra are valid, but also many
properties characteristic of non-abelian situations: the theory of normal sub-
objects, of commutators, of semi-direct products, and so on. Of course all
abelian categories are semi-abelian, but there are many more examples: the
category of all groups, of rings without unit, of Ω-groups, of Heyting semi-
lattices, of presheaves or sheaves of these, and so on. The algebraic theories
T yielding semi-abelian categories ModT of models have been characterized
in [12]; in particular, they admit a unique constant which we write 0 and
various operations which collectively recapture some of the properties of the
addition and the subtraction in the case of groups. This paper investigates
the properties of topological models of such theories, that is, models of the
theory provided with a topology which makes all the operations of the the-
ory continuous. We write TopT for the corresponding category. For example,
when T is the theory of groups, we recapture the theory of topological groups.

In the case of topological groups, the multiplication by an element x is an
homeomorphism, with inverse the multiplication by x−1. When performing
the quotient by a (normal) subgroup, this homeomorphism transforms the
equivalence class of the unit in the equivalence class of x. The semi-abelian
theories do not give rise to such homeomorphisms and our first task is to
prove some substitutes for these results, which will turn out to be sufficient
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for generalizing most of the classical results known in the case of topologi-
cal groups. This includes some purely algebraic lemmas, closely related to
recent work in universal algebra (see [19]), and of which we present a direct
(categorical) approach in an appendix section.

We start our study with that of subalgebras B ⊆ A of a topological T-
algebra A, proving at once that every open topological subalgebra B ⊆ A is
also closed. Moreover the closure B ⊆ A of a subalgebra B ⊆ A is another
subalgebra and B ⊆ A is normal when B ⊆ A is so.

Next we focus on the quotient of a topological T-algebra A by a normal
subalgebra B ⊆ A. The algebraic quotient A/B provided with the quotient
topology is still a topological T-algebra and the quotient map q : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A/B

is a continuous open mapping. When moreover the normal subalgebra B
is compact, this mapping q is also a closed map. The openness of quotient
maps implies the regularity of the category TopT.

The category TopT is generally not exact, but it shares various other prop-
erties of the category ModT of ordinary models, including some properties
which one proves classically using the exactness of ModT. For example TopT

is complete, cocomplete, Mal’cev and protomodular. The inverse image func-
tors of the fibration of points in TopT are monadic, yielding so a good theory
of topological semi-direct products.

We choose to call “proabelian” a finitely complete, pointed, regular and
protomodular category with coequalizers. Every proabelian category is a
Mal’cev category which satisfies all the basic diagram lemmas of homological
algebra and admits good theories of normal subobjects and abelian objects.

The full subcategory of abelian topological T-algebras inherits all the al-
ready mentioned properties of TopT: it is thus proabelian, with semi-direct
products. Moreover, if B ⊆ A is an abelian subobject of a Hausdorff topo-
logical T-algebra A, the closure B ⊆ A is still an abelian subalgebra.

The rest of the paper is devoted to the study of various classes of topological
T-algebras. A topological T-algebra A is Hausdorff as soon as 0 ∈ A is a
closed point. The quotient A/B by a normal subalgebra B ⊆ A is Hausdorff
precisely when the subalgebra B is closed. The Hausdorff reflection of a
topological T-algebra A is the quotient of A by the closure of 0 ∈ A. The
category of Hausdorff T-algebras is complete, cocomplete and proabelian.

On the other hand, a topological T-algebra A is discrete when 0 ∈ A is an
open point. The category of discrete T-algebras can be identified with ModT.
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Turning our attention to the case of compact Hausdorff T-algebras, we ob-
tain this time a semi-abelian category, thus a corresponding abelian category
of abelian compact T-models. Locally compact T-algebras present also inter-
esting properties: in particular, they constitute a proabelian category. Even
in the non Hausdorff case, a topological T-algebra is locally compact as soon
as 0 admits a compact neighborhood. Moreover in the Hausdorff case, every
locally compact subalgebra is closed.

Next we devote some attention to the case of totally disconnected T-
algebras. The connected component Γ(0) of 0 in a topological T-algebra A is
always a closed normal subgroup and the corresponding quotient A/Γ(0) is
the totally disconnected reflection of A. The category of totally disconnected
T-algebras is still another example of a proabelian category.

We particularize these results to the case of profinite (= compact totally
disconnected) T-algebras, yielding again this time a semi-abelian category of
profinite T-models, thus an abelian category of profinite abelian T-algebras.

Let us mention also that in a short exact sequence of topological T-algebras

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A/B qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq 0

A is compact (respectively: Hausdorff, connected, totally disconnected) as
soon as B and A/B are compact (respectively: Hausdorff, connected, totally
disconnected).

All results on semi-abelian categories needed in this paper can be found
in the survey paper [4]; various original papers are cited in the bibliography.
Some few additional results, essentially inspired from universal algebra (in
particular [19]), are shortly presented in the “Appendix” section.

1. Introducing topological semi-abelian algebras
Given an object X of a category V , the corresponding category PtX(V) of

points (see [8]) has for objects the triples (A, p, s) in V
p : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq X, s : X qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, p ◦ s = idX .

A morphism f : (A, p, s) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq (B, q, t) is a morphism of V such that

f : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B, q ◦ f = p, f ◦ s = t.

When V has pullbacks, every morphism v : X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Y in V induces an inverse
image functor

v∗ : PtY (V) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq PtX(V).
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The category V is protomodular (see [9]) when it admits pullbacks and all
the inverse image functors v∗ between the categories of points reflect isomor-
phisms. The category V is semi-abelian (see [15]) when it is protomodular,
Barr exact, and admits finite limits, finite coproducts and a zero object. In
that case V has all finite colimits and the inverse image functors v∗ between
categories of points are monadic (see [11]), yielding a theory of semi-direct
products.

An algebraic theory T has a semi-abelian category ModT of models precisely
when (see [12]) T has

(1) a unique constant 0;
(2) binary operations α1(X,Y ), . . . , αn(X,Y ) satisfying αi(X, X) = 0;
(3) a n + 1-ary operation θ(X1, . . . , Xn+1) satisfying

θ
(
α1(X,Y ), . . . , αn(X,Y ), Y

)
= X.

This is in particular the case when T has a group operation +, in which case
it suffices to choose

n = 1, α1(X, Y ) = X − Y, θ(X, Y ) = X + Y.

Thus groups, Ω-groups, modules on a ring, rings without unit, all these
theories with additional sup and/or inf semi-lattice structure, Heyting semi-
lattices for their own, and so on, yield examples of semi-abelian theories. Let
us emphasize the fact that in general, T admits indeed many more operations
than simply αi and θ; moreover, the choice in T of operations αi and θ as
indicated is by no means unique. We shall in general refer to such an algebraic
theory T as a “semi-abelian” theory and to the T-algebras as “semi-abelian
algebras”.

Convention Through this paper, given a semi-abelian theory T, the notation
αi or θ will always indicate operations as above, with n ∈ N the corresponding
number of operations αi.

Let us now introduce the topic of the present paper:

Definition 1. Let T be an algebraic theory. By a topological model of T,
or a topological T-algebra, we mean a topological space A provided with the
structure of a T-algebra, in such a way that every operation τ : T n

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq T of T
induces a continuous mapping

τA : An
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ τ(a1, . . . , an).
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We write TopT for the category of topological T-algebras and continuous T-
homomorphisms between them.

For example when T is the theory of groups, TopT is the category of topo-
logical groups. The theory of topological groups uses in an intensive way
the fact that given an element g ∈ G of a topological group G (written
additively), the mapping

−+ g : G qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq G, x 7→ x + g

is an homeomorphism mapping 0 on g. This “homogeneity property” of the
topology can be partly recaptured in the case of a semi-abelian theory:

Proposition 2. Let T be a semi-abelian theory. For every element a ∈ A
of a topological T-algebra,

A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq An, x 7→ (

α1(x, a), . . . , αn(x, a)
)

presents A as a topological retract of An, with thus the induced topology, and
maps the element a ∈ A on (0, . . . , 0) ∈ An.

Proof : It suffices to observe that

An
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ θ(a1, . . . , an, a)

is a retraction of the given map in the category of topological spaces.
Notice that the inclusion given in proposition 2 is by no means a T-

homomorphism: it does not preserve the constant 0.

Corollary 3. Let T be a semi-abelian theory. Given an element a ∈ A of a
topological T-algebra A, the subsets

n⋂
i=1

αi(−, a)−1(U), U open neighborhood of 0

constitute a fundamental system of open neighborhoods of a.

Proof : Every open neighborhood of (0, . . . , 0) ∈ An contains a neighborhood
of the form Un, with U ⊆ A open neighborhood of 0. One concludes by
proposition 2.

Metatheorem 4. Let T be a semi-abelian theory and P , a topological prop-
erty stable under finite limits. If the property P is valid at the neighborhood
of 0 in a given semi-abelian algebra A, that property P is valid at the neigh-
borhood of every point of A.
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Proof : By proposition 2, since every retract of An is the equalizer of the
identity and an idempotent morphism on An.

Another useful property of topological groups is that every neighborhood
V of 0 contains a symmetric neighborhood W such that W + W ⊆ V . The
generalization to the semi-abelian case is easy:

Lemma 5. Let T be a semi-abelian theory and V , an open neighborhood of
0 in a topological T-algebra A. Let τ be a (k + l)-ary operation of the theory
and a1, . . . , ak, elements of A such that τ(a1, . . . , ak, 0, . . . , 0) = 0. Then
there exists an open neighborhood U of 0 in A such that

b1, . . . , bl ∈ U ⇒ τ(a1, . . . , ak, b1, . . . , bl) ∈ V.

Proof : The function

f : Al
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, (X1, . . . , Xl) 7→ τ(a1, . . . , ak, X1, . . . , Xl)

is continuous and maps (0, . . . , 0) on 0. Therefore f−1(V ) is an open neigh-
borhood of (0, . . . , 0) in Al and this neighborhood contains one of the form
U l, with U neighborhood of 0 in A.

Using as usual ( ) to indicate the topological closure, let us immediately
observe that

Proposition 6. Let T be a semi-abelian theory. Every topological T-algebra
is a regular topological space.

Proof : By the metatheorem 4, it suffices to prove that every open neigh-
borhood V of 0 in A contains the closure of an open neighborhood W of 0.
We choose the neighborhood W given by lemma 5 applied to the function
θ(X1, . . . , Xn+1) and prove that W ⊆ V . If a ∈ W ,

Z =
n⋂

i=1

αi(a,−)−1(W )

is open and contains a. Since a ∈ W , this proves the existence of some
b ∈ Z ∩W . For each index i, we have αi(a, b) ∈ W because b ∈ Z; on the
other hand b ∈ W . By lemma 5, this implies

a = θ
(
α1(a, b), . . . , αn(a, b), b) ∈ V. ¥
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2. On topological subalgebras
We focus first on the properties of subalgebras B ⊆ A of a topological

algebra A, still in the case of a semi-abelian theory T. Obviously, every sub-
algebra B of the topological algebra A, provided with the induced topology,
is a topological algebra on its own. As usual when we mention that the sub-
algebra B is open, or closed, or compact, or whatever, this is always for the
topology induced by that of A.

First, let us generalize a celebrated result on topological groups.

Proposition 7. Let T be a semi-abelian theory. Every open subalgebra
B ⊆ A of a topological algebra A is closed.

Proof : Given a ∈ A \ B, we must prove the existence of an open subset
U ⊆ A \B containing a. It suffices to put

U =
n⋂

i=1

αi(a,−)−1(B).

This subset is open, as finite intersection of open subsets. It contains a
because αi(a, a) = 0 ∈ B for each index i. Moreover U ∩ B = ∅, because
b ∈ U ∩B would imply

a = θ
(
α1(a, b), . . . , αn(a, b), b

) ∈ B

since then each αi(a, b) and b itself would be in the subalgebra B.

Corollary 8. Let T be a semi-abelian theory, A a topological T-algebra and
B ⊆ A a subalgebra. The following conditions are equivalent:

(1) B is a neighborhood of 0;
(2) B is an open neighborhood of 0;
(3) B is a closed neighborhood of 0.

Proof : (2) ⇒ (3) follows from proposition 7 and (3) ⇒ (1) is trivial. If B is
a neighborhood of 0 and b ∈ B,

U =
n⋂

i=1

αi(−, b)−1(B)

is a neighborhood of b; it is contained in B because

x ∈ U ⇒ x = θ
(
α1(x, b), . . . , αn(x, b), b

) ∈ B

since B is a subalgebra. Thus B is open.



8 F. BORCEUX AND MARIA MANUEL CLEMENTINO

Let us now investigate the behaviour of subalgebras with respect to topo-
logical closure.

Proposition 9. Let T be a semi-abelian theory. The closure B ⊆ A of every
subalgebra B ⊆ A of a topological T-algebra A is still a subalgebra.

Proof : Let τ(X1, . . . , Xm) be a m-ary operation of the theory T. Define P
to be the topological pullback

P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

Am qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqqτ A

The topological subspace P ⊆ Am is closed because B ⊆ A is closed. More-
over Bm ⊆ P because

b1, . . . , bm ∈ B ⇒ τ(b1, . . . , bm) ∈ B ⊆ B.

This implies B
m

= Bm ⊆ P because P is closed. This means exactly

a1, . . . , am ∈ B ⇒ τ(a1, . . . , am) ∈ B

and B is stable in A for all the operations of the theory T.
Analogously, we obtain:

Proposition 10. Let T be a semi-abelian theory. The closure B ⊆ A of
every normal subalgebra B ⊆ A of a topological T-algebra A is still a normal
subalgebra.

Proof : Using theorem 64, let us consider an operation τ(X1, . . . , Xk, Y1, . . . , Yl)
of the theory satisfying the axiom τ(X1, . . . , Xk, 0, . . . , 0) = 0. As in propo-
sition 9, we consider the pullback

P qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

Ak × Al qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqqτ A

to get P closed in Ak×Al. This time Ak×Bl ⊆ P because B is normal in A

and thus Ak × B
l ⊆ P because P is closed. By theorem 64, this shows that

B is normal in A.
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3. On topological quotients and regularity
The following proposition generalizes a key property of topological groups:

Proposition 11. When T is a semi-abelian theory, the coequalizer q : B qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Q

of two morphisms f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B of TopT is computed as in ModT and provided
with the quotient topology. Moreover, the continuous surjection q is also an
open map.

Proof : Consider first two morphisms f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B in TopT and their coequal-
izer q : B qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq Q in ModT provided with the quotient topology; this makes

already q continuous. The regular epimorphism q in ModT is the cokernel of
its kernel k : K qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B. If U is open in B, we must prove first that q(U) is
open in Q ∼= B/K, that is, q−1

(
q(U)

)
is open in B. By proposition 65,

q−1(q(U)
)

=
⋃

k1,... ,kn∈K

θ(k1, . . . , kn,−)−1(U)

is indeed open, as a union of open subsets.
Next we prove that Q, provided with the quotient topology, is a topological

T-algebra. If τ(X1, . . . , Xk) is a k-ary operation of the theory T and U ⊆ Q
is open for the quotient topology

τ−1(U) =
{(

[b1], . . . , [bk]
)∣∣τ(

[b1], . . . , [bk]
) ∈ U

}

=
{
qk(b1, . . . , bk)

∣∣qτ(b1, . . . , bn) ∈ U
}

= qk
(
τ−1q−1(U)

)

and this last subset is open because q and τ are continuous and qk is open,
since so is q. Therefore the operation τ is continuous on the quotient Q.

It is now trivial to conclude that q = Coker (f, g) in TopT.
The category Top of topological spaces is not Barr regular, nevertheless:

Theorem 12. The category TopT of topological models of a semi-abelian
theory T is Barr regular.

Proof : In the category of topological spaces, every open surjection yields
necessarily the quotient topology and open surjections are stable under pull-
backs. One concludes by proposition 11.

4. Introducing proabelian categories

The category TopT, for a semi-abelian theory T, is generally not semi-
abelian, because it is not Barr exact. Indeed, the kernel pair of a morphism
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f : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B is its set-theoretical kernel pair provided with the topology in-
duced by that of A × A. Providing this kernel pair with a finer T-topology
(for example, the discrete one), yields an equivalence relation in TopT which
is not a kernel pair.

This paper intends also to give evidence that there is a notion of good
interest, more general than semi-abelianity and which recaptures many of
the properties of semi-abelian categories:

Definition 13. A category V is proabelian when

(1) V is finitely complete;
(2) V admits all coequalizers;
(3) V has a zero object;
(4) V is Barr regular;
(5) V is protomodular.

The proabelian category V is said to have semi-direct products when the in-
verse image functors of the fibration of points are monadic.

Let us recall that when v : 0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Y is such that v∗ is monadic, every algebra
(A, ξ) for the corresponding monad yields a point

(
p, s : B ¿ Y

)
and B is

defined to be the semi-direct product Y o (A, ξ).
Of course every semi-abelian category is proabelian; but we shall now prove

that the topological models of a semi-abelian theory constitute a proabelian
category with semi-direct products. Other examples of proabelian categories
will be presented in the subsequent sections.

Theorem 14. A proabelian category V is in particular a Mal’cev category
satisfying the five lemma, the nine lemma, the snake lemma and the Jordan-
Hölder theorem.

Proof : Observe that the corresponding proofs given in [4] and [5] use only
the proabelian axioms.

Proposition 15. A proabelian category V with semi-direct products is finitely
cocomplete.

Proof : It suffices to prove the existence of binary coproducts. This follows
from proposition 4 in [7]: in a category with finite limits, if the inverse
image functors of the fibration of points have left adjoints, these adjoints are
computed by pushouts. But in the presence of a zero object, pushing out
along a morphism v : 0 qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Y is taking the coproduct with V .
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Let us prove now a useful property for constructing proabelian categories.
In the following proposition, and in the whole paper, “epireflective” means
always “regular epireflective”: the unit of the adjunction is a regular epimor-
phism.

Proposition 16. If V is a proabelian category, every epireflective subcate-
gory W ⊆ V is proabelian as well.

Proof : The category W is finitely complete, has coequalizers and a zero ob-
ject, by reflexivity in V . It is regular by epireflexivity. It is protomodular
since the inclusion W ⊆ V is full and preserves pullbacks.

Proposition 17. When T is an algebraic theory, the forgetful functor

U : TopT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ModT

is topological. As a consequence, the category TopT of topological T-algebras
is complete and cocomplete; limits and colimits are computed as in ModT.

Proof : If (fi : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Ai)i∈I is a class of morphisms of T-algebras, with each
Ai a topological T-algebra, the corresponding initial topology on A (which
exists, whatever the size of I) provides A with the structure of a topological T-
algebra. Indeed if τ(X1, . . . , Xk) is an operation of the theory, the continuity
of τ in A is equivalent to the continuity of each fi ◦ τA, which is the case
since fi ◦ τA = τAi

◦ fk
i . This forces the conclusion, since ModT is complete

and cocomplete (see [3], II-7.3).

Proposition 18. When T is an algebraic theory yielding a protomodular
category ModT of models, the models of T in every category C with finite
limits constitute again a protomodular category.

Proof : This is a standard “Yoneda” argument. Indeed, the functors

C(C,−) : ModT(C) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq ModT, A 7→ C(C,A)

individually preserve pullbacks and collectively reflect isomorphisms. There-
fore the protomodularity of ModT implies that of ModT(C).

Theorem 19. When T is a semi-abelian theory, the category TopT of topo-
logical T-algebras is complete, cocomplete, proabelian with semi-direct prod-
ucts.



12 F. BORCEUX AND MARIA MANUEL CLEMENTINO

Proof : Using theorem 12, proposition 17 and proposition 18 (with C = Top,
the category of topological spaces), it remains to check the existence of semi-
direct products.

Given v : X qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Y in TopT, the functor

v∗ : PtY
(
TopT

)
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq PtX

(
TopT

)

has a left adjoint, namely, the pushout along v. The functor v∗ reflects iso-
morphisms because TopT is protomodular, by proposition 18. By the Beck
criterion, we still have to check a condition on some coequalizers. But co-
equalizers in the categories PtY

(
TopT

)
and PtX

(
TopT

)
are computed as in

PtY
(
ModT

)
and PtX

(
ModT

)
, that is as in ModT, and provided with the quo-

tient topology. Now

v∗ : PtY
(
ModT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq PtX

(
ModT

)

preserves the coequalizers involved in the Beck criterion, because the cate-
gory ModT is semi-abelian. Moreover v∗ preserves open surjections, as every
topological pullback. We conclude by proposition 11.

Theorem 20. When T is a semi-abelian theory, the forgetful functor

U : TopT qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Top

to the category of topological spaces is monadic.

Proof : Given a topological space X, consider the free T-algebra F (X) on
the set X and, for every continuous mapping f : X qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A to a topological T-

algebra A, the corresponding factorization f ′ : F (X) qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A. The initial topo-
logical T-algebra structure on F (X) for all these mappings f ′ (see proposition
17) yields the left adjoint functor of U .

Every homeomorphic T-homomorphism of topological T-algebras is an iso-
morphism, thus U reflects isomorphisms.

Consider next a reflexive pair f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq B of morphisms in TopT admitting
a split coequalizer q : B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q in Top. Coequalizers in TopT and in Top are

constructed, respectively, as in ModT and in Set, and are provided in both
cases with the quotient topology. Thus being a coequalizer in TopT is being a
coequalizer both in ModT and in Top (see proposition 11). The Beck criterion
applied to the forgetful functor ModT qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Set indicates that q = Coker (f, g) in

ModT. Since moreover q = Coker (f, g) in Top by assumption, q = Coker (f, g)
in TopT and one concludes by again the Beck criterion.
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5. Abelian topological algebras
The notion of abelian object makes sense in a proabelian category. Given

an object A, the commutator [A,A] is the kernel of the composite q◦(idA, 0) =
q ◦ (0, idA)

[A,A] k
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A
(idA, 0)

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

(0, idA)
A× A q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq ρ(A)

where q = Coker
(
(idA, 0), (0, idA)

)
. The object A is abelian when A = [A,A]

(see [4]). This is equivalent to the existence of a (necessarily unique) structure
of internal abelian group on A.

The abelian objects in a semi-abelian category constitute an epireflective
subcategory which is abelian. The corresponding topological result is:

Proposition 21. Let V be a proabelian category. The abelian objects of V
constitute an additive epireflective proabelian subcategory Ab(V) of V. When
V has semi-direct products, Ab(V) has semi-direct products as well.

Proof : The proofs in the semi-abelian case given in [4] remain valid to show
that the coequalizer ρ(A) above yields the expected epireflection ρ. By propo-
sition 16, Ab(V) is proabelian. And of course Ab(V) is additive, since every
object is internally an abelian group.

Suppose now that V has semi-direct products. By proposition 15, it is
finitely cocomplete. Thus Ab(V) is finitely cocomplete as well, by reflexivity.
To prove that the inverse image functors of the fibration of points of Ab(V)
are monadic, we use once more the Beck criterion. Pushing out a point along
v yields the left adjoint of v∗. On the other hand v∗ reflects isomorphisms
by protomodularity. Moreover since Ab(V) is closed in V under regular quo-
tients, coequalizers in Ab(V) are computed as in V . Next in a category of
points, coequalizers are computed as in the base category. This forces at once
the condition on coequalizers in the Beck criterion, since it holds in V .

Proposition 22. Let T be a semi-abelian theory and A an abelian topological
T-algebra. The operations

a + b = θ
(
α1(a, 0), . . . , αn(a, 0), b

)

−a = θ
(
α1(0, a), . . . , αn(0, a), 0

)

describe the internal abelian group structure of A and thus provide in partic-
ular A with the structure of a topological abelian group.
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Proof : Let us write

⊕ : A2
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, ª : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A

for the internal abelian group operations of A and

p(X, Y, Z) = θ
(
α1(X,Y ), . . . , αn(X,Y ), Z

)

for the Mal’cev operation of T inherited from the semi-abelian structure.
Since ⊕ and ª are T-homomorphisms, we get

a⊕ b = p(a, 0, 0)⊕ p(0, 0, b)

= p
(
a⊕ 0, 0⊕ 0, 0⊕ b)

= p(a, 0, b)

= a + b

a⊕ (−a) = p(a, 0, 0)⊕ p(0, a, 0)

= p(a⊕ 0, 0⊕ a, 0⊕ 0)

= p(a, a, 0)

= 0

which proves the result.

Theorem 23. Let T be a semi-abelian theory. The category Ab
(
TopT

)
of

abelian topological T-algebras is complete, cocomplete, additive and proabelian
with semi-direct products.

Proof : By proposition 21 and theorem 19.
Given a semi-abelian theory T , the category Ab

(
TopT

)
is generally not

exact, since TopT is not. This prevents Ab
(
TopT

)
to be abelian.

Theorem 24. Let T be a semi-abelian theory. The forgetful functor

U : Ab
(
TopT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Top

is monadic.

Proof : We use the Beck criterion. The left adjoint of U is the composition
of the left adjoints in theorems 20 and 21 (with V = TopT). It is again
trivial that U reflects isomorphisms. The condition on coequalizers holds by
the Beck criterion applied to the situation of theorem 20, since Ab

(
TopT

)
is

closed in TopT under regular quotients.
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6. On Hausdorff algebras
We investigate now the properties of those T-algebras which are Hausdorff

spaces.

Proposition 25. Let T be a semi-abelian theory. For a topological T-algebra
A, the following conditions are equivalent:

(1) {0} is closed in A;
(2) A is a T0-topological space;
(3) A is a T1-topological space;
(4) A is a Hausdorff space.

Proof : (4) ⇒ (3) ⇒ (2) are obvious. Let us prove (2) ⇒ (1). If A is T0

but 0 ∈ A is not closed, choose 0 6= a ∈ {0}. Every neighborhood of a
contains 0, thus by the T0-axiom there exists a neighborhood V of 0 which
does not contain a. Let U be the neighborhood of lemma 5 corresponding to
the function θ(X1, . . . , Xn, 0). Consider

W =
n⋂

i=1

αi(a,−)−1(U).

This is an open neighborhood of a ∈ {0}, thus it contains 0. This means
αi(a, 0) ∈ U for each index i, thus

a = θ
(
α1(a, 0), . . . , αn(a, 0), 0

) ∈ V

by construction of U . This is a contradiction.
(1) ⇒ (3) holds by our metatheorem 4 while (3) ⇒ (4) holds because every

regular T1-space is Hausdorff (see proposition 6).

Proposition 26. Let T be a semi-abelian theory and B, an abelian sub-
algebra of a Hausdorff T-algebra A. The closure B ⊆ A is still an abelian
subalgebra.

Proof : We must prove that the operations + and − of proposition 22, re-
stricted to B, are homomorphisms of T-algebras. This means, for every
operation τ(X1, . . . , Xk) of the theory, the equality for all elements of B of
the following functions, defined and continuous for all elements of A

τ(X1, . . . , Xk) + τ(Y1, . . . , Yk) = τ(X1 + Y1, . . . , Xk + Yk)

−τ(X1, . . . , Xk), = τ(−X1, . . . ,−Xk).
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The equalities hold in B, thus they hold in B, by continuity of the various
functions and Hausdorffness of A.

Proposition 27. Let T be a semi-abelian theory and A a topological T-
algebra. For a subalgebra B ⊆ A, the following conditions are equivalent:

(1) B is closed in A;
(2) the quotient topological T-algebra A/B is Hausdorff.

Proof : By proposition 25, the quotient A/B is Hausdorff when [0] is closed
in it. When this is the case, B is closed in A as inverse image of [0] by
the quotient map q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B. Conversely if B is closed in A, its image

[0] ∈ A/B is a closed point because B is saturated and the quotient map q
is open (see proposition 11).

Corollary 28. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A a normal subalgebra. If B and A/B are Hausdorff T-algebras, A
is a Hausdorff algebra as well.

Proof : By proposition 25, 0 ∈ B is closed and by proposition 27, B ⊆ A is
closed as well. Thus 0 ∈ A is closed.

Corollary 29. Let T be a semi-abelian theory. The category HausT of Haus-
dorff topological T-algebras is epireflective in the category TopT of topological
T-algebras. In particular, it is complete and cocomplete.

Proof : Given a topological T-algebra A, it follows at once from proposition 10
that {0} is the smallest closed normal subobject of A. Therefore A/{0} is the
Hausdorff reflection of A, by proposition 27. One concludes by proposition
17.

Theorem 30. Let T be a semi-abelian theory. The category HausT of Haus-
dorff T-algebras is complete, cocomplete, proabelian and the forgetful functor

U : HausT qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Haus

to the category of Hausdorff spaces is monadic.

Proof : The category HausT is proabelian by corollary 29 and proposition 16.
Let X be a Hausdorff space. The T-Hausdorff reflection (corollary 29) of

the free topological T-algebra on X (theorem 20) yields the adjoint functor
of U . The functor U reflects trivially isomorphisms.

To conclude by the Beck criterion, consider a reflexive pair f, g : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq B
in HausT which admits a split coequalizer q : B qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q in Haus. The split
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coequalizer is thus also a coequalizer in Top and of course, (f, g) is a reflexive
pair in TopT. By theorem 20, q = Coker (f, g) in TopT. Since Q is a Hausdorff
space, this is also a coequalizer in HausT.

Theorem 31. Let T be a semi-abelian theory. The category Ab
(
HausT

)
of Hausdorff abelian T-algebras is complete, cocomplete, additive, proabelian
and the forgetful functor

U : Ab
(
HausT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Haus

to the category of Hausdorff spaces is monadic.

Proof : The category Ab
(
HausT

)
is proabelian by theorem 30 and proposition

21. The monadicity of U is proved as in theorem 24.

7. On compact algebras
Let us make clear that we do not include Hausdorffness in compactness.

First of all, an obvious observation:

Proposition 32. Let T be a semi-abelian theory. Every quotient of a com-
pact T-algebra is again compact.

Proof : Every continuous image of a compact is compact.
Here is an striking property of quotients, to be compared with proposition

11.

Proposition 33. Let T be a semi-abelian theory and A, a topological T-alge-
bra. When B ⊆ A is a compact normal subalgebra, the quotient q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A/B
is a closed map.

Proof : Consider a closed subset C ⊆ A; we must prove that its saturation
C̃ = q−1

(
q(C)

)
is closed as well. By proposition 65, we know that

C̃ =
{
a ∈ A

∣∣∃b1, . . . , bn ∈ B θ(b1, . . . , bn, a) ∈ C
}
.

Considering the continuous mappings

A pAqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq Bn × A ι
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq An+1 θ
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A

where ι is the canonical inclusion, we have thus

C̃ = pA

(
ι−1(θ−1(C)

))
.

Since C is closed, ι−1
(
θ−1(C)

)
is closed as well. Since Bn is compact, the

projection pA is a closed map (see [6]) and therefore C̃ is closed.
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Proposition 34. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A a normal subalgebra B. If B and A/B are compact (resp. compact
Hausdorff), A is compact (resp. compact Hausdorff) as well.

Proof : By proposition 65, for every element a ∈ A, the corresponding equiv-
alence class is given by

[a] = θ(Bn, a) =
{
θ(b1, . . . , bn, a)

∣∣b1, . . . , bn ∈ B
}
.

This equivalence class is compact, as continuous direct image of the compact
Bn. Therefore q is a closed continuous map (see proposition 33) with compact
fibres [a]; thus q is a proper map and therefore, reflects compact subspaces
(see [6] or [14]). In particular, A = q−1(A/B) is compact.

The Hausdorff case follows now from proposition 28.
In order to investigate further the properties of the category HCompT of

compact Hausdorff T-algebras, let us first observe that:

Proposition 35. Let T be a semi-abelian theory. The category HCompT of
compact Hausdorff T-algebras is reflective in the category TopT of topological
T-algebras. In particular, the category HCompT is complete and cocomplete.

Proof : The category HComp of compact Hausdorff spaces is closed for limits
in the category Top of topological spaces (it is even reflective in it). Therefore
HCompT is closed in TopT under limits (see proposition 17). To get the
expected adjoint functor, it remains to check the solution set condition.

If A is a fixed topological T-algebra, every morphism f : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C in TopT,
with C ∈ HCompT, factors through f(A) ⊆ C, which is still a compact T-

algebra. Every point of f(A) is the limit of an ultrafilter in f(A) and the
cardinal of f(A) is less than the cardinal of A. Write λ for the cardinal of
the set of ultrafilters in A. There is only a set of compact T-algebras with
cardinal at most λ and, as we have just seen, they constitute a solution set
for A.

Theorem 36. Let T be a semi-abelian theory. The category HCompT of
compact Hausdorff T-algebras is complete, cocomplete, semi-abelian and the
forgetful functor

U : HCompT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq HComp

to the category of compact Hausdorff spaces is monadic.

Proof : The category HCompT is complete and cocomplete by proposition
35; limits are computed as in TopT, thus as in HausT. By proposition 32,



TOPOLOGICAL SEMI-ABELIAN ALGEBRAS 19

HCompT is closed in HausT for regular quotients; therefore HCompT is regular
by theorem 30. It is also protomodular by proposition 18.

To prove the exactness of HCompT, consider in HCompT an equivalence
relation r : R qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A×A. Since R is compact, it is homeomorphic to its image
r(R), thus provided with the induced topology. But being compact, R is
closed in A× A. In particular the equivalence class of 0 is closed, as inverse
image of R along (idA, 0). Thus the corresponding quotient in TopT is com-
pact Hausdorff (see propositions 27 and 32) and R is the kernel pair of this
quotient, since this is the case in ModT and R has the induced topology.

Given a compact Hausdorff space X, the T-compact reflection (proposition
35) of the free topological T-algebra on X (theorem 19) yields the adjoint
functor of U . The functor U reflects trivially isomorphisms. The condition
on coequalizers in the Beck criterion is satisfied in the Hausdorff case (the-
orem 30), thus also in the compact Hausdorff case, where coequalizers are
computed in the same way (proposition 32).

Theorem 37. Let T be a semi-abelian theory. The category Ab
(
HCompT

)
of compact Hausdorff abelian T-algebras is complete, cocomplete, abelian and
the forgetful functor

U : Ab
(
HCompT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq HComp

to the category of compact Hausdorff spaces is monadic.

Proof : The category Ab
(
HCompT

)
is abelian by semi-abelianity of HCompT

(theorem 36). The monadicity of U is proved as in theorem 24.

8. On locally compact algebras
Again we do not include Hausdorffness in local compactness.

Proposition 38. Let T be a semi-abelian theory. For a T-algebra A, the
following conditions are equivalent:

(1) 0 has a compact neighborhood;
(2) A is locally compact.

Proof : (2) ⇒ (1) is obvious.
Assume now that V is a compact neighborhood of some point a ∈ A. If

U is an arbitrary neighborhood of a, by regularity (see proposition 6), we
consider closed neighborhoods V ′ ⊆ V and U ′ ⊆ U of a. Then U ′∩V ′ ⊆ U is a
closed neighborhood of a which is compact, as a closed subset of the compact
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V . Thus a admits a fundamental system of compact neighborhoods. This
proves that assuming (1), it suffices to show that every point a ∈ A admits
a compact neighborhood.

Given a ∈ A and K a compact neighborhood of 0,

θ(Kn, a) =
{
θ(k1, . . . , kn, a)

∣∣k1, . . . , kn ∈ K
}

is compact, as continuous image of the compact Kn. To prove that θ(Kn, a)
is a neighborhood of a, it suffices to show that

n⋂
i=1

αi(−, a)−1(K) ⊆ θ(Kn, a)

(see corollary 3). Indeed if αi(x, a) ∈ K for each index i

x = θ
(
α1(x, a), . . . , αn(x, a), a

) ∈ θ(Kn, a). ¥
Proposition 39. Let T be a semi-abelian theory and A a Hausdorff T-
algebra. Every locally compact subalgebra B of A is closed.

Proof : Given a ∈ B, we must prove that a ∈ B. For this we choose a compact
neighborhood Z of 0 in B, which has thus the form Z = U ∩ B for some
neighborhood U of 0 in A. The continuous image of the compact U ∩B ⊆ B
in A is compact, thus closed. In other words, Z = U ∩B is closed in A. We
choose further an open neighborhood U ′ ⊆ U of 0 in A. We consider then
the open subset

V =
n⋂

i=1

αi(a,−)−1(U ′)

which is a neighborhood of a ∈ B, thus meets B:

∃b ∈ B ∀i αi(a, b) ∈ U ′.

Let us prove now that αi(a, b) ∈ B for each index i. For this it suffices to
prove that

αi(a, b) ∈ U ′ ∩B ⊆ U ′ ∩B ⊆ U ∩B = U ∩B ⊆ B,

where the first inclusion holds because U ′ is open. By choice of b, αi(a, b) ∈
U ′. Since a, b ∈ B, αi(a, b) ∈ B by proposition 9.

One concludes now that

a = θ
(
α1(a, b), . . . , αn(a, b), b

) ∈ B

since b and all the αi(a, b) are in the subalgebra B.
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Proposition 40. Let T be a semi-abelian theory and A a locally compact
T-algebra. Every topological quotient T-algebra of A is still locally compact.

Proof : Because every open (see proposition 5) continuous image of a locally
compact space is locally compact.

Proposition 41. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A a normal subalgebra B. If B is compact and A/B is locally
compact, A is locally compact.

Proof : The same argument as in proposition 34 shows that the quotient map
q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B reflects compact subspaces, thus also compact neighbourhoods.

One concludes by proposition 38.

Theorem 42. Let T be a semi-abelian theory. The category HLCompT of
locally compact Hausdorff T-algebras is proabelian.

Proof : A closed subspace of a locally compact space is locally compact. Since
in the Hausdorff case equalizers are closed subspaces, the category HLCompT

is closed in HausT for equalizers; it is also obviously closed for finite prod-
ucts. By proposition 40, HLComp is also closed in HausT for coequalizers,
thus regular quotients. Therefore HLComp is regular, since so is HausT (see
theorem 30). Finally HLComp is protomodular by proposition 18.

Theorem 43. Let T be a semi-abelian theory. The category Ab
(
HLCompT

)
of locally compact Hausdorff abelian T-algebras is additive proabelian.

Proof : By proposition 21 and theorem 42.

9. On discrete algebras

The category ModT of T-algebras can be identified with the category of
discrete T-algebras. Observe at once that

Proposition 44. Let T be a semi-abelian theory. The forgetful functor

U : TopT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq ModT, U(A) = A

has both a left and a right adjoint which map a T-algebra A on A provided
with, respectively, the discrete or the indiscrete topology.

Proof : This is trivial.
Let us observe further that:
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Proposition 45. Let T be a semi-abelian theory. For a topological T-algebra
A, the following conditions are equivalent:

(1) {0} is open in A;
(2) A is a discrete topological space.

Proof : (1) ⇒ (2) holds by our metatheorem 4 while the converse is obvious.

Proposition 46. Let T be a semi-abelian theory and A a topological T-
algebra. For a subalgebra B ⊆ A, the following conditions are equivalent:

(1) B is open in A;
(2) the quotient topological T-algebra A/B is discrete.

Proof : By proposition 45, the quotient A/B is discrete when [0] is open in it.
When this is the case, B is open in A as inverse image of [0] by the quotient
map q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B. Conversely if B is open in A, its image [0] ∈ A/B is an

open point because the quotient map q is open (see proposition 11).
Of course the category of discrete T-algebras is semi-abelian and monadic

over the category Set of sets, since it is isomorphic to the category ModT of
T-algebras.

10. Connected or totally disconnected algebras
We recall that a space is totally disconnected when the connected compo-

nent of each point is reduced to that point.

Lemma 47. Let T be a semi-abelian theory and A, a topological T-algebra.
Writing Γ(a) for the connected component of a point a ∈ A,

Γ(a) = θ
(
Γ(0)n, a

)
=

{
θ(b1, . . . , bn, a)

∣∣b1, . . . , bn ∈ Γ(0)
}
.

Proof : The subset θ
(
Γ(a)n, a

) ⊆ A is connected as direct image of the con-
nected space Γ(a)n by a continuous function. It contains a = θ(0, . . . , 0, a)
by lemma 63. Thus it is contained in the connected component Γ(a).

Conversely, let b ∈ Γ(a). Each set αi

(
Γ(a), a

)
contains 0 = αi(a, a) and

is connected, as direct image of the connected space Γ(a) by a continuous
function. Thus αi

(
Γ(a), a

) ⊆ Γ(0). Therefore

b = θ
(
α1(b, a), . . . , αn(b, a), a

) ∈ θ
(
Γ(0)n, a

)
. ¥

Proposition 48. Let T be a semi-abelian theory and A a topological T-
algebra. The following conditions are equivalent:
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(1) the connected component of 0 is reduced to {0};
(2) A is totally disconnected.

Proof : By lemma 47.

Proposition 49. Let T be a semi-abelian theory and A, a topological T-
algebra. The connected component of 0 in A is a closed normal subalgebra.

Proof : The connected component of a point is always a closed subset. Let
us write B for the connected component of 0 in A. By theorem 64, it suffices
to prove that for every operation

τ(X1, . . . , Xk, Y1, . . . , Yl) such that τ(X1, . . . , Xk, 0, . . . , 0) = 0

one has

∀a1, . . . , ak ∈ A, ∀b1, . . . , bl ∈ B τ(a1, . . . , ak, b1, . . . , bl) ∈ B.

The case k = 0 proves in particular that B is a subalgebra. We prove this
statement by induction on l.

When l = 0, the statement reduces to 0 ∈ B. Assuming the result for l− 1
and considering the operation

τ(X1, . . . , Xk, Y1, . . . , Yl−1, 0),

we know by inductive assumption that

∀a1, . . . , ak ∈ A, ∀b1, . . . , bl ∈ B τ(a1, . . . , ak, b1, . . . , bl−1, 0) ∈ B.

Thus B is also the connected component of τ(a1, . . . , ak, b1, . . . , bl−1, 0). There-
fore

τ(a1, . . . , ak, b1, . . . , bl−1, bl) ∈ τ(a1, . . . , ak, b1, . . . , bl−1,−)(B) ⊆ B

since the continuous image of a connected subset is connected.

Proposition 50. Let T be a semi-abelian theory. Every quotient of a con-
nected topological T-algebra is again connected.

Proof : The direct continuous image of a connected space is connected.

Lemma 51. Let T be a semi-abelian theory and A, a topological T-algebra.
If B ⊆ A is a connected normal subobject, every equivalence class [a] of an
element a ∈ A is connected and every clopen U ⊆ A is saturated for the
equivalence relation corresponding to the quotient q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B.
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Proof : Given a ∈ U , we consider the continuous function

ϕ : An
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A, (X1, . . . , Xn) 7→ θ(X1, . . . , Xn, a).

By proposition 65, we know that [a] = ϕ(Bn); thus [a] is connected as direct
image of the connected subspace Bn ⊆ An. In particular, if [a] intersects a
clopen U , by connectedness, [a] ⊆ U . This proves that U is saturated.

Proposition 52. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A, a normal subalgebra. If both B and A/B are connected, then A
is connected as well.

Proof : Write q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B for the quotient map. Let U be a clopen of A.

By lemma 51, U is saturated, thus q(U) is a clopen of A/B. This forces
q(U) = ∅ or q(U) = A/B, that is, U = ∅ or U = A.

Proposition 53. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A, a normal subalgebra. If both B and A/B are totally disconnected,
then A is totally disconnected as well.

Proof : Write q : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B for the quotient. Since q

(
Γ(0)

)
is connected and

contains [0], it is reduced to that element, because A/B is totally discon-
nected. This implies Γ(0) ⊆ B and since B is totally disconnected, this
forces Γ(0) = {0}. One concludes by proposition 48.

Proposition 54. Let T be a semi-abelian theory and A, a topological T-
algebra. The quotient of A by the connected component of 0 is a totally
disconnected T-algebra.

Proof : By proposition 49, the connected component Γ(0) of 0 is a closed
normal subobject of A. Consider the following diagram, where the right
hand square is a pullback and k = Ker (p).

0 qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq K qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

k C qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

p
Γ
(
[0]

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq 0

r

ppppppppppppppqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qq

s
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqq

q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqq
qq

t

0 qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Γ(0) qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq

i A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqqq A/Γ(0) qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq 0

By theorem 12, p is a regular epimorphism in TopT, thus the cokernel of its
kernel k. Since pullbacks commute with kernels, the left hand square is a
pullback as well, thus an intersection.
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Now q ◦ i = 0 = t ◦ 0, thus i factors through the right hand pullback,
yielding Γ(0) ⊆ C. This implies K = Γ(0) ∩ C = Γ(0). Next K = Γ(0) and
Γ
(
[0]

)
are connected components, thus by proposition 52, the algebra C is

connected. But since C is connected and contains 0, C ⊆ Γ(0) and finally,
C = Γ(0). Therefore

Γ
(
[0]

)
= q(C) = q

(
Γ(0)

)
= [0].

One concludes by proposition 48.

Corollary 55. Let T be a semi-abelian theory. The category TotDiscT of
totally disconnected T-algebras is epireflective in the category TopT of all
topological T-algebras and also in the category HausT of Hausdorff T-algebras.
In particular, the category TotDiscT is complete and cocomplete.

Proof : Let f : A qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq C be a morphism of topological T-algebras, with C to-
tally disconnected. Since the direct image of a connected subspace is a con-
nected subspace, the connected component of 0 ∈ A is mapped in the con-
nected component of 0 ∈ C, that is, on the singleton 0. Therefore f factors
through the quotient of proposition 54, which is thus the expected totally
disconnected reflection of A.

Every totally disconnected T-algebra is a Hausdorff T-algebra. The to-
tally disconnected reflection of a Hausdorff T-algebra A is its reflection as
topological T-algebra.

Theorem 56. Let T be a semi-abelian theory. The category TotDiscT of
totally disconnected T-algebras is complete, cocomplete, proabelian and the
forgetful functor

U : TotDiscT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq TotDisc

to the category of totally disconnected spaces is monadic.

Proof : The category TotDiscT is proabelian by corollary 55 and propositions
19 (or 30) and 16. The monadicity of U is proved as in theorem 30.

Theorem 57. Let T be a semi-abelian theory. The category Ab
(
TotDiscT

)
of totally disconnected abelian T-algebras is complete, cocomplete, proabelian
and the forgetful functor

U : Ab
(
TotDiscT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq TotDisc

to the category of totally disconnected spaces is monadic.
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Proof : The category Ab
(
TotDiscT

)
is proabelian by theorem 56 and proposi-

tion 21. The monadicity of U is proved as in theorem 24.

11. On profinite algebras
A compact, totally disconnected space is also called a profinite space, or a

Stone space.

Proposition 58. Let T be a semi-abelian theory, A a topological T-algebra
and B ⊆ A, a normal subalgebra. If both B and A/B are profinite, then A
is profinite as well.

Proof : By propositions 34 and 53.

Proposition 59. Let T be a semi-abelian theory and A a profinite T-algebra.
If B ⊆ A is a closed normal subalgebra, the quotient topological T-algebra
A/B is still profinite.

Proof : By proposition 27, the quotient A/B is Hausdorff; it is also compact,
as continuous image of the compact A. Each equivalence class [a] is closed –
thus compact – in A as inverse image of the closed point [a] of the Hausdorff
space A/B. Notice also that B is compact, as a closed subspace of a compact
Hausdorff one. By propositions 11 and 33, the quotient map q : A qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqq

q
qqqqqqqqqqqqqqqqqq A/B is

both open and closed.
Given elements [a] 6= [b] ∈ A/B, the compact subsets [a] and [b] can be

included in disjoint clopens U , V of A, by profiniteness of the space:

[a] ⊆ U, [b] ⊆ V, U ∩ V = ∅.
Since the projection q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq A/B is open and closed, q(U) is a clopen in
A/B and thus its saturation q−1

(
q(U)

)
is a clopen in A.

Since q−1
(
q(U)

)
is a saturated clopen, so is its complement. Of course

these saturated clopens are disjoint and it remains to prove that

[a] ⊆ q−1(q(U)
)
, [b] ⊆ {q−1(q(U)

)
.

The first assertion is clear. To prove the second, it suffices to show that
b 6∈ q−1

(
q(U)

)
, that is, U ∩ [b] = ∅. This is the case because U ∩ [b] ⊆

U ∩ V = ∅.
Corollary 60. Let T be a semi-abelian theory. The category ProfT of profi-
nite T-algebras is epireflective in the category HCompT of compact Hausdorff
T-algebras, thus also reflective in the category TopT of topological T-algebras.
In particular, the category ProfT is complete and cocomplete.
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Proof : Consider a compact Hausdorff algebra A and the connected compo-
nent B ⊆ A of 0. The quotient A/B is totally disconnected by proposition
54 and compact by proposition 32. Thus A/B is profinite. One concludes as
for corollary 55 that ProfT is epireflective in HCompT. It remains to compose
with the reflection of proposition 35.

Theorem 61. Let T be a semi-abelian theory. The category ProfT of profi-
nite T-algebras is complete, cocomplete, semi-abelian and the forgetful functor

U : ProfT qqqqqqqqqqqqqqqq
qq

qqqqqqqqqqqqqqqqqq Prof

to the category of profinite spaces is monadic.

Proof : The category ProfT is complete and cocomplete by corollary 60 and
proposition 17. It is proabelian by corollary 60, proposition 16 and theorem
36. The exactness of ProfT follows from that of HCompT (see theorem 36)
since ProfT is closed in HCompT for finite limits, but also for quotients by
proposition 59.

The monadicity of U is proved as in theorem 36, replacing Hausdorff spaces
by completely disconnected ones.

Theorem 62. Let T be a semi-abelian theory. The category Ab
(
ProfT

)
of

profinite abelian T-algebras is complete, cocomplete, abelian and the forgetful
functor

U : Ab
(
ProfT

)
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Prof

to the category of profinite spaces is monadic.

Proof : The category Ab
(
ProfT

)
is abelian by semi-abelianity of ProfT (theo-

rem 61). The monadicity of U is proved as in theorem 24.

12. Appendix
This section contains some purely algebraic results on semi-abelian theo-

ries: most of them can be found, in possibly rather different form, in a series
of papers on universal algebra due to Ursini (see in particular [19]). We give
here direct (categorical) proofs.
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Lemma 63. Let T be a semi-abelian theory. Given elements a, b, c of a
T-algebra A: (∀i αi(a, c) = αi(b, c)

) ⇒ (
a = b

)
,(∀i αi(a, b) = 0

) ⇒ (
a = b

)
,

θ(0, . . . , 0, a) = a.

Proof : The first case is the injectivity condition in proposition 2; the second
case is obtained from the first one by putting c = b. The third assertion is
obtained by writing 0 = αi(a, a).

Notice that the implication(∀i αi(c, a) = αi(c, b)
) ⇒ (

a = b
)

has no reason to hold in general.
Let us now recall that a Mal’cev operation is a ternary operation p(X,Y, Z)

such that
p(X, X, Y ) = Y, p(X,Y, Y ) = X.

In a semi-abelian theory T, the formula

p(X, Y, Z) = θ
(
α1(X,Y ), . . . , αn(X,Y ), Z

)

defines a Mal’cev operation (see lemma 63). The following result – valid in
particular for semi-abelian theories – is borrowed from [19]; we propose here
a direct proof.

Theorem 64. Let T be an algebraic theory containing a unique constant 0
and a Mal’cev operation p(X,Y, Z) . For a subalgebra B ⊆ A, the following
conditions are equivalent:

(1) B is the kernel of some morphism q : A qqqqqqqqqqqqqqqqq
q

qqqqqqqqqqqqqqqqqq Q of T-algebras;
(2) for every operation τ(X1, . . . , Xk, Y1, . . . , Yl) of the theory

satisfying the axiom τ(X1, . . . , Xk, 0, . . . , 0) = 0
and for all elements a1, . . . , ak ∈ A, b1, . . . , bl ∈ B,
one has τ(a1, . . . , ak, b1, . . . , bl) ∈ B.

Proof : The necessity of the condition is obvious. Conversely, consider the
subalgebra R ⊆ A× A generated by all the pairs

(a, a) for a ∈ A, (b, 0) for b ∈ B.

By construction, R is a reflexive relation in ModT, thus a congruence by
the Mal’cev property (see [13]). Define q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq Q to be the quotient of A
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by R. The kernel of q contains B since each pair (b, 0), for b ∈ B, is in R.
Conversely, if a ∈ A is such that q(a) = 0, the pair (a, 0) is in R and therefore
is an algebraic combination of the generators of R: there exists an operation
γ and elements ai ∈ A, bj ∈ B such that

(a, 0) = γ
(
(a1, a1), . . . , (ak, ak), (b1, 0), . . . , (bl, 0)

)

=
(
γ(a1, . . . , ak, b1, . . . , bl), γ(a1, . . . , ak, 0, . . . , 0)

)
.

The operation

τ(X1, . . . , Xk,Y1, . . . , Yl)

= p
(
γ(X1, . . . , Xk, Y1, . . . , Yl), γ(X1, . . . , Xk, 0, . . . , 0), 0

)

satisfies the conditions of assumption 2 and

a = γ(a1, . . . , ak, b1, . . . , bl)

= p
(
γ(a1, . . . , ak, b1, . . . , bl), 0, 0

)

= p
(
γ(a1, . . . , ak, b1, . . . , bl), γ(a1, . . . , ak, 0, . . . , 0), 0

)

= τ(a1, . . . , ak, b1, . . . , bl)

and this last term is in B by assumption 2.
For example, when T is the theory of groups, the operation

τ(X,Y ) = X + Y −X

satisfies τ(X, 0) = 0 and we know that a subgroup B ⊆ A is a kernel (i.e. is
normal) precisely when

∀a ∈ A ∀b ∈ B τ(a, b) ∈ B.

When T is the theory of rings with unique constant 0, the operations

τ1(X, Y ) = XY, τ2(X,Y ) = Y X

satisfy τi(X, 0) = 0 and a subring B ⊆ A is a kernel (= a two-sided ideal)
precisely when

∀a ∈ A ∀b ∈ B τ1(a, b) ∈ B, τ2(a, b) ∈ B.

Finally let us describe more precisely the quotient by a normal subobject:
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Proposition 65. Let T be a semi-abelian theory and B ⊆ A a normal
subalgebra. Given an arbitrary subset X ⊆ A, the saturation X̃ of X for the
corresponding quotient q : A qqqqqqqqqqqqqqqq

qq
qqqqqqqqqqqqqqqqqq A/B is given by

X̃ = q−1(q(X)
)

=
{
a ∈ A

∣∣∃x ∈ X ∀i αi(a, x) ∈ B
}

=
{
a ∈ A

∣∣∃x ∈ X ∀i αi(x, a) ∈ B
}

=
{
a ∈ A

∣∣∃b1, . . . , bn ∈ B θ(b1, . . . , bn, a) ∈ X
}

=
{
θ(b1, . . . , bn, x)

∣∣b1, . . . , bn ∈ B, x ∈ X
}
.

In particular, for every x ∈ A,

[x] = θ(Bn, x) =
{
θ(b1, . . . , bn, x)

∣∣b1, . . . , bn ∈ B
}
.

Proof : By semi-abelianity of ModT, given elements a, c ∈ A

[a] = [c] ∈ A/B ⇔ ∀i [
αi(a, c)

]
= αi

(
[a], [c]

)
= 0 ⇔ ∀i αi(a, c) ∈ B

where the first equivalence holds by lemma 63. This condition is of course
left-right symmetric since so is the equality [a] = [c].

Next if θ(b1, . . . , bn, a) ∈ X, we have in A/B (see lemma 63)

[a] =
[
θ(0, . . . , 0, a)

]

= θ
(
[0], . . . , [0], [a]

)

= θ
(
[b1], . . . , [bn], [a]

)

=
[
θ(b1, . . . , bn, a)

]

∈ q(X)

thus a ∈ q−1
(
q(X)

)
. Conversely if a ∈ q−1

(
q(X)

)
, there exists x ∈ X such

that [x] = [a], that is by the first part of the proof, αi(x, a) ∈ B for each
index i. This implies

θ
(
α1(x, a), . . . , αn(x, a), a

)
= x ∈ X

and it suffices to choose bi = αi(x, a).

Finally when a ∈ X̃, we have already observed that

a = θ
(
α1(a, x), . . . , αn(a, x), x

)
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with x ∈ X and αi(a, x) ∈ B for each index i. Conversely if x ∈ X and
bi ∈ B for each index i, using lemma 63 we obtain[

θ(b1, . . . , bn, x)
]

= θ
(
[b1], . . . , [bn], [x]

)
= θ

(
[0], . . . , [0], [x]

)
= [x]

thus θ(b1, . . . , bn, x) ∈ X̃.
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