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Universidade de Coimbra
Preprint Number 03–17

AN EXPONENTIAL INEQUALITY FOR ASSOCIATED
VARIABLES

PAULO EDUARDO OLIVEIRA

Abstract: Exponential inequalities have been an important tool in probability
and statistics. Versions of Bernstein type inequalities have been proved for inde-
pendent and for some dependence structure. We prove an exponential inequality for
positively associated and strictly stationary random variables replacing an uniform
boundedness assumption by the existence of Laplace transforms. As usual with this
dependence structure we need some conditions on the covariances of the variables.
These conditions are analogous to the ones assumed for version of the exponential
inequality for bounded associated variables already known. The proof uses a trun-
cation technique together with a block decomposition of the sums. The truncating
sequence must be well tuned with the decrease rate of the covariances and the sizes
of the blocks. A description of the behaviour of such sequences is given.
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1. Introduction
One of the main tools used for characterizing convergence rates in nonpara-

metric estimation has been convenient versions of Bernstein type exponential
inequalities. There exist several versions available in the literature for inde-
pendent sequences of variables with assumptions of uniform boundedness or
some, quite relaxed, control on their (centered or noncentered) moments. If
the independent case is classical in the literature the treatment of dependent
variables is more recent. The extension to dependent variables was first stud-
ied considering m-dependence or different mixing conditions. An exponential
inequality for strong mixing variables eventually was proved (Carbon [3]) us-
ing the same type of assumptions on the variables, besides the strong mixing:
uniformly bounded or some control on the moments. Naturally, these later
extensions included some extra terms on the upper bounds depending on
the mixing coefficients. An account of the main results briefly described be-
fore may be found in Bosq [4]. In another direction in controlling dependent
variables, versions of exponential inequalities are also available for martingale
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differences supposing the variables to be uniformly bounded (Azuma [1]) and,
more recently, only the existence of Laplace transforms (Lesigne, Volný [11]).
Another dependence structure that has attracted the interest of probabilists
and statisticians is association, as introduced by Esary, Proschan, Walkup [7].
For this dependence structure the idea of asymptotic independence is not so
explicitly stated as in mixing structures. For associated random variables
Birkel [2] seems to have been the first author to prove some moment in-
equalities. An exponential type inequality appeared much later in Ioannides,
Roussas [10] under the assumption of uniform boundedness and some con-
venient behaviour on the covariance structure of the variables. This result
inspired a method that produced almost sure consistency results in nonpara-
metric distribution function estimation, based on associated samples, with
description of rates (Henriques, Oliveira [8]). In another direction, with a
somewhat different method, exponential decay rates for nonparametric den-
sity estimation, also based on associated samples, were proved in Henriques,
Oliveira [9]. The present article presents an extension of the Ioannides, Rous-
sas’s [10] inequality dropping the boundedness assumption, which is replaced
by the existence of Laplace transforms.

The article is organized as follows: section 2 describes some auxiliary re-
sults and introduces the truncated variables used to approximate the orig-
inal variables, the corresponding tails and the block decomposition of the
sums; section 3 studies the truncated part giving conditions on the trun-
cating sequence to enable the proof of an exponential inequality for these
terms; section 4 treats the tails left aside from the truncation and, finally,
section 5 summarizes the partial results into a final theorem. As indicated,
the proof technique consists on a truncation which is then treated using a
blocking decomposition of the sums, together with a control on the tails of
the distribution, achieved assuming the existence of Laplace transforms.

2. Definitions, preliminary results and notation
We say that the variables X1, X2, . . . are associated if, for every n ∈ IN and

f, g :IRn −→ IR coordinatewise increasing,

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

)
≥ 0,

whenever this covariance exists.
For associated variables there exit some general inequalities justifying the

use of assumptions on the covariance structure. One of such inequalities,
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useful in the sequel, appears in Dewan, Prakasa Rao [6] and is a generalization
of an earlier result by Newman [13]. This inequality states a version for
generating functions of Newman’s [12] inequality for characteristic functions.

Lemma 2.1. Let X1, . . . , Xn be associated random variables bounded by a
constant M . Then, for every θ > 0,∣∣∣∣∣IE

(
eθ
∑n

i=1 Xi

)
−

n∏
i=1

IE
(
eθXi

)∣∣∣∣∣ ≤ θ2enθM
∑

1≤i<j≤n

Cov(Xi, Xj) .

This inequality was used in Dewan, Prakasa Rao [6] to prove an exponential
convergence rate for the nonparametric estimator of the density, but the
method used to control all the terms involved forced the authors to assume a
condition that is unattainable for associated variables. The same inequality
was later re-used in Henriques, Oliveira [9] to prove another version of such
exponential rate.

We quote next a general lemma used to control some of the terms appearing
in course of proof.

Lemma 2.2 (Devroye [5]). Let X be a centered random variable. If there
exist a, b ∈ IR such that P(a ≤ X ≤ b) = 1, then, for every λ > 0,

IE(eλX) ≤ exp

(
λ2(b − a)2

8

)
.

Next we introduce the notations that will be used throughout the text. Let
cn, n ≥ 1, be a sequence of nonnegative real numbers such that cn −→ +∞
and, given the random variables Xn, n ≥ 1, define, for each i, n ≥ 1,

X1,i,n = −cnII(−∞,−cn)(Xi) + XiII[−cn,cn](Xi) + cnII(cn,+∞)(Xi) ,

X2,i,n = (Xi − cn)II(cn,+∞)(Xi) , X3,i,n = (Xi + cn)II(−∞,−cn)(Xi) ,
(1)

where IIA represents the characteristic function of the set A. For each n ≥ 1
fixed, the variables X1,1,n, . . . , X1,n,n are uniformly bounded, thus they may
be treated using Lemma 2.1. Note that, for each n ≥ 1 fixed, all these
variables are monotone functions of the initial variables Xn. This implies
that an association assumption is kept by this construction.

The proof of an exponential inequality will use, besides the truncation
introduced before, a convenient decomposition into blocks of the sums. For
this purpose consider a sequence of natural numbers pn such that, for each
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n ≥ 1, pn < n
2 and define rn as the greatest integer less or equal to n

2pn
.

Define then, for q = 1, 2, 3, and j = 1, . . . , 2rn,

Yq,j,n =

jpn∑
l=(j−1)pn+1

(
Xq,l,n − IE(Xq,l,n)

)
. (2)

Finally, for each q = 1, 2, 3, and n ≥ 1, define

Zq,n,od =

rn∑
j=1

Yq,2j−1,n , Zq,n,ev =

rn∑
j=1

Yq,2j,n ,

Rq,n =
n∑

l=2rnpn+1

(
Xq,l,n − IE(Xq,l,n)

)
.

(3)

The proof of the main result is now divided into the control of the bounded
terms, corresponding to the index q = 1, and the control of the nonbounded
terms that correspond to the indexes q = 2 and q = 3.

3. Controlling the bounded terms
Given the definitions (1) and (2) it is obvious that |Y1,j,n| ≤ 2pncn, j =

1, . . . , rn. This enables the use of Lemma 2.2 to control the Laplace transform
of these variables. A straightforward application of this lemma produces the
following upper bounds.

Lemma 3.1. Let X1, X2, . . . be random variables. If Y1,j,n, j = 1, . . . , 2rn

are defined by (2) then, for every λ > 0,
rn∏

j=1

IE
(
eλY1,2j−1,n

) ≤ exp
(
2λ2rnp

2
nc

2
n

)
,

rn∏
j=1

IE
(
eλY1,2j,n

) ≤ exp
(
2λ2rnp

2
nc

2
n

)
.

As it was done in Ioannides, Roussas [10] and Henriques, Oliveira [8, 9] we
will be interested in controlling the differences between the Laplace transform
of a sum of variables and what we would find if the variables were indepen-
dent, which are the terms appearing in the left side of the inequalities stated
in the previous lemma. This control is achieved by summing the odd indexed



AN EXPONENTIAL INEQUALITY FOR ASSOCIATED VARIABLES 5

terms on one side and the even indexed terms on the other side, as was done
in Henriques, Oliveira [9].

Lemma 3.2. Let X1, X2, . . . be strictly stationary and associated random
variables. With the definitions (1), (2) and (3), for every λ > 0∣∣∣∣∣IE (eλZ1,n,od

)− rn∏
j=1

IE
(
eλY1,2j−1,n

)∣∣∣∣∣ ≤ λ2rnpne
2λrnpncn

(2rn−1)pn∑
j=pn+2

Cov(X1, Xj) ,

(4)
and analogously for the term corresponding to Z1,n,ev .

Proof : According to (3) and the fact that the variables defined in (1) are
associated we find, from a direct application of Lemma 2.1,∣∣∣∣∣IE (eλZ1,nod

)− rn∏
j=1

IE
(
eλY1,2j−1,n

)∣∣∣∣∣ ≤
≤ λ2rnpne

2λrnpncn

∑
1≤j<j ′≤rn

Cov(Y1,2j−1,n, Y1,2j ′−1,n) .

Using the stationarity of the variables it follows that

∑
1≤j<j ′≤rn

Cov(Y1,2j−1,n, Y1,2j ′−1,n) =

rn−1∑
j=1

(rn − j) Cov(Y1,1,n, Y1,2j−1,n) .

A further invocation of the stationarity implies that

Cov(Y1,1,n, Y1,2j−1,n) =

=

pn−1∑
l=0

(pn − l) Cov(X1,1,n, X1,2jpn+l+1,n) +

+

pn−1∑
l=1

(pn − l) Cov(X1,l+1,n, X1,2jpn+1,n) ≤

≤ pn

(2j+1)pn∑
l=(2j−1)pn+2

Cov(X1,1,n, X1,l,n) .
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We now analyze the term with the covariances using the Hoeffding formula:

Cov(X1,i,n, X1,j,n) =

=

∫
IR2

P (X1,i,n > u,X1,j,n > v) − P (X1,i,n > u) P (X1,j,n > v) du dv .

(5)
According to the truncation made, it easily follows that the integrand func-
tion vanishes outside the square [−cn, cn]

2. Moreover, for u, v ∈ [−cn, cn] we
may replace, in the integrand function, the variables X1,i,n, X1,j,n by Xi, Xj ,
respectively, so that

Cov(X1,i,n, X1,j,n) =

=

∫
[−cn,cn]2

P (Xi > u,Xj > v) − P (Xi > u) P (Xj > v) du dv ≤

≤
∫

IR2

P (Xi > u,Xj > v) − P (Xi > u) P (Xj > v) du dv = Cov(Xi, Xj) ,

due to the nonnegativity of the later integrand function, as follows from the
association of the original variables. Inserting this into the inequalities stated
before the lemma follows.

We may now prove an exponential inequality for the sum of odd indexed
or even indexed terms.

Lemma 3.3. Let X1, X2, . . . be strictly stationary and associated random
variables. Suppose that

n

p2
nc

4
n

exp

(
2n

pncn

) ∞∑
j=pn+2

Cov(X1, Xj) ≤ C0 < ∞ . (6)

Then, for every ε ∈ (0, 1),

P

(
1

n
|Z1,n,od| > ε

)
≤ (1 + 4C0) exp

(
− n2ε2

8rnp2
nc

2
n

)
, (7)

and analogously for Z1,n,ev .
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Proof : Applying Markov’s inequality and using the previous lemma we find
that, for every λ > 0,

P

(
1

n
|Z1,n,od| > ε

)
≤

≤ λ2rnpne
λ(2rnpncn−nε)

(2rn−1)pn∑
j=pn+2

Cov(X1, Xl) + exp
(
2λ2rnp

2
nc

2
n − λε

)
.

Optimizing the exponent in the last term of this upper bound we find λ =
nε

4rnp2
nc2

n
, so that this exponent becomes equal to − n2ε2

8rnp2
nc2

n
. Replacing this

choice of λ into the first term of the upper bound and taking into account
(6) it follows that

P

(
1

n
|Z1,n,od| > ε

)
≤

≤ 4C0 exp

(
− n2ε2

4rnp2
nc

2
n

)
+ exp

(
− n2ε2

8rnp2
nc

2
n

)
≤

≤ (1 + 4C0) exp

(
− n2ε2

8rnp2
nc

2
n

)
.

To complete the treatment of the bounded terms it remains to control the
sum corresponding to the indexes after 2rnpn, that is, R1,n.

Lemma 3.4. Let X1, X2, . . . be strictly stationary associated variables and
suppose that

n

pncn
−→ +∞ . (8)

Then, with the definitions made in (3), for n large enough and every ε > 0,
P (|R1,n| > nε) = 0.

Proof : As R1,n =
∑n

l=2rnpn+1

(
X1,l,n − IE(X1,l,n)

)
it follows that |R1,n| ≤

2(n − 2rnpn)cn ≤ 4cn, according to the construction of the sequences rn and

pn. Now P (|R1,n| > nε) ≤ P
(
4 > nε

pncn

)
and, using (8), this is zero for n

large enough.

We may now state a theorem summarizing the partial results described in
the lemmas of this section.
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Theorem 3.5. Let X1, X2, . . . be strictly stationary and associated variables
satisfying (6) and (8). With the definitions (1), (2) and (3) it follows that,
for every ε ∈ (0, 1) and n large enough,

P

(
1

n

∣∣∣∣∣
n∑

i=1

(
X1,i,n − IE(X1,i,n)

)∣∣∣∣∣ > ε

)
≤ 2(1 + 4C0) exp

(
− n2ε2

72rnp2
nc

2
n

)
. (9)

Proof : It suffices to write

P

(
1

n

∣∣∣∣∣
n∑

i=1

(
X1,i,n − IE(X1,i,n)

)∣∣∣∣∣ > ε

)
≤

≤ P

(
1

n
|Z1,n,od| >

ε

3

)
+ P

(
1

n
|Z1,n,ev| >

ε

3

)
+ P

(
|R1,n| >

nε

3

)

and apply the previous lemmas.

Note that (8) does not imply the convergence to zero of the upper bound
in (9). In fact, for this inequality to be really useful for proving almost sure
convergence we need to assume that

n

pnc2
n

−→ +∞ , (10)

as 2rnpn ≈ n. This assumption will then imply (8) as we have chosen cn −→
+∞. Nevertheless, (8) is sufficient to derive inequality (9).

4. Controlling the unbounded terms
The variables X2,i,n and X3,i,n are associated but not bounded, even for

fixed n. This means that Lemma 2.1 may not be applied to the sum of such
terms. But we may note that these variables depend only on the tails of the
distribution of the original variables. So, by controlling the decrease rate of
these tails we may prove an exponential inequality for sums of X2,i,n or X3,i,n.
For this control we will not make use of the block decomposition of the sums∑n

i=1

(
Xq,i,n−IE(Xq,i,n)

)
as the condition derived would be exactly the same

as the one obtained with a direct treatment (the upper bound derived would
be the same, up to the multiplication by a constant).
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We have, for q = 2, 3, recalling that the variables are identically distributed,

P

(∣∣∣∣∣
n∑

i=1

(
Xq,i,n − IE(Xq,i,n)

)∣∣∣∣∣ > nε

)
≤

≤ nP (|Xq,1,n − IE(Xq,1,n)| > ε) ≤ n

ε2 Var(Xq,1,n) ≤ n

ε2 IE(X2
q,1,n) .

Lemma 4.1. Let X1, X2, . . . be strictly stationary random variables such that
there exists δ > 0 satisfying sup|t|≤δ IE(etX1) ≤ Mδ < +∞. Then, with the
definitions (1), for t ∈ (0, δ],

P

(∣∣∣∣∣
n∑

i=1

(
Xq,i,n − IE(Xq,i,n)

)∣∣∣∣∣ > nε

)
≤ 2Mδne−tcn

t2ε2 , q = 2, 3. (11)

Proof : According to the inequality stated before this lemma it remains to
control IE(X2

q,1,n). Let us fix q = 2, the other possible choice being treated

analogously. We will denote F (x) = P(X1 > x). Now, using Markov’s
inequality it follows that, for t ∈ (0, δ), F (x) ≤ e−txIE(etX1) ≤ Mδe

−tx.
Writing the mathematical expectation as a Stieltjes integral and integrating
by parts we find

IE(X2
2,1,n) = −

∫
(cn,+∞)

(x− cn)
2 F (dx) =

∫ +∞

cn

2(x− cn)F (x) dx ≤ 2Mδ
e−tcn

t2
,

from which the lemma follows.

Note that for this step the association of the variables is irrelevant.

5. Main result
This last section only summarizes the results obtained. Besides the as-

sumptions already used we need an extra condition on the truncating se-
quence requiring a minimal increasing rate.

Theorem 5.1. Let X1, X2, . . . be strictly stationary and associated random
variables satisfying (6), (8) with c3

n > c′ n
pn

, for some c′ > 0, and there exists

δ > 0 satisfying sup|t|≤δ IE(etX1) ≤ Mδ < +∞. Then, with the definitions
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(1), (2) and (3), for ε ∈ (0, 1) and n large enough,

P

(∣∣∣∣∣1n
n∑

i=1

(
Xi − IE(Xi)

)∣∣∣∣∣ > ε

)
≤

(12)

≤
(

2(1 + 4C0) +
186 642Mδpnc

6
n

ε2

)
exp

(
− n2ε2

72rnp2
nc

2
n

)
.

Proof : Separate the sum in the left of (12) into three terms, apply (9) and

(11) with ε
3 in place of ε and choose t = n2ε2

288rnp2
nc3

n
in (11) so that the exponents

are equal. Note that we must have t = n
pncn

nε
288rnpnc2

n
≤ δ, thus n

rnpnc2
n

should

compensate the unboundedness of n
pncn

. The construction of the sequences rn

and pn implies that n
rnpn

≤ 4 so it suffices that 72ε
c3
n
≤ δpn

n , which is achieved

for n large enough according to the assumptions made.

Note that, as already remarked at the end of section 3, in order to make
(12) really useful for proving almost sure convergence results, we should
strengthen (8), assuming (10) instead.
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