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ABSTRACT: Solving optimal control problems for nonlinear partial differential equa-
tions represents a significant numerical challenge due to the tremendous size and
possible model difficulties (e.g., nonlinearities) of the discretized problems. In this
paper, a novel space-mapping technique for solving the aforementioned problem
class is introduced, analyzed, and tested. The advantage of the space-mapping ap-
proach compared to classical multigrid techniques lies in the flexibility of not only
using grid coarsening as a model reduction but also employing (perhaps less nonlin-
ear) surrogates. The space mapping is based on a regularization approach which, in
contrast to other space-mapping techniques, results in a smooth mapping and, thus,
avoids certain irregular situations at kinks. A new Broyden’s update formula for
the sensitivities of the space map is also introduced. This quasi-Newton update is
motivated by the usual secant condition combined with a secant condition resulting
from differentiating the space-mapping surrogate. The overall algorithm employs
a trust-region framework for global convergence. We highlight some of the issues
involved in the computations and we report a few illustrative numerical tests.
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1. Introduction

Let us assume that we are interested in optimizing some objective related
to physical phenomena simulated by a system of differential equations. We
might be trying to determine unknown system parameters by matching ob-
servable data, or we might want to control properties of the system so that
its state matches a given desired profile. Let us further assume that our goal
is to minimize a smooth function g : X C R" — R, evaluated by accurately
solving the discretized system of differential equations that models the un-
derlying physical phenomena. Given the computational complexity involved
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in simulating the system, the model g might be expensive to evaluate, and
some alternative smooth function g : X C R" = R is assumed available at a
cheaper cost, by solving the system less accurately or by using some form of
surrogate. We will call g the fine model and g the coarse model. Similarly,
X and R" will be called the fine domain and fine space, respectively, and X
and R" the coarse domain and coarse space, respectively. We will assume
that X and X are open domains.

The space-mapping technique provides an attractive framework to improve
the use of the coarse model § as a surrogate for the optimization of the fine
model g. The space-mapping surrogate is of the form § o P where P, the
so-called space mapping, attempts to match, in the coarse space, the fine
model values and/or their responses.

The space-mapping technique was introduced first by Bandler et al. [5]
in 1994. The idea of space mapping has been developed along different di-
rections and generalized to a number of contexts. To overcome some of
its inherent difficulties, techniques from nonlinear optimization have been
incorporated. One of the problems lies in the information necessary to com-
pute the sensitivities (or the Jacobian) of the space mapping which involves,
among other things, (possibly expensive) gradient information of the fine
model. Bandler et al. [6] suggested the use of Broyden’s method to construct
linear approximations for the space mapping. This space-mapping Broyden’s
method has been then enhanced by Bakr et al. [2] with the application of
trust regions for globalization. These and other approaches are reviewed in
the papers Bakr et al. [3, 4]. See also [13, 26]. The reader is further referred
to the special issue on surrogate modeling and space mapping that has been
recently edited by Bandler and Madsen [7].

In this paper we are concerned with the application of the space-mapping
technique to control problems for partial differential equations (PDEs). The
problem under consideration is the following:

minimize J (y,u) over (y,u) € W x U, (1a)
subject to A(y,u)y + C(y,u) =0 in Q + boundary conditions, (1b)

where J : W x U — R is a sufficiently smooth objective functional, A(y, )
denotes a second order partial differential operator, C(y,u) is a possibly
nonlinear mapping, and €2 is a bounded domain in R". Above W, U are
appropriate Hilbert spaces and y is referred to as the state variable. The
variable u is the control variable. We assume that for every u € U the state
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equation in (1b) admits a (unique) solution y = y(u) € W. Using y(u) we
can consider the reduced problem

minimize Jreq(u) = J (y(u),u) overu € U (2)

instead of (1).
One instance of the model problem (1) is given by

minimize 3(jy — yd”%z(n) + g”“”%m) over (y,u) € Hg(2) x L*(Q),
subject to — Ay + f(y) =u in Q= (0,1)?

where y; € L*(Q), § > 0is fixed, and f denotes a sufficiently smooth function;
see, e.g., [18, 19]. Obviously, we have A(y,u) = —A and C(y,u) = f(y) — u.
Here, H}(€2) and L?(€2) denote Sobolev and Lebesgue spaces; see, e.g., [12].

Another instance fitting the general model problem (1) is given by output
least squares formulations of parameter identification problems. In this case
one aims at determining a quantity w, which is not directly accessible to
measurements, by fitting the measured data y4. Frequently, the relation
between u and y can be described by a semilinear elliptic PDE:

—div(e(w)Vy) + C(y,u) =0in Q, y € Hy(Q).

Hence, A(y,u)y = — div(e(u)Vy), where e is a possibly nonlinear mapping.

In [21, 22, 24] a multigrid approach (algorithm MG/OPT) to discretizations
of minimization problems of type (1) is considered. In a two grid approach,
the algorithm combines a prescribed number of iterations of a minimization
algorithm on the fine grid with high accuracy solves of a slightly modified
problem on the coarse grid. Prolongation and restriction operators achieve
the transport of coarse grid solutions to the fine grid and wvice versa. Our
space-mapping approach, however, allows more flexibility in the sense that
we may not only consider a coarse grid discretization of the underlying op-
timization problem, but we can also use a surrogate model which is even
simpler to solve than the discretized problem on the coarse grid. This is of
particular importance in cases where the coarse grid approximation is still
difficult to handle due to, e.g., problematic nonlinearities and /or model com-
plexities. Also, the surrogate idea applies without grid coarsening. In fact,
we may want to replace a difficult problem by an approximating simpler one
on the same (fine) grid. In addition, the trust-region based approach that
we use is globally convergent in the general nonconvex case while MG/OPT,
as outlined in [21, 22, 24], requires convexification to enforce descent.
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The outline of the paper is as follows. In section 2 we introduce a new
smooth space-mapping technique. The key idea is to utilize regularization
techniques of Tikhonov-type. This approach is a remedy to problematic non-
differentiabilities and nonuniquenesses in space mapping. Section 3 gives a
comparison between a nonsmooth space mapping previously suggested by
Vicente [27] and the smoothed one introduced in this paper. In section 4
the space-mapping algorithm of Bandler et al. [2, 6] is outlined in our space-
mapping concept. It is based on a Broyden-type approximation of the sensi-
tivities of the space mapping and on a trust-region type globalization. The
focus of section 5 is on a new Broyden’s update reflecting the approximation
requirements induced by the sensitivities of the space mapping and by its
use in the gradient of the space-mapping surrogate. The application of our
new space-mapping approach to optimal control problems governed by par-
tial differential equations is the core of section 6. In section 7 we consider
computational aspects with respect to coarse and fine model derivatives. A
report on numerical test runs is given in section 8. We end this paper with
some conclusions and prospects of future work.

2. A new smooth space mapping

We introduce in this paper a new definition of space mapping P : X — X
as follows:

P(o) = axganin { 317@) - @)l + 31060~ [ € X[,

where a > 0 is a smoothing parameter whose role will become clear later.
We assume that the argmin operator returns a single minimizer, in other
words, that P is a point-to-point mapping. Here r» and 7 are some operators
that map X and X into some common space R? where the values of fine and
coarse variables can be compared against each other. An illustration of r and
7 is given in section 6. In the definition of the space mapping, M isa p X p
symmetric positive definite matrix and || - ||as is the ellipsoidal norm defined
by |l2llas = [|M3 2|2

The space mapping P defines a surrogate gp = g o P for the fine model g.
One of the aims of space mapping is to minimize the surrogate gp instead of
minimizing g:

minimize gp(x) = (30 P)(x) = 9(P(x))
over x € X.
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The effect of the smoothing parameter a becomes clearer by taking a close
look at the first order necessary conditions of problem (3):

aDI (#)M(#(#) - r(2)) + [3(2) — 9(@)|V(@) = 0, (@)
with & = P(z). Now, we differentiate (4) with respect to :
aD;()TM (D) Dp(x) — Dy (2)) + aD2(&; M(7(3) — r(2))) De(z) +
Vi(#) (Vi(&) ' Dp(z) = Vg(2)') +[3(2) — 9(2)]V74(2) Dp(z) = 0,
where D?(%; z) is the derivative of D;(%)z with respect to Z. So, one obtains
G(z)Dp(z) = aDi#)"MD,(z) +V§(z)Vg(z)',
where
G(z) = a(D,a(ﬁ)TMDf(:f:) + D2(i; M(#(2) —7'(:1:))))—}—
9(2) — 9(@)IV*3(2) + V4(2)V4(2) ",
with £ = P(z). The following theorem summarizes the basic smoothness

properties of the surrogate gp = g o P.

Theorem 2.1. Let g, g, v, and 7 be continuously differentiable functions in
their domains. Assume that P is a well-defined point-to-point mapping from
X to X.

(1) Then gp is reqular in X (i.e., gp has one-sided directional derivatives
in X ).

(2) In addition, let § and 7 be twice continuously differentiable in X. If
a 1s such that G(z) is uniformly nonsingular in X, then gp is contin-
uwously differentiable in X.

Proof: The fact stated in (1) comes directly from the properties of marginal
or value functions (see, e.g., [25]). The proof of (2) lies in the informal
derivation given before the theorem. u

3. Comparing smooth and nonsmooth approaches

Let us further study the smoothing effect of @« > 0 by comparing our
new approach to the approach introduced by Vicente [27], where the space
mapping P is defined as

P(z) = argmin {%[ﬁ(i) —g(z))?

5:65(} (5)
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if S(z) ={% e X | §(z) = g(z)} is empty, and as

P(z) = argmin{%”i‘ —z|3 st. §(z)=g(z) |z € X} (6)

if S(z) is nonempty. In this setting it is considered that n = n = p and
that r and 7 are the identity operators. It is proved in [27] that if g and
§ are continuously differentiable functions and if P is point-to-point then
gp = §o P is a regular function, .e., a function that has one-sided directional
derivatives. The first order necessary conditions for (6) imply, under the
constraint qualification V§(P(z)) # 0, the existence of a Lagrange multiplier
A(z) such that

r—x+ Mz)Vg(x) = 0, (7)
with z = P(z). Nondifferentiability can only occur on the boundary of the
set {z | S(z) # 0}. When approaching the boundary of {z | S(z) # (0} from
its interior, a kink occurs when V§(P(z)) is approaching zero and P(z) is
not becoming close to z; in these situations |A(z)| tends to +o0.

The analog of (3) in the setting considered in this section would be

Plo) = argnin { §lle — 23+ J0) —o@)? [ 2 X[, ()

2

A variation of this definition has been independently analyzed in [26]. In this
case G(z) would reduce to

G(z) = ol +[g(2) — g(=)]V*§(2) + V§(2)Vg(2)",

with £ = P(z). The smoothing role of @ becomes more evident in this
context. Moreover, condition (4) in the simpler case (8) reduces to
a(z —z) +[9(2) — 9(2)]Vg(2) = 0, (9)

with £ = P(z).

By comparing (7) and (9) and assuming that £ = P(z) and V§(P(z)) are
relatively close to z = P(z) and V§(P(z)), respectively, we can gain some
insight into the appropriate size for a:

a\z) ~ §(#) - g(x)

In figure 1 a simple model example is displayed. The fine and coarse models
are g(z) = z* and §(&) = (£ —1)*+1, respectively. The upper left plot shows
the fine and coarse models together with the surrogate go P, where P is given
by (5)-(6). In the upper right plot the new smooth surrogate is displayed in
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dashed lines. The third plot focuses on the behavior near the critical kink
at £ = 1. From the above relation between A(z) and §(Z) — g(x) and the
structure of (8) we infer that the smaller a becomes the closer the smooth
and nonsmooth surrogates are.
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FIGURE 1. Comparison between the nonsmooth surrogate [27]
and the new smooth surrogate.

4. Broyden’s space-mapping method

As we have shown in section 2, the computation of the sensitivities Dp(z)
requires first and second order derivative information of the coarse model
and, more importantly, first order derivatives of the fine model. Requiring
the gradient of the fine model can pose problems in many practical situ-
ations where the evaluation of the fine model is itself very expensive. To
overcome this difficulty Bakr et al. [6] introduced a Broyden’s approach to
space mapping, later globalized by Bandler et al. [2] with the help of the
trust-region technique. This Broyden’s space-mapping method using trust
regions is described next for the space-mapping definition (3).

The derivative Dp(z) appears both in the formula for the gradient of gp
given by

Vgp(z) = Dp(z)'V§(2)  withz = P(z), (10)
and in the local linearization of P at z, along the increment Ax, of the form
P(x + Az) ~ P(z)+ Dp(z)Ax. (11)

The Broyden’s updating formula provides a matrix B which can be used to
replace Dp(z) in both (10) and (11).
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Algorithm 4.1. Broyden’s space-mapping method
Choose zy € R", Ag > 0, By € R"*" and v1,m1 € (0,1).
0. Compute P(zy) by solving (8) with x = x.
Fork=0,1,2,...
(1) Compute an approzimated solution Axy for the trust-region subprob-
lem

minimize §(P(zy) + BrAz) subject to ||Az|| < Ag,

over Az € R".

(2) Compute P(zy, + Axy) by solving (3) with x = xp + Azy,.

(3) Compute the ratio between actual and predicted reductions:

ared(zy, Azxy) _ G(P(zr)) — g(P(zk + Azy))

pred(zy, Axy) G(P(zg)) — g(P(zk) + BpAzy)

(4) If pr > m then xpi1 = zp + Azg and Ay is chosen so that Agiq >
Ag. In this case, update Byyi1 using Broyden’s formula

APk — BkAZBk
A3

where APy = P(zy + Axyg) — P(xg).
(5) If p < m then zpy1 = xp and Ay = 1Ag. Keep By = By.

Pk =

Bri1 = B+ Azy, (12)

end

The initial values for A and B can be given by the classical choices By = I

if n =n and

1By V§(2o)|[3
|(By V§(20))T By V23 (20) Bo(By V§(&o))|
In section 6 we will introduce an appropriate choice for By in a problem
context where n # n.

The norm used to define the trust region can be chosen according to prac-
tical considerations, but it is typically either the ¢ or the £, norm. The
mechanism given in steps 4-5 to update the trust radius is quite elementary
but it suffices to prove global convergence of trust-region algorithms. More
sophisticated strategies can be found in [11].

The global convergence analysis is described in the next theorem, for which
the classical theory of trust regions provides a proof (see [11, Section 8.4] and

Ay =

(13)
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the references therein). It is not our goal to investigate this subject further
but only to list the ingredients necessary for global convergence.

Theorem 4.1. Let gp be a continuously differentiable function with uni-
formly continuous gradient in X and bounded below on L(zy) = {z € X|
gr(z) < gp(z0)}-

Consider a sequence {xr} gemerated by a trust-region method of the form
of algorithm 4.1, where the step Axy provides a fraction of the Cauchy
decrease [11, section 6.3] and the Hessian used in the trust-region model
G(P(zr) + BrAx) 1s uniformly bounded. Finally, let By, satisfy Carter’s con-
dition ([9] and [11, section 8.4.1]) for all k:

vaP(xk) - B;V@(P(xk))ﬂ < Kfmdc(l - 771)
1By Va(P(zk)) - 2

where kmge € (0,1) is the fraction of the Cauchy decrease achieved by the
step Azy. Then

(14)

lim [[Vgp(ei)]| = 0.

k—+o0

We remark that the use of the exact sensitivities of P, in other words the
use of By = Dp(xy), trivially satisfies (14).

5. A new update for the Broyden’s space-mapping
method

The Broyden’s update (12) is the good Broyden’s update for solving sys-
tems of nonlinear equations [14]. However, the goal in space mapping is not
to solve the system P(z) = 0, but rather to exploit the minimization of the
surrogate gp = go P. Note that the derivative Dp(z) appears in the formula
for the gradient of gp given in (10). Our goal is to modify Broyden’s formula
to better reflect the use of Dp(z) in the formula for Vgp(z).

The good Broyden’s formula is a rank one update B of Bj that satisfies
the secant’s equation

The matrix B replaces the role of Dp(zi) in
P(:L‘k) ~+ Dp(ﬂ?k)A:Ek ~ P(:Uk -+ A:Ek)

Now, we also want to use B to approximate the role of Dp(zy) in (10),
from iteration k to k + 1:

§(P(z1)) + (Dp(z) Vi(P(z1))) Az, ~ §(P(ay + Azy)).



10 M. HINTERMULLER AND L. N. VICENTE

This motivation leads to the new secant’s condition
Vi, BAz, = Agy, (16)
where Vgr = V§(P(zy)) and Agy, = §(P(zr + Azy)) — g(P(zy)). The simul-
taneous satisfaction of (15) and (16) is possible only if
Vi AP, = Ag,
a condition that would in turn reflect
Vi(P(ox))" (Plor + Avy) — P(zi)) ~ §(P(or + Azy) — (Plar)). (17

It is unlikely that (17) is satisfied, and therefore unreasonable to compute B
based on the simultaneous satisfaction of (15) and (16).

A way to circumvent this problem is to relax (15), by determining B as
the optimal solution of

1
minimize EHBAwk—APkH% subject to Vg§s BAzy = Agy (18)

over B € R"*" The following proposition gives a characterization of the
optimal solution of problem (18).

Proposition 5.1. Let Az and V gi be nonzero vectors. The optimal solution
B* of (18) satisfies
Agr — Vi AP

B*A:Ek — Apk = ||ng||%

V.
Proof: Let us rewrite problem (18) as
1
minimize §|\Vkv — AP||5 subject to Vg Viv = Agy (19)

over v € R" with the help of the change of variables V(i—i)n+j = Bij, 1 =
1,...,n, 7 =1,...,n. The rows of the n X nn matrix V; are composed by
the elements of Az and by (72 — 1)n zeros. The matrix Vj has full row rank
because Axy # 0.

From the assumptions on Azy and Vg we know that V,' Vg # 0. The
first order necessary conditions for (19) can then be stated by assuming the
existence of a Lagrange multiplier Az such that

V' Viv = V,TAP, + MV, Vg = 0.
Since V;' has full column rank, we obtain
Viv— AP, + MVagr = 0. (20)
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By multiplying this equation on the left by Vg, and using the problem’s
constraint in (19), we get
Ag — V.@]IAPIC + )‘kHng”g = 0. (21)
Thus, (20) and (21) together imply
Agr — Vgp AP,
1V |3
The proof is completed by returning to the formulation (18). |

Vkv — APk = v.@k

Proposition 5.1 suggests a perturbation for the right-hand side of the se-
cant’s equation (15):
Agy — Vi AP
1V 313

For numerical purposes it might be advantageous to reduce the size of the
new term that is added to AP;:

BAz, = AP, +

Vg

Agr — VQ;AP/G
1V gxl|3

with oy € (0, 1], depending on the impact that ¢ has in the definition of the
space mapping P. The new Broyden’s update is therefore given by

m - BkASL'k
1Azkl3

Notice that if we allow oy = 0 in (22), then the new Broyden’s update
becomes the classical Broyden’s update as discussed, e.g., in [14]. In section 8
we will see that, for appropriate choices of o3 € (0, 1), the new Broyden’s
update leads to better numerical results than the classical one for an instance
problem of optimal control of PDEs.

A\P/k = AP, + o, Vi, (22)

Bri1 = Bip+ Aw;—

6. Application of the space-mapping method for optimal
control of PDEs

In this section, we apply the space-mapping approach introduced in sec-
tion 2 to the reduced problem (2). Let h and H with H > h denote mesh
sizes of discretizations of (2) yielding the fine model space U, = R™ and
the coarse model space Uy = R™. We have n = np, X = Uy, n = np,
and X = Up. For the ease of exposition we only argue for an L%-setting
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with standard inner product. Thus, by rescaling on the discrete level we
essentially have to deal with /5 inner products only.

We introduce now discretized versions of the reduced problem (2). Let
y"(u") denote the solution of the discretized PDE in (1b) with mesh size h.
Moreover, let J" be an appropriate discretization of the cost functional J.
Then

Tiea(u") = JM(y" ("), u").
In an analogous way one obtains the coarse model J£d3
H( H H¢ H( HY  H
Jrea(u) = J7(y™ (u™),u).

In order to simplify the notation and to make it similar to the one used in
section 2, we will use J, Jrq, ¥, and u for fine model quantities, and J ) jred,
7, and 4 for coarse model quantities.

Since dim Uj, and dim Uy may differ, we define the linear restriction oper-
ator

Il Uy, — Uy,

which maps a fine model quantity to a coarse model quantity. Typically, the
definition of I, depends on (infinite dimensional) regularity properties of the
control variable. Here we adopt restriction operators coming from multigrid
methods; see [15, 23, 28].

The introduction of 1 1}3 enables us to define the space mapping P : U, — Uy
by

A

h

P(u) = argmin{ G |§(a) - Ky(w)ll}, +F .t
%|jred('&) - Jred(u)‘2 | U € UH}7 (23)

with fixed a1,a9, a3 > 0, and a3 + as + a3 > 0. Above, My represent

a symmetric positive definite matrix resulting from discretizing a function

space norm yielding ||;1)||§VI = 9T M;gj; analogously for || - ?\4 Moreover, K
Yy °

denotes a restriction operator, possibly different from I g Throughout the
rest of this paper we assume that P(u) is single valued for every u € U,
Instead of §(4) — KPy(u) we could have used Rj(a) — K% Ry(u), restricting
the matching of the coarse and fine state variables to parts of its discretized
domains.

The parallel to what has been introduced in section 2 is made by setting

r=u, =0, p=ni+ng, a=a =a,



SPACE MAPPING FOR OPTIMAL CONTROL OF PDES 13

r(u) = (K?fy(“) ) L @) = (?7("1) ) . and

{0
(M; 0
= ()
where nY, is the dimension of §(4).

Following the space-mapping philosophy presented in the previous sections,
we now replace the problem of finding a solution to the fine model

minimize Jyq(u) over u € Up, (24)
by finding a solution of the problem involving the surrogate Jrlzd = jred o P:
minimize JZ;(u) = Jea(P(uw)) over u € U, (25)

When solving (25) numerically, one has to evaluate J£d repeatedly which, in
turn, requires repeated evaluations of the fine model and repeated solutions
of the minimization problem (23). As we have seen before, given a fixed fine
model point u, the computational effort can be reduced by considering the
following first order approximation of the space mapping

P(u+ s) =~ Py(u;s) = P(u) + Dp(u)s € Uy, (26)

with Dp : U, — R"™ > denoting the Jacobian of P. Consequently, Jrlzd is
approximated around u by

A A

Jred(P(u + 8)) & Jred(Pr(u; 8))- (27)

The evaluation of Jeeq(Pr(u; s)) in (27) requires only the computation of the
action of Dp(u) on s.

The calculation of the gradient of JZ,(u) in (25) involves Dp(u) in the
following way

VJE (u) = Dp(u) ' Viea(d)  with & = P(u). (28)

If we use the approximation (26) for P centered at u as a way of computing
a step s by minimizing Jreq(P(u; s)) in (27), one also needs the evaluation
of (28). In fact, VJE (u) is the gradient of Jyeq(Ps(u;s)) with respect to
the increment s. The evaluation of VJZ (u) requires the computation of the
action of Dp(u)T on V().
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6.1. Computation of the sensitivities of the space mapping. In order
to characterize Dp(u) or Dp(u)s we need to consider the first order necessary
conditions of (23), given by

a1 Dy(a) " My (5(@) — Kfyy(u)) + aaM; (4 — Tu) +

03[ Jred (1) — Jeea(w)]VJeea () = 0, (29)

with & = P(u). Above Dy(u) denotes the Jacobian of g(a) with respect to
. We obtain the characterizing equation for the sensitivities of the space
mapping P by differentiation of (29) with respect to w. This results in

a1 Dy (@) " My (Dy (@) Dp(u) — KfrDy(u)) +
ou Hy (5 My (3(@) — Khyy(u)) D)+
Ongﬁ (Dp(u) — II,}) +
05V Jea() (VJeea(@) Dp(w) = Vrea(w)") +

a3l Jred(@) — Jrea(u)|Hj (4)Dp(u) = 0, (30)

with & = P(u). In the above equation Hj(4;z) denotes the derivative of
Dy(w)z with respect to @, D,(u) represents the Jacobian of y(u) with respect

to u, and H; 1is the Hessian of J,q. Let
Jred

Gpy = o1 Dy() " MyDy(a) + o Hy(t; My((6)) — Kyy(w)))+
ag M+
at3[Jred (@) — Jeea(w)]H . (2) + a3V Joea(@) V Jrea () T,
with @ = P(u), and
rp) = 01Dy(0) T My KDy () + g My T+
3V Jred (2)V Jrea(u) T,

also with & = P(u). This notation allows us to write (30) in a more compact
way as

Gpw)Dpr(u) = 7p()-
For given s € U}, let us define

spw) = Dp(u)s and  rp,) = rp()s.
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Then, the action of Dp(u) on s, given by sp(,y = Dp(u)s, satisfies

GP(u)SP(u) = ’r‘f;(u) in UH.

We point out that in the case where the PDE on the coarse level is linear,
one has Hy; = 0 and the expression for G p(,) simplifies considerably.

6.2. A practical Broyden’s space-mapping method for optimal con-
trol of PDEs. Now we adapt the Broyden’s space-mapping method, intro-
duced in [2, 6] and described in algorithm 4.1, to optimal control of partial
differential equations using the setting and notation chosen in this paper for
these problems.

Before we describe the algorithm, we need to adapt some of the notation
of sections 4 and 5 to the optimal control framework. In fact, let

Vi = Vidwea(P(uwr)),

and

A A ~

AJfé}d = Jred(P(uk + Auk)) — Jred(P(Uk))-

As before, we have AP, = P(ux+Au;)—P(uy), and we use the new Broyden’s
update introduced in section 5 with oy € (0, 1]:

— AJE —(VJE)TAP, _ -
AP, = AP + op—2d (Yk redQ) vl (31)
IV Tallz

Algorithm 6.1. Broyden’s space-mapping method for optimal control of PDEs

Choose uyg € R* = R™, Ay > 0, By € R**" = R X" gnd v, m € (0,1).
0. Compute P(uy) by solving (23) with u = wy.

For k=0,1,2,...
(1) Compute an approzimated solution Auy for the trust-region subprob-
lem
minimize §(P(ux) + BrAu) subject to ||Aul| < Ay, (32)

over Ay € R" = R".
(2) Compute P(uy, + Auy) by solving (23) with u = uy + Auy.
(3) Compute the ratio between actual and predicted reductions:
ared(uy, Auy) _ G(P(ug)) — g(P(ur + Auy))
pred(uy, Aug) G(P(ug)) — g(P(uk) + BrAuyg)

Pk =
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(4) If pr > m then ups1 = up + Aug and Ay is chosen so that Agiq >
Ag. In this case, update Byi1 using Broyden’s formula

m — BkAuk
1 Auk]l3

where APy is given by (31) with AP, = P(uy, + Auy) — P(ug) and
o € (0, 1] Put P(uk+1) = P(uk + Auk)

(5) If pr < m1 then uxyy = ug and Agy1 = 1A Keep By = By and
P(uk+1) = P(uk)

Biyi.1 = B+ A’U/;lc-, (33)

end

The comments made about the norm used to shape the trust region and
about the mechanisms to manage the size of the trust radius remain pertinent
here. When H = h the initial value for B can be given by the classical choice
By = I,,, with I,,, the nj X n; identity matrix. When H > h we can choose
By = II;. The initial trust radius might be set as in (13).

In analogy to the Broyden’s space-mapping method of section 4 one would
expect that

A

9(P(ut)) = Jrea(P (us)) (34)

and

g(P(uk) + BkAu) = Jred(P(uk) + BkA’U,) (35)
However, in the case where H > h, this last choice would result in an under-
determined problem in step 1 of the algorithm, in the sense that Au € R™ is
a fine grid quantity whereas § is defined in the coarse grid setting (yielding a
singular Hessian in Jyeq(P(uy)+BrAuw)). There exist two immediate remedies
to this situation.
(i) One possibility is to use

A

§(P(ur) + Bydu) = Jua(P(ur) + Brlu) + 2 s + Au—uglly,,  (36)

and

. 5 8

§(P(ur)) = Jrea(P(ur)) + 5 lwr — uall, (37)
where v > 0 and ug denotes some reference value for the expected optimal
control. For instance, uy can be obtained by prolongating coarse grid solu-
tions (easy to obtain) to the fine grid. The parameter 7 plays the role of a
regularization parameter which penalizes deviations of u; + Au from ug. In
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our numerical tests, v is chosen according to the mesh sizes H and h in the
following way:
y=cy(1—h/H) with 0<c¢, <1

Note that when H = h we have v = 0 and no regularization takes place
(and the coarse model in step 1 is likely not under-determined in the sense
discussed above).

(ii) An alternative remedy, using the original choices (34)-(35), is given by
solving an approximate problem of the type

minimize §(P(uy) + BrIf' Ad) subject to ||Ad|| < Ay (38)

instead of problem (32) in step 1. By using a restriction operator, the inde-
pendent variable Au is mapped to a fine grid quantity and the new problem
is usually well-determined. Again, whenever h = H we may choose I = I,,,,
and problem (38) becomes the original problem (32).

Both remedies have additional costs. The first one requires the compu-
tation of the reference value uy and the second one the application of the
restriction operator [ ,fI . However, in the latter case only a ngy-dimensional
problem has to be solved.

7. Computation of coarse and fine model derivatives

7.1. Adjoint calculation of the coarse model gradient and Hessian.
The computation of the gradient VJeq(@) can be carried out by the so-called
adjoint technique. In the sequel we briefly explain some of the details.

Let E(j,4) = 0 denote the discretized PDE on the coarse grid. Further
let Eg, E; denote the partial Jacobians of E with respect to ¢ and u, re-
spectively. From the assumption that the state equation admits an unique
solution y(u) for u € U, we infer that there exists an unique §(u) such that
E(§(),4) = 0 and that E;(§(4), @) is invertible (at least for sufficiently small
H). Differentiation of E(§(a), %) = 0 with respect to @ yields

Ey(9(a), @) Dy(a) + Eq(9(a),a) = 0. (39)
Hence, we obtain from (39)
Dy(a) = —Ey(§(a), &)~ Ea(§ (@), @). (40)

From the definition of jred we deduce that
Vdeea(t) = VaJ (§(4), @) + Dy() "V (9(0), @), (41)
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where ng , VaJ represent the partial derivatives of J with respect to the
first and second argument, evaluated in (41) at (g(u), ). Utilizing (40) in
(41) yields

A A A

Vidrea(it) = Vad (§(0), &) + Ea((t), &) p(t) (42)
with
Ey(9(a), @) p(a) = —VyJ (§(a),d). (43)

Equation (43) is the so-called (discrete) adjoint equation. For computing
V Jeed(it) one can proceed as follows: Given 4 solve the state equation for
y(w), then solve the adjoint equation (43) for p(4), and finally compute the
gradient according to (42).

By using the definition

. = (5,

ng

it is possible to rewrite (41) as
V(@) = W(5(@),8)"VJ(§(a), ).

Also, it is possible to show (see, e.g., [16]) that the Hessian of the coarse
model Jieq(@) is given by

ered ('LAL) = Hﬁ(a7 ng(g](ﬁ), ’&)) + W(’g(ﬁ), a)THj(g(ﬂ)7 ?AL)W(@)(@), ﬂ)

When the state equation in (1b) is linear, i.e., when E(g,4) = Ly + M —
f where M and L are suitable matrices Wlth L invertible and f a coarse
model vector, and when the cross derivatives Jy(-) and Jy;(-) are zero, one
can simplify considerably the expression for the Hessian of the coarse model
Jred(). The assumption Jya(-) = Jag(-) = 0 is satisfied for the commonly
used objective functional of tracking type, i.e., for

T (y,u) = 3lly — de%Q(Q) + g”UH%m)

with y; € L*(Q) and 6 > 0 fixed. Under the simplified assumptions of this
paragraph, the model Hessian becomes

~

H; (@)= L7 Jy(L~

A ~

Yf = Ma), )L™ + Jaa(L7Y(f — Ma), ).

b{)



SPACE MAPPING FOR OPTIMAL CONTROL OF PDES 19

7.2. Approximation of the fine model gradient. The gradient V.J,q
of the fine model can be computed also by using the adjoint technique of
section 7.1. Per each gradient evaluation, this technique requires one solve
for the (possibly nonlinear) state equation and one for the (linear) adjoint
equation.

Since we are working on the fine model these evaluations might be ex-
tremely costly. One way to reduce or avoid fine model solves is based on
restriction operators I%; and their analogues, prolongation operators I ,fI :

Alternatively, each fine model gradient evaluation can be calculated by a
hybrid approach based on a fine model adjoint solve and a coarse model solve
of the state equation.

In the sequel we describe these techniques for computing V J..q depending
on whether H > h (and both fine and coarse models are nonlinear) or H = h
(and the coarse model is linear). We present this material because of its
relevance in the context of this paper despite the fact that we do not make
use of any approximation to the gradient of the fine model in our numerical
testing.

7.2.1. The case H > h (fine and coarse models are nonlinear). Let I} denote
the (linear) prolongation operator from Ug to Uj,. Analogously, one also
introduces K{7. In the case where the fine and the coarse models of the PDE
are nonlinear, a suitable approximation of the gradient is given by

VI (y) = TV Jrea(Ihu), (44)

1.€., we restrict the fine model point v € Uy to the coarse setting Uy by
using %, evaluate the gradient on the coarse level by means of the adjoint
technique, and then we prolongate the coarse model gradient back to the fine
model setting with the help of I,

Alternatively, one can use a hybrid approach which combines coarse and
fine model solves and which is still numerically less expensive than the full
fine model approach. The hybrid technique is particularly useful when the
fine model involves nonlinearities. In fact, we can compute

VI (W) = Vo (K3 g(Tu), w) + E(Kq'§(Tgu),u) 'pu)  (45)

with
E,(Kf9(Ihu),u)Tp(u) = -V, J(Kfj(Ihu), ). (46)
The advantage of this strategy is related to the fact that the nonlinear state
equation must be solved only on the coarse grid for a given Iu. On the
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fine grid, one has to solve the (linear) adjoint equation. Typically, solving
linear equations is significantly less expensive than computing solutions to
nonlinear ones. Thus, the hybrid approach is less expensive than computing
V Jiea by the adjoint technique on the fine grid.

Using (44), or the hybrid approach in (45) and (46), yields the approximate
sensitivity Dy (u) and the approximate action sp;,). We remark that the
accuracies of these approximations can by controlled by tuning the mesh size
H. In fact, in the extreme case H = h with I, = I# = I, (I,,, the n; x ny,

identity matrix) only exact quantities are computed.

7.2.2. The case H="h (coarse model is linear). In this case (45) would
require the full adjoint technique on the fine grid. In order to reduce the
computational burden, one may consider as the coarse model a linear ap-
proximation of the discretized PDE. If the linear equation can be solved
efficiently (e.g., by fast Fourier transformation techniques), then a suitable
approximate gradient is given by

Vit (@) = VuJ (§r(w),w) + Eu(gr(u), v) 'p(u)
with
Ey(gz(u),u) 'p(u) = =V, J(jr(u), v)
and §j7(u) denoting the solution of the linear coarse model E(§, u) = 0. Here

we assume ¢ = u. Clearly, the approximation properties depend now on the
error between the linear coarse model and the nonlinear fine model.

8. Numerical experiments

Let us now report some numerical results attained by the Broyden’s space-
mapping method for the optimal control of PDEs. Our test examples are of
the following type:

minimize 3|y — yd||%2(m + g”“”%z(g) over (y,u) € H}(Q) x L*(Q), (47a)
subject to —vAy + f(y) =u in Q= (0,1)? (47b)

with y4 € L*(Q) and v,§ > 0. Here f denotes some nonlinear mapping in
y. Note that the parameter v > 0 allows us to emphasize the nonlinear term
f(y) by considering 0 < v < 1.

We use a standard five point stencil for discretizing the Laplacian with
homogeneous Dirichlet boundary conditions. The prolongation operators
I7T KH and restriction operators I, K% are chosen as follows: Motivated
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by an a posteriori analysis (in function spaces) of a solution (y,u) to our
control problem, see, e.g., [1], we choose K} = I and K = I%. The
interpolation from the coarse to the fine grid, i.e., I ,{f , is achieved by a nine
point prolongation. Its stencil is symbolized by

IERl
Iy

The restriction 17 is the adjoint of the nine point prolongation with symbol

N[ = =t N[

I
= |24 2
16 11 9 1

For more details on prolongation and restriction operators of the above kind
we refer the reader to, e.g., [15].

For the numerical solution of the discretized counterpart of the nonlinear
partial differential equation involved in (47) we use the Newton-CG method
[20]. The discrete linearized PDE as well as the discrete adjoint equation are
solved by means of the CG method.

In the Broyden’s space-mapping method for optimal control, i.e., algo-
rithm 6.1, we use the following adjustment strategy for the trust radius Ag:
Let 0 <m <m <1, v € (0,1), and & > 1 be given. If pp > 1, then
accept the current step and enlarge the trust radius by Axy; = & A, If
m < pr < M2, then the current step is accepted and the trust radius is kept,
i.e., Apr1 = Ag. Finally, whenever pr < 71, then the trust radius is reduced
by Ari1 = 11Ar without accepting the current step. In the examples re-
ported below we used n; = 107° 1, = 107%, 74 = 0.25, and & = 2. We
initialize the trust radius as Ay = 50.

The Broyden’s update procedure of algorithm 6.1 is based on a full lim-
ited memory version of Broyden’s method [8]. In fact, since nj, is typically
very large, and Bj, tends to be a dense matrix, storing By, is infeasible in the
context of optimal control problems for PDEs. Rather we store the vectors
{Au;}¥_, and {AP}*_, and perform the product Byv of the Broyden’s ma-
trix By by a vector v € R™ using vectorxvector-multiplications only. We
initialize the Broyden’s matrix as By = I}.

In the examples below the fine model consists of the fully nonlinear PDE
discretized on the fine grid with mesh size h, resulting in n;, unknowns in the
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reduced fine model problem (24) with U, = R". The coarse model is given
by the discretization of the linearized PDE on the coarse grid with mesh size

H. The linearization is performed with respect to gj;g which results in

vAj+ Dy(§h)g = @ — f(Gh) + Dy}l
with u, 9, gj,Tc € R"#. Above, the ny X ng-matrix A represents the discretiza-
tion of the operator —A with homogeneous Dirichlet boundary conditions on
the coarse grid with mesh size H. In all test runs reported below, we chose
ug = 0, gjg =0, and g),i = Iy, where y;, solves the discretized nonlinear PDE
for u = uy on the fine grid.

We use (36)-(37) for g in the trust-region subproblem in algorithm 6.1. The
reference value ug is chosen as ug = 0 in all iterations. The corresponding
regularization parameter  is specified in the examples below. The norm
used to define the trust region is the £, one.

Algorithm 6.1 was stopped when

max{ |pred(ug, Aug)|, HHered(P(Uk))Hz, h||Aug|]2} < tol,

where tol= e, H ||V Jyea(P(ug))|2 + €2, with 0 < e; < €. Unless otherwise
specified, we chose €; = 107 and e; = 10714,

We have used a Matlab implementation of the interior-point trust-region
algorithm (IPTR) [17], provided by these authors, for the solution of the
minimization problems subject to bounds on the variables, namely problems
(23) and (32), the latter being a quadratic programming problem with simple
bounds. This algorithm uses an affine-scaling approach [10] to deal with
the simple bounds. The linear algebra involved in the solution of the trust-
region subproblems is matrix-free and relies on the use of the linear conjugate
gradient method.

8.1. Example 1. The first example is related to a simplified Ginzburg-
Landau model for superconductivity [18, 19]. The data are as follows:

Yqg = %sin(27m:1) sin(2mzy) exp(2z1),  fly) =v° + v,
and § = v = 1073. Figure 2 shows the optimal control and the optimal state
of (47), with data as specified before, computed on a 255 x 255 grid.
In table 1 we report the results obtained from our space-mapping algo-
rithm 6.1 with a5 = ap = 100, a3 = 107, and v = 1073(1 — h/H). The
parameter oy (see (31)) was set to o = 0.1 for all k. By level we denote
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fine model optimal control, 255255 grid fine model optimal state, 255<255 grid
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F1GURE 2. Optimal control (left) and optimal state (right) for
the simplified Ginzburg-Landau model on a 255 x 255 grid.

the number of grid coarsenings, i.e., H = 2%"“h. Furthermore, #it de-
notes the number of iterations until successful termination, and CPU-ratio
represents the ration between the CPU-time required by the space-mapping
method vs. the CPU-time elapsed by IPTR when applied to the fine model
problem. The subscript fine corresponds to the results obtained from IPTR
for the fine model. From table 1 we can see that the new space-mapping

ny | level | ng | # it | CPU-ratio | #it fine
1272 3 |15°] 4 0.094 6
2557 | 4 [15%| 4 0.066 7
TABLE 1. Results of space mapping vs. fine model solution for
example 1.

method consumes less iterations and less CPU-time than IPTR for the solu-
tion of the fine model problem. We also point out that the CPU-time of the
space-mapping approach increases as the levels of coarsening decrease. For
instance, if h = 1/128 and H = 1/32, i.e., if we have two levels of coarsening,
then CPU-ratio = 0.153 compared to 0.094 for three levels of coarsening. By
decreasing the levels of coarsening, as expected, the accuracy of the space-
mapping solution is increased. This fact is further discussed in the following
paragraph.

In figure 3 we display the controls obtained by the space-mapping method
for ny, = 127% (left graph) and nj, = 2552 (right graph), respectively. Fur-
thermore, in figure 3, we plot the difference in absolute value between the
optimal controls obtained from the fine model and from our space-mapping



24 M. HINTERMULLER AND L. N. VICENTE

technique. The graphs in the second row of figure 3 show that the error

optimal control (space-mapping), 127127 grid optimal control (space-mapping), 255255 grid

P T

S 02 — 02

erroriny, 127x127 grid errorinu, 255x255 grid

FIGURE 3. Optimal controls obtained by algorithm 6.1 (upper
plots) and differences to the fine model solutions (lower plots) for
ny, = 1272 (left column), nj, = 2552 (right column), and ng = 152,
respectively.

between the space-mapping solution and the true solution of the fine model
behaves rather stably with respect to the coarse level. Indeed, the coarse
level for both results is H = 1/16 while the fine levels are h = 1/128 and
h = 1/256, respectively. In figure 4 we further investigate the dependence of
the error on the levels of coarsening. Now we use h = 1/128 and H = 1/32
which corresponds to level = 2 (compared to level = 3 previously). From the
graphs in figure 4 we conclude that the error is significantly reduced. Also,
the graph of the space-mapping solution appears to be smoother compared
to the ones in figure 3. This is related to the fact that the restriction and
prolongation operators approach the unit matrix as the level of coarsening
decreases.

In the following we briefly comment on the effect of the new Broyden’s
update (33). In table 2 we compare the new Broyden’s update with o, = 0.1
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optimal control (space-mapping), 127127 grid erorinu, 127:427 grid
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F1GURE 4. Optimal control obtained by algorithm 6.1 for A =
1/128 (left plot) and the difference to the fine model solution
(right plot) for level = 2.

to the classical Broyden’s update, i.e., o = 0 for all k. The results in

or | ny |level| ng | # it | CPU-ratio
0.11127%2] 3 [15%] 4 0.094
0.1]255%| 4 [15%| 4 0.066
0.0[127°] 3 [15%] 4 0.107
0.0[255%| 4 [15%]| 5 0.081

TABLE 2. Comparison between the new and the classical Broy-
den’s update for example 1.

table 2 indicate that the new Broyden’s update reduces the computation
time and, according to our numerical experience, sometimes also the number
of iterations of the new space-mapping algorithm. In general, we found that
the behavior of the new method depends on the choice of . In our test
runs for example 1 the choices o}, € [0.1,0.01) yielded results comparable
to o = 0.1 for all k. For o < 0.01 there was no significant difference
between the new and the classical Broyden’s update. The choice o > 0.1
typically degraded the performance of the method when compared to runs
with O = 0.1.

8.2. Example 2. The following example shows that the space-mapping
method benefits from eventual evaluations of the fine model. In fact, when
considering steps 2 and 4 of algorithm 6.1 we find that every computation
of the space mapping P is based on the matching of fine model solves. This
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fact is highlighted in our definition (23) of P, where u and y(u) are fine
model quantities. As a consequence, we expect that the space-mapping so-
lution yields a better approximation to the fine model solution than, e.g.,
prolongated coarse model solutions.

The data for example 2 are like for example 1 except for f. Now we have

fly) = 2 +y+ fy, with fo(z) = %sin(207r:131) sin(207zy) exp(2z1).

The zero order term fj induces oscillations to the optimal control as it can be
seen from figure 5, which displays the optimal control and the corresponding
optimal state for the fine model problem on a 127x127-grid. We ran algo-

fine model optimal control, 127127 grid fine model optimal state, 127127 grid

04 08 04" <
02—

F1GURE 5. Optimal control (left) and optimal state (right) for
example 2 on a 127 x 127 grid.

rithm 6.1 with a; = 0.75, ap = 0.1, a3 = 107, v = 2.25-107%(1 — h/H),
or = 1073 for all k, and level = 3.

Figure 6 shows (in the upper left part) the prolongated coarse grid optimal
control, i.e., Upo = K f u, where u is the optimal solution of the nonlinear
optimal control problem on the coarse grid, as well as the space-mapping
solution (in the upper right part). The figures in the lower part show the top
view of both solutions (left for prolongated and right for space mapping).
First of all, we point out that there is a significant difference in the scale of
both solutions, as it can be seen from the graphs in the first row of figure 6.
The space-mapping scaling is significantly closer to the fine model one. The
lower plots show that the space-mapping solution identified more of the fine
model resolution. This is a clear indication of what we mentioned before, in
the sense that fine model information has a beneficial impact on the quality
of the solution obtained by space mapping.
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prolongated optimal control optimal control (space mapping); 127127 grid

02 02

prolongated optimal control optimal control (space mapping); 127127 grid

01 02 03 04 05 06 07 08 09

FIGURE 6. Prolongated optimal control (left column) and space-
mapping solution (right column) for example 2.

9. Conclusions and future work

In this paper we have investigated the use of the space-mapping technique
in the numerical solution of optimal control problems governed by partial
differential equations. We have identified a space-mapping framework for
this purpose that allows the integration of different coarse models, arising
from linearizing and/or coarsening the fine model. The new definition for
the space mapping that we introduced uses the concept of Tikhonov-type
regularization as a way of finding the coarse (control and state) variables
closest to some corresponding fine model values. We have also suggested a
new Broyden’s update to approximate the derivatives of the space mapping,
with broad applicability to most of the existent space-mapping approaches.

A number of issues need to be further investigated. In this paper we have
not considered, for instance, optimal control problems with constraints on the
control variables like simple bounds. Adapting our approach to cover this
case is relatively straightforward but it would add another layer of complexity
in the numerical computations.
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A topic for future research is the use of more than one coarse model in
the space-mapping approach. The existence of, say, two coarse models with
increasing level of accuracy and cost of evaluation is an appealing idea in
some application problems. Another aspect that has not been considered
in this paper is the appropriate use of different optimization algorithms for
coarse and fine models along the spirit of multigrid methods.
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