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A CLASS OF MATHEMATICAL PROGRAMS WITH
EQUILIBRIUM CONSTRAINTS: A SMOOTH ALGORITHM

AND APPLICATIONS TO CONTACT PROBLEMS

ISABEL N. FIGUEIREDO, JOAQUIM J. JÚDICE AND SILVÉRIO S. ROSA

Abstract: We discuss a special mathematical programming problem with equilib-
rium constraints (MPEC), that arises in material and shape optimization problems
involving the contact of a rod or a plate with a rigid obstacle. This MPEC can be
reduced to a nonlinear programming problem with independent variables and some
dependent variables implicity defined by the solution of a mixed linear complemen-
tarity problem (MLCP). A projected-gradient algorithm including a complemen-
tarity method is proposed to solve this optimization problem. Several numerical
examples are reported to illustrate the efficiency of this methodology in practice.
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1. Introduction
In this paper we address the following optimization problem

 min g(x, u)

subject to :

[
u = h(x)
x ∈ X, u ∈ U

(1)

where X and U are nonempty closed subsets of R
k and R

n, respectively,
g : R

k × R
n → R is the objective function and h : X → R

n is a map
which assigns to each x ∈ X the solution u of a inner level Mixed Linear
Complementarity Problem (MLCP).

This type of problems arise in many fields of applications. In particular
problem (1) may be the mathematical formulation of a structural optimiza-
tion problem, discretized by the finite element method, where the objective
function is the performance criterion of the structure, the inner level opti-
mization problem represents the equilibrium state of the structure, the outer
variable x is the design variable (for instance, the material and/or geomet-
ric parameters of the structure), the inner variable u is the state variable
(representing, for each design x, the displacement of the structure at the
equilibrium state), and X and U are the sets of admissible designs and ad-
missible (constrained) states, respectively.
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The optimization problem (1) is a special case of a Mathematical Program-
ming Problem with Equilibrium Constraints (in short MPEC) (see Luo, Pang
and Ralph [14] and Outrata, Koc̆vara and Zowe [17]). For a general function
g, the non-smoothness of u with respect to x, or the non-smoothness of the
objective function, requires the use of non-smooth optimization techniques,
such as subgradients and bundle methods (see Outrata, Koc̆vara and Zowe
[17]) to solve the MPEC. In this paper, we show that for a particular objec-
tive function of the MPEC, the resulting function g(x, u(x)) is continuously
differentiable in an open set containing X. Therefore the MPEC problem
can be processed by a smooth projected-gradient algorithm, which includes
a block pivoting complementarity algorithm to get the information concern-
ing the variable u. Moreover we apply this solution method to some real
material and shape optimization problems, involving the contact of a rod or
a plate with a rigid obstacle.

This paper extends the contents of a previous synopsis paper (see Figueiredo,
Júdice and Silvério [9]). The outline of the paper is as follows. In section
2 the MPEC is introduced. The differentiation of the objective function is
discussed in section 3. The description of the projected-gradient algorithm
is presented in section 4. The case studies are introduced in section 5. The
numerical results of the solution of the corresponding MPECs and some con-
clusions about the efficiency of the proposed methodology are reported in
the last section of the paper.

2. Description of the problem
In this section we define the exact formulation of problem (1). Let ψ be

a vector with n components, independent of x. For each x ∈ X ⊂ R
k, let

A(x) be a symmetric, positive definite matrix of order n and F (x) a vector
with n components, depending on x. Consider the following Mixed Linear
Complementarity Problem (in short MLCP)

MLCP




Find u ∈ R
n, w ∈ R

n such that:
A(x)u− F (x) = w
uJ ≥ ψJ , wJ ≥ 0, wI = 0
(uJ − ψJ)TwJ = 0,

(2)

where the upper index T denotes transposition, {I, J} forms a partition of
{1, 2, ..., n}, and uJ , ψJ , wJ , wI are subvectors of u, ψ and w, whose com-
ponents have indices in J and I. We assume that the admissible set X is
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nonempty, closed and convex. In the sequel we often write u(x) and w(x)
instead of u and w, if we want to emphasize that u and w implicitly depend
on x.

The particular optimization problem considered in this paper, is the fol-
lowing Mathematical Programming Problem with Equilibrium Constraints
(MPEC)

MPEC




min g(x, u) = min 1
2(u− ψ)TA(x)(u− ψ)

subject to :

x ∈ X and



u = u(x) ∈ R

n, w = w(x) ∈ R
n

A(x)u− F (x) = w
uJ ≥ ψJ , wJ ≥ 0, wI = 0
(uJ − ψJ)TwJ = 0,

(3)

where the inner level problem is the MLCP (2).
The following theorem states a sufficient condition for the existence of a

solution to the MPEC.

Theorem 2.1. If X ⊂ R
k is compact, A : X → R

n2

and F : X → R
n are

continuous, and A(x) is positive definite uniformly with respect to x ∈ X,
then the MPEC (3) has at least one solution.

Proof - The hypotheses required for A and F assure that, for each x, the
unique solution pair of the MLCP (2), (u,w) : X → R

n×R
n, is a continuous

function, on the admissible set X (see theorem 4.1, page 70, Haslinger and
Neittaanmäki [11]). Then, the existence of a solution to the MPEC (3) is
a consequence of the Weierstrass theorem, as (3) reduces to the following
problem [

min f(x) = min 1
2(u(x) − ψ)TA(x)(u(x) − ψ)

subject to x ∈ X
(4)

where the function f(x) is continuous over the set X. •

The next result gives two other expressions for the objective function
g(x, u), that will be used in section 5.

Theorem 2.2. For each (x, u),

g(x, u) = 1
2(u(x) − ψ)T (F (x) −A(x)ψ)

g(x, u) = 1
2‖u(x) − ψ‖2

A(x)
(5)
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where ‖.‖A(x) is a norm defined by A(x) for each x.

Proof - By adding and subtracting ψ in the first equation of (2), the MLCP
is equivalent to 


Find u ∈ R

n, w ∈ R
n such that:

A(x)(u− ψ) − (F (x) − A(x)ψ) = w
uJ − ψJ ≥ 0, wJ ≥ 0, wI = 0
(uJ − ψJ)TwJ = 0.

(6)

It then follows from the first equation of (6) and the complementarity con-
dition (u− ψ)Tw = 0, that

g(x, u) = 1
2(u− ψ)TA(x)(u− ψ) = 1

2(u− ψ)T (w + (F (x) −A(x)ψ))

= 1
2(u− ψ)T (F (x) −A(x)ψ),

(7)

and the first expression is proved. On the other hand, as A(x) is a positive
definite matrix for each x, the following norm ‖.‖A(x) can be defined in R

n

‖v‖A(x) =
√
vTA(x)v, for all v ∈ R

n. (8)

Therefore

g(x, u) =
1

2
(u(x) − ψ)TA(x)(u(x) − ψ) =

1

2
‖u(x) − ψ‖2

A(x). • (9)

3. Differentiation of the objective function
In this section the differentiation of the objective function with respect to

x is studied. In order to do this, the dependence of the solution u = u(x) of
the MLCP on the variation of the outer variable x is first analyzed.

Since the matrix A(x) is symmetric positive definite for each x ∈ X, the
MLCP has a unique solution for each x ∈ X, and therefore it is possible to
write the MPEC (3) as the following optimization problem in the variable x[

min f(x) = min g(x, u(x))
subject to x ∈ X

(10)

where u depends implicitly and uniquely on x through the MLCP.
In general, the non-smoothness of u(x) with respect to the variable x im-

plies the non-smoothness of the objective function f . As stated in theorem
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2.1, u is a continuous function on the admissible set X and it is also pos-
sible to prove, under additional assumptions, that the directional derivative
u′(x, x̃) of u at x in the direction x̃ exists; however, the gradient ∇xu(x) of u
at x does not exist when the coincidence set {j ∈ J : wj(x) = 0, uj(x) = 0}
is not empty (see, Harker and Pang [10] or Haslinger and Neittaanmäki [11]
for a justification of these statements).

The next theorem shows that the gradient ∇xf of f exists for the particular
objective function f defined in (10).

Theorem 3.1. For each x, let (u(x), w(x)) be the solution of the MLCP.
Assume that F , A, ∇xF and ∇xA are continuous with respect to each x ∈ X,
where ∇xF and ∇xA are the gradients of F and A defined by

∇xF (x) = (∇xFi(x))i=1,...,n, ∇xA(x) = (∇xAij(x))i,j=1,...,n (11)

and Fi and Aij are the elements of F and A, respectively. Then ∇xf is a
continuous function of x and[ ∇xf(x) = (∇xF (x) −∇xA(x)ψ)T (u(x) − ψ)

−1
2(u(x) − ψ)T∇xA(x)(u(x) − ψ).

(12)

Proof - The following proof is based on an analogous argument of Haslinger
and Neittaanmäki [11] for another framework, and is included here to facil-
itate the reading of the paper. As remarked in theorem 2.1, the mappings
x→ u(x) and x→ w(x) are continuous on X, where, for each x, (u(x), w(x))
is the solution of the MLCP. Moreover, under the hypotheses of the theorem,
these mappings are also Lipschitz-continuous on X (see remark 4.2, page 70,
Haslinger and Neittaanmäki [11]). It can also be proven (see pages 83-84,
Haslinger and Neittaanmäki [11]), that there exist the directional derivatives
u′(x, x̃) and w′(x, x̃) of u and w, at the point x in the direction x̃, which are
defined by

u′(x, x̃) =
(
u′i(x, x̃)

)n

i=1 =
(

lim
t→0

ui(x+ tx̃) − ui(x)

t

)n

i=1

w′(x, x̃) =
(
w′

i(x, x̃)
)n

i=1 =
(

lim
t→0

wi(x+ tx̃) − wi(x)

t

)n

i=1
.

(13)

In particular, for each i ∈ {1, 2, · · · , n}
(u(x) − ψ)iw

′
i(x, x̃) = 0, (14)
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and thus

(u(x) − ψ)Tw′(x, x̃) = 0. (15)

To show (14-15), we first note that, for each i ∈ I, wi(x) = 0 for any x ∈ X,
so w′

i(x, x̃) = 0 and (u(x) − ψ)iw
′
i(x, x̃) = 0. On the other hand, for each

i ∈ J , the inequality (u(x) − ψ)i ≥ 0 is always satisfied. If (u(x) − ψ)i =
0, it is obvious that (u(x) − ψ)iw

′
i(x, x̃) = 0. If (u(x) − ψ)i > 0, then

(u(x+ tx̃)−ψ)i > 0 for t small enough (due to the Lipschitz-continuity of u),
and wi(x + tx̃) = 0, by the complementarity condition. So, for each i ∈ J ,
w′

i(x, x̃) = 0 and (u(x) − ψ)iw
′
i(x, x̃) = 0.

The formula (12) can now be obtained by calculating the directional deriv-
ative f ′(x, x̃) of f at the point x in the direction x̃, and using (15). In fact,
it follows from the definition of f that

f ′(x, x̃) = (u(x) − ψ)TA(x)u′(x, x̃) +
1

2
(u(x) − ψ)TA′(x, x̃)(u(x) − ψ) (16)

where A′(x, x̃) is the directional derivative of A at x in the direction x̃. By
writing the complementarity problem (6) for x and x + tx̃ and subtracting
these equations and dividing by t, we obtain

A(x)u′(x, x̃) = w′(x, x̃) + (F ′(x, x̃) − A′(x, x̃)ψ) −A′(x, x̃)(u(x) − ψ) (17)

where F
′
(x, x̃) is the directional derivative of F at x in the direction x̃.

Introducing (17) in (16) and using (15), the term u′(x, x̃) disappears. Since A
and F are continuously differentiable, then A′(x, x̃) = ∇xA

T x̃ and F ′(x, x̃) =
∇xF

T x̃, and the expression (12) of the gradient of f follows. •

Consider now the special case of the MPEC, where the outer variable x has
only one component, that is x = (x1) ∈ R, X = [xmin

1 , xmax
1 ], with xmin

1 and
xmax

1 two real numbers, and ∇xF (x) − ∇xA(x)ψ = 0. It then follows from
(12) that the derivative of f is given by

df

dx
(x) = −1

2
(u(x) − ψ)T dA

dx
(x)(u(x) − ψ). (18)

If in addition we suppose that dA
dx (x) is a positive definite matrix, then

df

dx
(x) ≤ 0, ∀x ∈ X. (19)

This means that for this particular instance of the MPEC, the function f is
a monotone decreasing function in the admissible set X = [xmin

1 , xmax
1 ], and
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so f attains its minimum at xmax
1 . Thus, the solution of the MPEC is xmax

1 ,
in this case, and the minimum value of the objective function is equal to

f(xmax
1 ) = g(xmax

1 , u(xmax
1 )). (20)

So, for this quite special case, the solution u(x1) of the MLCP (2), with x1 =
xmax

1 , is sufficient to get the minimum of the objective function. However,
this is a very particular case, as in general x has more than one component,
the difference ∇xF (x)−∇xA(x)ψ is not zero and depends on x and ∇xA(x)
is not a positive definite matrix in general. This implies the need of an
algorithm to obtain the solution of the MPEC (10).

4. A projected-gradient algorithm
In the previous section, we have been able to show that the MPEC under

consideration reduces into a nonlinear program (10), where the function f
is continuously differentiable on an open set containing the set X. However,
the computation of the values of the objective function and of its gradient
require the knowledge of the dependent variables u of the original MPEC
(3). The values of these variables can be obtained by processing the MLCP
(2), which has a unique solution for each x ∈ X. Due to these properties
of the problem, a projected-gradient algorithm is quite recommended for
this particular application. In this section, we first introduce the steps of
this algorithm. Then we explain how all the information required by the
algorithm can be computed through the solution of the MLCP (2).

If PX denotes the projection operator on the convex set X, then the steps
of the projected-gradient algorithm are as follows.

Projected-Gradient Algorithm

• Let x0 ∈ X and ε > 0 be a given tolerance.
• For k = 0, 1, 2, ...

– Compute ∇xf(xk), yk = PX(xk −∇xf(xk)) and pk = yk − xk.
– If ‖pk‖ < ε, stop with (xk, u(xk)) a solution of the MPEC.
– Compute the stepsize αk ∈]0, 1] by using the Armijo Criterion

f(xk + αkp
k) ≤ f(xk) + c αk∇xf(xk)Tpk, with 0 < c < 1. (21)

• Update xk+1 = xk + αkp
k.

As discussed in Bertsekas [1] and Nocedal and Wright [16], the projected-
gradient algorithm possesses global convergence into a stationary point of
the function f on the convex set X under mild assumptions on f . The
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implementation of the algorithm for the solution of the nonlinear program
(10) requires three types of information, namely the computation of the pro-
jections PX(y), the values of the objective function f(x̄) and the gradients
∇xf(x̄). These issues are discussed below.

(i) Computation of the projected vector PX(y) - This vector is the unique
solution of the following optimization problem

min ||y − x||2
subject to x ∈ X

(22)

where ||.||2 denotes the euclidean norm. In the case studies discussed
in section 6, X consists of simple lower and upper bounds, that is

X =
{
x = (x1, ..., xk) ∈ R

k : xmin
i ≤ xi ≤ xmax

i , 1 ≤ i ≤ k
}

(23)

where xmin
i and xmax

i are real numbers, for each i. For this particular
choice, the projection PX(y) is quite easy to compute and is given by

PX(y)i =



yi, if xmin

i < yi < xmax
i

xmax
i , if yi ≥ xmax

i

xmin
i , if yi ≤ xmin

i .
(24)

In some interesting applications, the set X can also contain one linear
constraint. In this case the nonlinear program (22) is replaced by a
strictly convex quadratic knapsack problem, which can be processed
by a number of quite efficient polynomial algorithms (see Helgason,
Kennington and Lall [12], Pardalos and Kovoor [18] and Robinson,
Jiang and Lerme [21]).

(ii) Computation of f(x̄) and ∇xf(x̄) and implementation of the Armijo
Criterion - It follows from (10) and (12) that, for each x̄ ∈ X,

f(x̄) = g(x̄, ū)[ ∇xf(x̄) = (∇xF (x̄) −∇xA(x̄)ψ)T (ū− ψ)
−1

2(ū− ψ)T∇xA(x̄)(ū− ψ)

(25)

where ū is the unique solution of the MLCP (2) for x = x̄, that is,
ū = u(x̄). So for each x̄ ∈ X the values of the objective function
f and of its gradient require the solution of one MLCP, for a fixed
x = x̄. Therefore the implementation of the Armijo criterion needs
exactly a number of MLCPs to be solved equal to the number of trials
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that are performed in order to find the stepsize αk used in (21) by the
projected-gradient algorithm.

It follows from this discussion that the implementation of the projected-
gradient algorithm requires an efficient solver for processing the MLCP (2)
for each x ∈ X. Since A(x) is symmetric definite positive for each x, then
for each x ∈ X the MLCP (2) is equivalent to the following strictly convex
quadratic program

min
{

1
2u

TA(x)u− F T (x)u
}

subject to {u ∈ R
n : uJ ≥ ψJ}.

(26)

This optimization problem can be processed by a number of efficient algo-
rithms (see Bertsekas [1], Cottle, Pang and Stone [5], Fernandes, Júdice and
Patŕıcio [7] and Nocedal and Wright [16]). Among these, the so-called block
principal pivoting algorithm (see Júdice and Pires [13]) is quite recommend
to process this MLCP, due to its efficiency for solving quite large MLCPs
with positive definite matrices and its ability to start with an advanced basic
solution (see Fernandes, Júdice and Patŕıcio [7]). Next, we briefly describe
the steps of this procedure.

A block principal pivoting algorithm

Consider again the MLCP (2)


 A(x)u− F (x) = w
uJ ≥ ψJ , wJ ≥ 0, wI = 0
(uJ − ψJ)TwJ = 0

(27)

where I and J form a partition of the set {1, 2, . . . , n}. We denote by |P |
the number of elements of the set P and by CPS the submatrix of a generic
matrix C whose elements have indices in the subset P × S, that is, CPS =
(cps)(p,s)∈P×S .

The principal pivoting algorithms use in each iteration a complementary
basic solution (u,w) of the MLCP (27) (see Fernandes, Júdice and Patŕıcio
[7] and Júdice and Pires [13]). If P and S are subsets of {1, 2, ..., n} such that
P ∪ S = {1, 2, ..., n}, P ∩ S = ∅ and APP (x) is nonsingular, such a solution
satisfies ui = ψi, for all i ∈ S and wi = 0, for all i ∈ P . This implies that
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the remaining components are uniquely given by

APP (x)uP = FP (x) − APS(x)ψS

wS = −FS(x) +ASP (x)uP +ASS(x)ψS.
(28)

It is important to add that as A(x) is a symmetric positive definite matrix
there is a complementary basic solution for each possible partition {P, S} of
{1, 2, ..., n}. Since wI = 0 in any solution of the MLCP (27), then we force I
to be always included in the set P of any complementary basic solution that
is used by the algorithm. If such a solution (u,w) satisfies

uP∩J ≥ ψP∩J and wS ≥ 0 (29)

then it is said to be feasible and is a solution of the MLCP (27). Otherwise,
the so-called set of infeasibilities is considered :

H = {i ∈ P ∩ J : ui < ψi} ∪ {i ∈ S : wi < 0}. (30)

The number of elements of this set H is called the infeasibility count of the
complementary basic solution. We note that 0 ≤ |H| ≤ |J | and |H| = 0 if
and only if (uP , ψS) is the unique solution of the MLCP (27).

Each iteration of a principal pivoting algorithm simply consists of replacing
the sets P and S associated with a complementary basic infeasible solution
(H = ∅) to another sets P and S corresponding to another solution of the
same type. This is done by using the following formulas

P = P \ (P ∩H1) ∪ (S ∩H1)
S = {1, 2, ..., n} \ P (31)

where H1 ⊆ H. The principal pivoting algorithms differ on the choice of the
set H1. As is discussed in Fernandes, Júdice and Patŕıcio [7], the use of

H1 =
{

min{i ∈ H}} (32)

in each iteration guarantees finite termination to the algorithm. However,
these modifications of a unique element usually lead to too many iterations for
large-scale MLCPs, where the initial and final partitions {P, S} are quite dif-
ferent. On the other hand, the all-change modification H1 = H usually leads
to small number of iterations in practice (Fernandes, Júdice and Patŕıcio
[7]). However, there is no theoretical guarantee that an algorithm solely
based on these latter changes possesses finite termination. As is discussed
in Fernandes, Júdice and Patŕıcio [7], it is possible to design a principal piv-
oting method algorithm that combines these two features presented before.
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The resulting method performs all-changes modifications (31) with H1 = H
in general, and one-element changes (32) are only included for assuring finite
termination. The switch from one form of iterations to the other one, is done
by controlling the infeasibility count, that is, the number of elements |H| of
the set H given by (30).

The steps of the algorithm are presented below.

Block Principal Pivoting Algorithm

(1) Let P = I, S = {1, 2, ..., n} \ P , p > 0, ninf = |{1, 2, ..., n}| + 1 and
nit = 0.

(2) Compute uP and wS by (28) and the infeasibility set H by (30). Let
|H| be the number of elements of H. Then

• If |H| = 0, terminate with u = (uP , ψS) the unique solution of
the MLCP.

• If ninf > |H|, set ninf = |H| and nit = 0. Go to 3.
• If ninf ≤ |H| and nit ≤ p, go to 3. (if nit = 1 set P̃ = P and
H̃ = H).

• If ninf ≤ |H| and nit ≥ p+ 1, go to 4 (if nit = p+ 1 set P = P̃
and H = H̃).

(3) Set P = P \ (P ∩ H) ∪ (S ∩ H), S = {1, 2, ..., n} \ P , nit = nit + 1
and go to 2.

(4) Let t = min{i ∈ H}. Set nit = nit+ 1,

P =

{
P \ {t}, if t ∈ P
P ∪ {t}, if t ∈ S

(33)

and S = {1, 2, ..., n} \ P and go to 2.

It follows from the description of the steps of the algorithm that the integer
constant p plays an important role on the efficiency of the algorithm. This
value represents the maximum number of block iterations (H1 = H) that are
allowed to be performed without an improvement of the infeasibility count.
It is obvious that this value should be small. However, too small values for
p may lead to the performance of one-element modifications too often with
an increase on the number of iterations. Extensive computational experience
reported in Fernandes, Júdice and Patŕıcio [7] has shown that p = 10 is
usually a good choice in practice.

As is discussed in Fernandes, Júdice and Patŕıcio [7], and Júdice and Pires
[13], this block principal pivoting algorithm can be efficiently implemented
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for the solution of large scale MLCPs with symmetric positive definite ma-
trix. In the experiments to be reported in the last section of this paper, we
have implemented the algorithm in MATLAB [15]. It should be added that
such an implementation is quite simple to do, as MATLAB contains efficient
procedures to solve the system of linear equations in (28), even when the
cardinal |P | of the set P is large.

As remarked in Júdice and Pires [13], the block principal pivoting algorithm
possesses finite termination for each choice of initial partition {P, S} of the set
{1, . . . , n}, when the matrix of the MLCP is positive definite. On the other
hand, the implementation of the Armijo criterion explained in this section
requires in each iteration, the solution of a number of MLCPs equal to the
number of trials that are necessary to obtain the stepsize for the projected-
gradient algorithm. Therefore the final partition of one application of the
block principal pivoting algorithm should be the initial partition for the next
application of the procedure. The results of the experiments to be reported
in section 6, show that this strategy works quite well in practice. It is also
important to add that this feature of the block principal pivoting algorithm
is not shared by other quite efficient alternative methods to process large
scale MLCPs or its equivalent strictly convex quadratic programs, such as
interior-point or active-set based methods. This feature together with its
simplicity and efficiency in practice (see Fernandes, Júdice and Patŕıcio [7])
leads to our recommendation of the block principal pivoting algorithm for
the solution of the MLCP associated to the case studies of this paper.

5. Case studies
We have applied the previous projected-gradient algorithm to structural

optimization models for two types of solids, a rod and a plate. More exactly,
we have considered four problems, involving the contact, without friction, of
one of these solids (the rod or the plate) with a rigid obstacle. Each one
of these four problems is formulated as a MPEC of the type (3). The inner
level problem represents the contact between the solid and the obstacle. The
differences among these problems rely on the geometry of the solid and on
the definition of the outer variable x ∈ X, as discussed below.

• In problems 1, 2, 3 the solid is a rod and for problem 4 the solid is a
plate.
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• In problems 1 and 4 the outer variable x has only one component
which is related to the material (of the rod or of the plate), and thus
problems 1 and 4 are material optimization problems.

• In problems 2 and 3 the outer variable x has two components, one
related to the material and the other one to a geometric feature of the
rod (the side and shape of the cross section of the rod for problem 2,
and the length of the rod axis for problem 3); therefore problems 2
and 3 are material and shape optimization problems.

In the next subsection we define the contact problem between the solid and
the obstacle. Then, we define the structural optimization MPEC and we give
its mechanical interpretation in mathematical terms. In the last section the
problems 1, 2, 3 and 4 are described in more detail and the experiments on
the solutions of these problems are reported.

5.1. The contact problem. Let ω and Ω be two open, bounded and con-
nected subsets of R

2. Let L > 0 and t > 0 be two constants. We denote
by ω× [0, L] the set occupied by the rod, in its reference configuration, with
length L and cross section ω. The reference configuration of the plate is
denoted by Ω × [− t

2 ,
t
2], where Ω is the middle plane of the plate and t is

its thickness. We assume that the material of both the rod or the plate is
an unidirectional fiber reinforced composite material. For the rod, the fiber
direction is parallel to the direction of the rod axis. For the plate, the fiber
direction is parallel to one of the axis of the reference system of the middle
plane Ω. We denote by x = (x1, x2, ..., xk) ∈ R

k the vector whose k compo-
nents specify the type and the number of material and/or geometric features
of either the rod or the plate under consideration. Moreover we assume that
the rod is clamped at its extremities and the plate is clamped at its lateral
surface. The rod or the plate are subjected to the action of applied forces
that force a part of the boundary to be in contact with a rigid obstacle. By
using the finite element method, the discrete formulation for each x of this
contact problem (either the rod or the plate contact problem) constitutes the
following discrete variational inequality{

Find u ∈ C = {v ∈ R
n : vJ̃ = 0, vJ ≥ ψJ}, such that

(v − u)T (B(x)u− F (x)) ≥ 0, ∀v ∈ C.
(34)

In (34), n denotes the number of global degrees of freedom of the finite el-
ement mesh (the mesh of the rod axis [0, L], for the rod contact problem
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or the mesh of the middle plane Ω, for the plate contact problem). The
sets J̃ and J are subsets of the global degrees of freedom {1, 2, ..., n}. The
matrix B(x) is the stiffness matrix and F (x) is the vector associated to the
applied forces. B(x) depends explicitly on x and F (x) may also depend on
the components of x. The vector u is the solution of the contact model and
represents the approximate displacement of the solid. For the rod contact
problem the vector u contains two subvectors uJ = (uj)j∈J and ûJ = (ûj)j∈J ,
representing the bending displacement of the rod axis (in the direction per-
pendicular to the rod axis) and the stretch displacement of the rod axis (in
the direction of the rod axis), respectively, at the nodes j ∈ J of the mesh.
For the plate contact problem the vector u corresponds to the finite element
approximation of the vertical displacement of the middle plane of the plate
(there are only applied forces in the direction perpendicular to the middle
plane of the plate); in particular the subvector uJ = (uj)j∈J is the vertical
displacement of the middle plane of the plate at the nodes j ∈ J of the mesh.
We remark that in (34) u depends implicitly on x. The set C is the set of
admissible displacements. The condition vJ̃ = 0 corresponds to the clamped
rod or plate condition. The vector ψJ = (ψj)j∈J is independent on x and

defines the rigid obstacle at the nodes j ∈ J . The condition vJ ≥ ψJ states
that the solid (either the rod or the plate) can touch but should not penetrate
the rigid obstacle at each node j ∈ J .

The rod and the plate contact problems have the common mathematical
formulation (34), but they differ in the definitions of the matrix B(x) and of
the vector F (x). In order to clarify these differences and to give the explicit
the dependence of B and F on x, we describe next the element stiffness
matrix and the element vector force, for the two problems and for particular
choices of finite elements.

5.1.1. Element stiffness matrix and element vector force for the rod con-
tact problem. We denote by hi the amplitude of the generic finite element
[yi, yi+1] ⊂ [0, L], and we choose cubic Hermite polynomials as shape func-
tions (see Ciarlet [4]) for the bending displacements, and affine functions for
the stretching displacements. Then, in each interval [yi, yi+1] there are six
degrees of freedom, namely the bending displacement, its first derivative and
the stretch displacement at the extremities of [yi, yi+1]. The corresponding
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element stiffness matrix Bi is

Bi = Bi(x) = E




|w|
hi

0 0 −|w|
hi

0 0

0 12I
h3

i

6I
h2

i
0 −12I

h3
i

6I
h2

i

0 6I
h2

i

4I
hi

0 −6I
h2

i

2I
hi

−|w|
hi

0 0 |w|
hi

0 0

0 −12I
h3

i
−6I

h2
i

0 12I
h3

i
−6I

h2
i

0 6I
h2

i

2I
hi

0 −6I
h2

i

4I
hi




(35)

where E, |w| and I depend on x and represent the longitudinal modulus
of the material, the area of the cross section and the moment of inertia,
respectively. In particular E is defined by

E = EfVf + Em(1 − Vf ) (36)

with Ef the Young’s modulus of the fiber, Em the Young’s modulus of the
matrix, Vf the fiber volume fraction and Vm the matrix volume fraction. The
volume fractions verify Vm = 1 − Vf , with Vf , Vm ∈ [0, 1].

Assuming that q and p are the uniformly distributed forces per unit of
length in the direction of the rod axis and in the direction perpendicular to
the rod axis, respectively, then the element vector force Fi is defined by

F T
i = Fi(x)

T =

[
qhi

2

phi

2

ph2
i

12

qhi

2

phi

2
− ph2

i

12

]
. (37)

As hi depends on the rod axis (which is a geometric feature, that can be
included in the definition of the outer variable x) and the applied forces p or
q may depend on x, the previous vector may also depend on x.

5.1.2. Element stiffness matrix and element vector force for the plate contact
problem. We suppose that the middle plane Ω ⊂ R

2 of the plate is a square
and we denote by (yr, ys) an arbitrary point of Ω and by Ωi a generic finite
element of the finite element mesh of Ω. In addition, we choose a mesh
built with Adini-Clough-Melosh finite elements (see Ciarlet [4]). Therefore
there are twelve degrees of freedom, in each rectangle Ωi, namely the vertical
displacement and its two first partial derivatives at each vertice of Ωi. The
corresponding element stiffness matrix Bi is defined by

Bi = Bi(x) =
t3

12

∫
Ωi

NT
i DNi dΩ (38)
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where Ni is a 3×12 matrix of the second order derivatives of the 12 local shape
functions S1

i , S
2
i ,..., S

12
i of the Adini-Clough-Melosh finite element. These

functions depend on the geometry of Ωi, and then on x, but are independent
on the material of the plate. The definition of Ni is

Ni =



S1

i,11 S2
i,11 · · · S12

i,11

S1
i,22 S2

i,22 · · · S12
i,22

2S1
i,12 2S2

i,12 · · · 2S12
i,12




3×12

. (39)

The functions S1
i , S

2
i ,..., S

12
i are defined in Ωi ⊂ Ω ⊂ R

2 and Sj
i,rs denotes the

second derivative of Sj
i with respect to the variables yr and ys, for j = 1, ..., 12

and r, s ∈ {1, 2}. The matrix D is the constitutive matrix, which depends
on the material and then on x, and its definition is

D =



Q11 Q12 0

Q21 Q22 0

0 0 Q33




3×3

. (40)

Denoting by 1 and 2 the directions of the axis of the reference system of the
middle plane of the plate, the elastic coefficients Q11, Q22, Q12, Q33 in (40) are
related to the engineering constants E1, E2 (Young’s modulus in directions
1 and 2 respectively) ν12, ν21 (Poisson’s ratio), G12 (shear modulus in the
1-2 plane, respectively). These engineering constants E1, E2, ν12, ν21, G12
depend on Em (the Young’s modulus of the matrix), υf (Poisson’s ratio of
the fiber), υm (Poisson’s ratio of the matrix), Vf (fiber volume fraction) and
Vm (matrix volume fraction which verifies Vm = 1 − Vf). Their definitions
are (see Bertholet [2]) as follows:

Q11 =
E1

1 − ν12ν21
, Q22 =

E2

1 − ν12ν21

Q21 =
ν12E2

1 − ν12ν21
=

ν21E1

1 − ν12ν21
= Q21, Q33 = G12,

(41)
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and

E1 = EfVf + EmVm, E2 =
EfEm

EfVm + EmVf

ν12 = νfVf + νmVm,
ν21

ν12
=
E2

E1

G12 =
GfGm

GfVm +GmVf
, Gf =

Ef

2(1 + νf )
, Gm =

Em

2(1 + νm)
.

(42)

Assuming that p is the intensity of the density (per unit area) of the force
acting in the direction perpendicular to the middle plane of the plate, the
element vector force Fi in the finite element Ωi is defined by

Fi = Fi(x) =

∫
Ωi

pMT
i dΩ (43)

where Mi = [S1
i , S

2
i , ..., S

12
i ]1×12 is the vector of local shape functions already

introduced. We observe that Fi(x) may depend on x if either Mi or p depend
on x.

5.2. The structural MPEC. We remark that (34) is an obstacle problem.
In particular it can be reformulated as a mixed complementarity problem.
To see this, we denote by I and H the subsets of indices defined by I =
{1, 2, ...n} \ {J̃ ∪ J} and H = I ∪ J , respectively. By performing the change
of variables

v ∈ C ⇐⇒ v − ψ ∈ C = {v ∈ R
n : vJ̃ = 0, vJ ≥ 0} (44)

where the vector ψ ∈ R
n is defined by

ψ = (ψj)j∈Rn and ψj = 0, if j /∈ J, ψj = ψj , if j ∈ J, (45)

then problem (34) is equivalent to the following parametric Mixed Linear
Complementarity Problem


Find u ∈ R

|H |, w ∈ R
|H | such that

A(x)(u− ψ) − F (x) = w
uJ ≥ ψJ , wJ ≥ 0, wI = 0,
(uJ − ψJ)TwJ = 0.

(46)

The number |H| is the cardinal of H, A is a submatrix of B and F is a
subvector of F − Bψ, whose elements have indices in H, that is,

A(x) = BHH(x) and F (x) = FH(x) − BHH(x)ψH . (47)
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It should be added that for both the rod and the plate, the matrix A(x) is a
symmetric positive definite matrix, for each x.

After this definition of the contact problem, we can consider the following
structural optimization MPEC:



min f(x) = min g(x, u) = min 1
2(u − ψ)TA(x)(u− ψ)

subject to :

x ∈ X and



u = u(x) ∈ R

|H |, w = w(x) ∈ R
|H |

A(x)(u− ψ) − F (x) = w
uJ − ψJ ≥ 0, wJ ≥ 0, wI = 0
(uJ − ψJ)TwJ = 0.

(48)

As a consequence of theorem 2.2 there are two mechanical interpretations
of the objective function f of (48), which are next explained.

(1) For each x, f(x) = 1
2(u(x) − ψ)TF (x) is the compliance of the solid

(either the rod or the plate), constrained by the zero obstacle and
subjected to the action of loads represented by the vector F , and
with material and geometric features defined by the vector x. The
compliance of a solid, when it is subjected to the action of applied
loads, is a measure of its stiffness (see Petersson [19], for a justification
of other definitions of stiffness measure in structural optimization). In
this case the loads F (x) = (FH(x) − BHH(x)ψ) are functions of the
vector x and depend on the obstacle ψ and the stiffness matrix B(x).
Therefore MPEC (48) is a compliance minimization problem.

(2) For each x, f(x) = ‖u(x)−ψ‖A(x) represents (in rigorous mathematical
terms) the distance between the deformed solid (represented by the
vector u(x)) and the obstacle (defined by ψ) measured in the norm
‖.‖A(x). So the objective function is a distance and the MPEC (48)
corresponds to the maximization of the contact region between the
deformed solid and the obstacle (the smaller the distance ‖u(x) −
ψ‖A(x) is, the bigger is the contact region).

6. Numerical experiences
In this section we report some numerical experiments with the projected-

gradient algorithm on the solutions of four MPECs of the form (48), where
a rod is considered in the first three problems and a plate in the remaining
one.
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In the case of a rod, its axis [0, L] has been discretised successively by 30,
40 and 50 finite elements. Denoting by n the number of finite elements of the
mesh, the length of each finite element is constant and equal to h = L

n , for
problems 1, 2, 3. Moreover we consider a fixed two-dimensional coordinate
system OST and assume that in this system the rod axis occupies in its
reference configuration the position defined by the function

ψ0(s) = ms+ b, ∀s ∈ [0, L], (49)

where m and b are constants. In problems 1, 2, 3 we have chosen (without
loss of generality) m = 0 and b = 0.001, that is, the rod axis is horizontal with
respect to the fixed coordinate system. Furthermore, for the rod problems
1, 2, 3, and for the same fixed coordinate system OST , the following two
obstacles ψ1, ψ2 have been considered

ψ1(s) = 0
ψ2(s) = −0.001(2s

5 − 1)2 − 0.0008(2s
5 − 1) − 0.001

1+30(2s
5
−1)2 + 0.0008, (50)

for s ∈ [0, L]. The obstacle ψ1 is a straight line segment and ψ2 is the curve
represented in figure 1.
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Figure 1. Obstacle ψ2 for the rod

For the plate problem we suppose that the middle plane Ω is a square whose
side has length 0.1m, that is, Ω = [0, 0.1]×[0, 0.1] in a fixed three-dimensional
coordinate system OSTW . Moreover, Ω is discretized successively by 10×10,
15×15 and 20×20 finite elements (the Adini-Clough-Melosh, with 12 degrees
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Figure 2. Obstacle ψ4 for the plate

of freedom, was adopted for the approximation of the vertical displacement
of the middle plane of the plate). The following two obstacles have been
considered

ψ3(r, s) = −0.0008
ψ4(r, s) = −0.0008 − (20r − 1)2(10s− 0.5)2,

(51)

with (r, s) ∈ [0, 0.1] × [0, 0.1]. The obstacle ψ3 is a plane and ψ4 is a surface
which is depicted in figure 2.

As stated before, the material of the rod and of the plate is assumed to be
an unidirectional fiber reinforced composite material, with Ef the modulus
of the fiber, Em the modulus of the matrix and Vf the fiber volume fraction,
which belongs to [0, 1] (as defined before Vm denotes the matrix volume frac-
tion that verifies Vm + Vf = 1). The remaining data of the problems 1, 2, 3,
4 are displayed in the table 1, where the symbols (GPa) and (m) denote the
units Giga Pascal and meter, respectively.

In the sequel the tables 2, 3, 4, 5, 6, 7, 8 report the results of problems
1, 2, 3, 4, respectively, with the projected-gradient algorithm, and for the
different obstacles ψi, i = 1, 2, 3, 4. In these tables n represents the number
of finite elements considered in the mesh, q is the intensity of the force
(in the direction of the rod axis, per unit of length, in problems 1, 2, 3),
p is the intensity of the force (perpendicular to the rod axis, per unit of
length, in problems 1, 2, 3, and perpendicular to the middle plane of the
plate, per unit of area, in problem 4), x∗ is the solution of the structural
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Table 1. Data of the Problems 1, 2, 3, 4

Parameter Value
Em (GPa) – modulus of the matrix (problems 1, 2, 3, 4) 3.45
Ef (GPa) – modulus of the fiber (problems 1, 2, 3, 4) 86
V min

f , V max
f – lower and upper bounds for Vf (problems 1, 2, 3) 0.01, 0.99

L (m) – length of the rod (problems 1, 2) 5
Lmin, Lmax (m) – lower and upper bounds for L (problem 3) 3, 5
bmin, bmax (m) – lower and upper bounds (problem 2) 0.05, 0.07
|w| (m2) – area of the cross section (problems 1, 2, 3) 0.004
I (m4) – moment of inertia (problems 1, 3) 2.1 × 10−6

t (m)– thickness of the plate (problem 4) 0.002
νf – Poisson’s ratio of the fiber (problem 4) 0.22
νm – Poisson’s ratio of the matrix (problem 4) 0.30
Gm (GPa) – shear modulus of the matrix (problem 4) 1.33
Gf (GPa) – shear modulus of the fiber (problem 4) 35.2

problem (48), MLCP denotes the total number of MLCPs solved by the
block principal pivoting algorithm (BPP), it BPP represents the medium
number of iterations of this last BPP algorithm per iteration of the projected
gradient method and it PG the number of iterations of the projected-gradient
algorithm. In these tables the intensities q and p of the forces are measured
in the unit Newton (N), per unit of length for problems 1, 2, 3, and per unit
of area for problem 4. Moreover in problems 1, 2, 4 the forces q and p are
constants independent of the outer variable x, but q and p depend on x in
problem 3.

In all the tests, the stiffness matrix B and the force vector F of the rod
or of the plate contact problem have been evaluated with the subroutines
beam 2e or platre, respectively, of the CALFEM [3] toolbox of MATLAB. As
stated before, the block principal pivoting algorithm has been implemented
in MATLAB [15].

6.1. Problem 1 (material optimization for a rod). For problem 1 the
admissible set X of outer variables is defined by

X =
{
x ∈ [0, 1] : V min

f ≤ x ≤ V max
f

}
. (52)
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So, the outer variable x has only one component, which represents the fiber
volume fraction Vf . Thus the objective of problem 1 is to find the fiber
volume fraction of the rod that minimizes the objective function of the MPEC
(48). The rod is subjected to the action of external loads with intensities
q(N) and p(N), that are independent on x. The modulus of the matrix is
Em = 3.45GPa, the modulus of the fiber is Ef = 86GPa, the axis length is
L = 5m, the area of cross section is |w| = 0.004m2 and the moment of inertia
is I = 2.1 × 10−6m4. Moreover the longitudinal modulus E of the material
is a function of x defined by

E(x) = Efx+ Em(1 − x). (53)

The results obtained with the projected-gradient algorithm for the two
obstacles ψ1, ψ2 and different forces are displayed in tables 2, 3 and indicate
that the solution x∗ found by the algorithm is equal to V min

f .

Table 2. Results for Problem 1, for q = −100N

Obstacle q (N) n p (N) x∗ MLCP itBPP it PG
−25 0.01 2 7 2

30 −80 0.01 2 8 2
−120 0.01 2 9 2
−25 0.01 2 8 2

ψ1 −100 40 −80 0.01 2 8.5 2
−120 0.01 2 11 2
−25 0.01 2 9.5 2

50 −80 0.01 2 12 2
−120 0.01 2 15 2
−25 0.01 2 8 2

30 −80 0.01 2 10.5 2
−120 0.01 2 6 2
−25 0.01 2 8.5 2

ψ2 −100 40 −80 0.01 2 10.5 2
−120 0.01 2 7.5 2
−25 0.01 2 9.5 2

50 −80 0.01 2 15.5 2
−120 0.01 2 9 2
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So for a fixed force, the contact zone between the rod and the obstacle
is maximized when the fiber volume fraction is as minimum as possible.
This agrees with the expected behaviour of the rod. In fact, if the material
contains less fiber, then it is softer and the deformation of the rod is bigger.
This implies that the region of contact between the rod and the obstacle is
larger.

Table 3. Results for Problem 1, for q = −20000N

Obstacle q (N) n p (N) x∗ MLCP itBPP it PG
−25 0.07571 64 1.953 9

30 −80 0.07575 87 2.494 11
−120 0.07577 77 2.584 10
−25 0.03454 53 2.245 7

ψ1 −20000 40 −80 0.03456 56 3.054 7
−120 0.03456 73 2.795 9
−25 0.01282 31 2.71 5

50 −80 0.01282 31 4 5
−120 0.01285 32 3.594 5
−25 0.04176 70 1.686 9

30 −80 0.04174 56 1.696 8
−120 0.04173 69 2.043 9
−25 0.01188 20 2 4

ψ2 −20000 40 −80 0.01188 20 2.4 4
−120 0.01188 20 2.45 4
−25 0.01 2 7.5 2

50 −80 0.01 2 11.5 2
−120 0.01 2 8.5 2

It follows from the results displayed in tables 2 and 3, that if the forces
q and p are more or less of the same order, then the projected-gradient
algorithm achieves the minimum value in two iterations. But if q is much
bigger than p, the projected-gradient algorithm requires more iterations and
the minimum value 0.01 is achieved only for a more refined mesh. The table
3 also illustrates the convergence of the method to the value 0.01, as the
number of finite elements increases.

The figures 3 and 4 represent the displacement u = u(x∗) of the rod axis
for the two different perpendicular forces p = −25N and p = −120N , and for
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the solution x∗ = 0.01188, with the obstacle ψ2, n = 40 and q = −20000N .
The contact region increases with the intensity of p.
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Figure 3. Displacement u for Problem 1, p = −25N
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Figure 4. Displacement u for Problem 1, p = −120N
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By using formula (12) and, as since FH is independent on x, it is easy to
see that the gradient of the objective function f is given by[

df
dx(x) = −

(
dBHH

dx (x)ψH

)T

(u(x) − ψ)

−1
2(u(x) − ψ)T dBHH

dx (x)(u(x) − ψ),
(54)

where
dBHH

dx
(x) =

Ef −Em

Efx+ Em(1 − x)
BHH(x). (55)

Since the reference configuration of the rod axis, in the fixed coordinate
system is defined by ψ0, then in (54) ψ = ψ1 − ψ0 or ψ = ψ2 − ψ0, if
the displacement of the rod axis is constrained by the obstacle ψ1 or ψ2,
respectively. To obtain the formula (55) it is enough to derive with respect
to x, the element stiffness matrix (35), that is, to derive the longitudinal
modulus of the material E(x) defined in (53).

In the right side of (54), the second term is always positive, for any x ∈ X,
as the matrix dBHH

dx (x) is symmetric and positive definite, BHH(x) is also

symmetric, positive definite and
Ef−Em

Efx+Em(1−x) > 0. But it is impossible to

predict the sign of the first term. So, the sign of the derivative df
dx(x) is not

known in advance and the projected-gradient algorithm is required to solve
problem 1.

6.2. Problem 2 (material and cross section optimization for a rod).
The admissible set X of outer variables in problem 2 is defined by

X =
{
x = (x1, x2) ∈ R

2 : V min
f ≤ x1 ≤ V max

f , bmin ≤ x2 ≤ bmax
}

(56)

The outer variable x = (x1, x2) has now two components, where x1 represents
the fiber volume fraction Vf and x2 the length of a side of the rectangular
cross section of the rod in a direction perpendicular to the rod axis. Moreover
we suppose that the area of the cross section is constant |w| = 0.004m2.
Hence the longitudinal modulus of the material E is a function of x1 and the
moment of inertia I is a function of x2, and are defined by

E(x1) = Efx1 + Em(1 − x1), I(x2) =
x2

2

12
|w|. (57)

If the rectangular cross section has length sides a and x2, the area is |w| = ax2,

I(x2) = x3
2a
12 and I verifies the formula (57). Thus, the objective of this
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problem 2 is to find both the fiber volume fraction Vf = x1 in the material
and the shape of the cross section (a rectangle if x2 = a or a square if
x2 = a =

√|w|) which minimize the objective function of the MPEC (48).
In addition for this rod, the modulus of the matrix is Em = 3.45GPa, the
modulus of the fiber is Ef = 86GPa, the axis length is L = 5m, and the
external loads have intensities q(N) and p(N), that are independent of x.

The tables 4 and 5 include the results of problem 2 with the projected-
gradient algorithm. The solution produced is x∗ = (x∗1, x

∗
2) = (V min

f , bmin).

The value x∗1 = V min
f means that the percentage of fiber in the material is

the minimum, and so, as in problem 1, the material is softer. The value
x∗2 = bmin indicates that the length of a side of the rectangular cross section
of the rod must be the minimum, which means that the cross section must be
very thin. This solution corresponds to the expected mechanical properties
of the rod, as a soft material and a very thin rectangular cross section lead to
a big deformation, which increases the contact region between the rod and
the obstacle and decreases the value of the objective function.

A direct observation of tables 4 and 5, with respect to the value x∗1 of the
first component of x∗, leads to the following conclusion analogous to that of
problem 1 (when observing tables 2 and 3): if q is considerably bigger than p,
the number of iterations of the projected-gradient algorithm increases, and
the expected solution is only obtained for a sufficiently refined mesh. On the
contrary, the value x∗2 of the second component of x∗ is always the minimum
value of x2, that is x2 = 0.05 = bmin, independently of the relation between
the intensities of the forces q and p.

The figures 5 and 6 illustrate the influence of the force p. They represent
the displacement u = u(x∗) of the rod axis for the value x∗ = (0.01048, 0.05),
for the two different perpendicular forces p = −10N and p = −80N , with
the obstacle ψ1, for n = 50 and q = −12000N .

For this problem 2, it follows from (12) that the gradient of f is defined by

∇xf(x) =
( ∂f
∂x1

(x),
∂f

∂x2
(x)

)
(58)
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Table 4. Results for Problem 2 with q = −12000N and q = −20000N

Obstacle q (N) n p (N) x∗ = (x∗1, x
∗
2) MLCP itBPP it PG

−10 (0.07101, 0.05) 17 2.706 4
30 −80 (0.07101, 0.05) 17 3.529 4

−150 (0.07113, 0.05) 18 3.444 4
−10 (0.03153, 0.05) 37 2.568 6

ψ1 −12000 40 −80 (0.03154, 0.05) 37 3.649 6
−150 (0.03154, 0.05) 37 3.676 6
−10 (0.01048, 0.05) 15 3.133 3

50 −80 (0.01048, 0.05) 15 4.733 3
−150 (0.01048, 0.05) 15 4.733 3
−25 (0.09159, 0.05) 36 2.222 8

30 −80 (0.09159, 0.05) 36 2.278 8
−120 (0.09152, 0.05) 37 2.649 8
−25 (0.04407, 0.05) 26 2.577 5

ψ2 −20000 40 −80 (0.04407, 0.05) 26 2.346 5
−120 (0.04407, 0.05) 26 2.346 5
−25 (0.01926, 0.05) 27 2.815 5

50 −80 (0.01926, 0.05) 27 2.444 5
−120 (0.01926, 0.05) 27 2.963 5
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Figure 5. Displacement u for Problem 2, p = −10N
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Table 5. Results for Problem 2, for q = −50N

Obstacle q (N) n p (N) x∗ = (x∗1, x
∗
2) MLCP itBPP it PG

−10 (0.01, 0.05) 2 6 2
30 −80 (0.01, 0.05) 2 10 2

−150 (0.01, 0.05) 2 9 2
−10 (0.01, 0.05) 2 7.5 2

ψ1 −50 40 −80 (0.01, 0.05) 2 10 2
−150 (0.01, 0.05) 2 11 2
−10 (0.01, 0.05) 2 8.5 2

50 −80 (0.01, 0.05) 2 13.5 2
−150 (0.01, 0.05) 2 13.5 2
−25 (0.01, 0.05) 2 7.5 2

30 −80 (0.01, 0.05) 2 6 2
−120 (0.01, 0.05) 2 7 2
−25 (0.01, 0.05) 2 10.5 2

ψ2 −50 40 −80 (0.01, 0.05) 2 9 2
−120 (0.01, 0.05) 2 7.5 2
−25 (0.01, 0.05) 2 11.5 2

50 −80 (0.01, 0.05) 2 9.5 2
−120 (0.01, 0.05) 2 9.5 2
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Figure 6. Displacement u for Problem 2, p = −80N
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where
 ∂f

∂x1
(x) = −

(∂BHH

∂x1
(x)ψH

)T

(u(x) − ψ)

−1
2(u(x) − ψ)T ∂BHH

∂x1
(x)(u(x) − ψ),


 ∂f

∂x2
(x) = −

(∂BHH

∂x2
(x)ψH

)T

(u(x) − ψ)

−1
2(u(x) − ψ)T ∂BHH

∂x2
(x)(u(x) − ψ),

(59)

as FH is independent of x. As observed before in problem 1, the function ψ
in (59) is defined by ψi − ψ0, for i = 1 or i = 2, depending on the choice of
the obstacle ψ1 or ψ2. In order to compute the partial derivatives ∂BHH

∂xj
(x)

for j = 1, 2, it is enough to calculate the derivatives dE
dx1

, dI
dx2

, in the definition

of the element stiffness matrix Bi (35). So, analogously to problem 1 (see
(55))

∂BHH

∂x1
(x) =

Ef − Em

Efx1 + Em(1 − x1)
BHH(x), (60)

and for a generic finite element [yi, yi+1] the derivative ∂BHH

∂x2
(x) is equal to

∂Bi

∂x2
(x), where

∂Bi

∂x2
(x) = E(x1)

dI

dx2
(x2)
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, (61)

hi is the amplitude of the element [yi, yi+1] and, according to (57), dI
dx2

(x2) =
1
6x2|w|.

Since the matrices ∂BHH

∂xj
(x), for j = 1, 2, are symmetric and positive def-

inite, in the right-hand sides of the two formulas (59) each second term is
positive, for any x ∈ X, but the sign of the first term is not known. So, it is
impossible to know a priori the sign of each partial derivative in the definition
of the gradient ∇xf(x) and the projected-gradient algorithm is necessary to
obtain this information and to compute the minimum.
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6.3. Problem 3 (material and axis length optimization for a rod).
The admissible set X of outer variables is now defined by

X =
{
x = (x1, x2) ∈ R

2 : V min
f ≤ x1 ≤ V max

f , Lmin ≤ x2 ≤ Lmax
}

(62)

The component x1 represents the fiber volume fraction Vf and x2 is the length
of the axis of the rod, which belongs to [Lmin, Lmax]. It is also assumed that
the uniformly distributed forces per unit of length q and p, in the direction
of the rod axis and the direction perpendicular of the rod axis, respectively,
depend on the length of the rod and satisfy

q =
q

x2
and p =

p

x2
, (63)

with q and p constants. This means that for a rod whose axis length is x2,
q and p are the total constant forces applied to the rod. The longitudinal
modulus of the material depends on x through x1, that is E(x1) = Efx1 +
Em(1 − x1), and the amplitude hi of each finite finite element depends on
the length of the rod so it depends on x2 the second component of the outer
variable x.

The aim of this problem 3 is to find both the fiber volume fraction Vf = x1
in the material and the length of the axis rod L = x2, which minimize the
objective function of the MPEC (48), for a rod such that the modulus of
the matrix is Em = 3.45GPa, the modulus of the fiber is Ef = 86GPa,
the area of the cross section is |w| = 0.004m2 and the moment of inertia is
I = 2.1 × 10−6m4.

The tables 6 and 7 include the results of problem 3 with the projected-
gradient algorithm. The solution obtained is x∗ = (x∗1, x

∗
2) = (V min

f , Lmax).
Tables 6 and 7 lead to conclusions similar to those achieved for problems

1 and 2. In this case the value x∗2 of the second component of x∗ is the
maximum value of x2, that is x∗2 = Lmax (instead of the minimum value of
x2 as in problem 2). The solution x∗ = (x∗1, x

∗
2) = (V min

f , Lmax) is precisely
the expected value, because of the mechanical interpretation of the problem
given immediately after theorem 2.2: the rod tends to become closer to the
obstacle as the fiber volume fraction reduces and when the rod axis increases.
In fact, with a soft material and a long axis, the deformation of the rod is
bigger, which increases the contact region with the obstacle.
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Table 6. Results for Problem 3 with q = −40000N and q = −100000N

Obstacle q (N) n p (N) x∗ = (x∗1, x
∗
2) MLCP itBPP it PG

−25 (0.01, 5) 2 1 2
30 −80 (0.01, 5) 2 7 2

−150 (0.01, 5) 2 6.5 2
−25 (0.01, 5) 2 1 2

ψ1 −40000 40 −80 (0.01, 5) 2 8 2
−150 (0.01, 5) 2 8 2
−25 (0.01, 5) 2 1 2

50 −80 (0.01, 5) 2 9 2
−150 (0.01, 5) 2 8 2
−25 (0.04177, 5) 84 1.488 10

30 −80 (0.04177, 5) 84 1.94 10
−150 (0.04176, 5) 70 1.871 9
−25 (0.01188, 5) 20 1.8 4

ψ2 −100000 40 −80 (0.01188, 5) 20 2.35 4
−150 (0.01188, 5) 20 2.6 4
−25 (0.01, 5) 2 6.5 2

50 −80 (0.01, 5) 2 7 2
−150 (0.01, 5) 2 9 2

The figures 7 and 8 illustrate the influence of the refinement of the finite
element mesh. They represent, for q = −100000N , p = −80N , the displace-
ment u of the rod axis at the values x = (0.04177, 5) and x = (0.01188, 5),
for n = 30 and n = 40 finite elements, respectively, with the obstacle ψ2.

Now the gradient of the objective function f is defined by

∇xf(x) =
( ∂f
∂x1

(x),
∂f

∂x2
(x)

)
(64)
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Table 7. Results for Problem 3, for q = −50N

Obstacle q (N) n p (N) x∗ = (x∗1, x
∗
2) MLCP itBPP it PG

−25 (0.01, 5) 2 1 2
30 −80 (0.01, 5) 2 7 2

−150 (0.01, 5) 2 7 2
−25 (0.01, 5) 2 1 2

ψ1 −50 40 −80 (0.01, 5) 2 8 2
−150 (0.01, 5) 2 8 2
−25 (0.01, 5) 2 1 2

50 −80 (0.01, 5) 2 8.5 2
−150 (0.01, 5) 2 8 2
−25 (0.01, 5) 2 4.5 2

30 −80 (0.01, 5) 2 6 2
−150 (0.01, 5) 2 6.5 2
−25 (0.01, 5) 2 5 2

ψ2 −50 40 −80 (0.01, 5) 2 6.5 2
−150 (0.01, 5) 2 8.5 2
−25 (0.01, 5) 2 7 2

50 −80 (0.01, 5) 2 7 2
−150 (0.01, 5) 2 9 2
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Figure 7. Displacement u for Problem 3, n = 30
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Figure 8. Displacement u for Problem 3, n = 40

where
 ∂f

∂x1
(x) =

(∂FH

∂x1
(x) − ∂BHH

∂x1
(x)ψH

)T

(u(x) − ψ)

−1
2(u(x) − ψ)T ∂BHH

∂x1
(x)(u(x) − ψ),


 ∂f

∂x2
(x) =

(∂FH

∂x2
(x) − ∂BHH

∂x2
(x)ψH

)T

(u(x) − ψ)

−1
2(u(x) − ψ)T ∂BHH

∂x2
(x)(u(x) − ψ).

(65)

As observed before in problems 1 and 2, the function ψ in (65) is defined by
ψi − ψ0, for i = 1 or i = 2, depending on the choice of the obstacle ψ1 or ψ2.
By examining the formulas (35) and (37) of the element stiffness matrix Bi

and of the element vector force Fi (which by (63) is independent of x1 but
depends on x2), we deduce that the above partial derivatives with respect to
x1 satisfy

∂FH

∂x1
= 0,

∂BHH

∂x1
(x) =

Ef − Em

Efx1 + Em(1 − x1)
BHH(x). (66)

The derivatives with respect to x2 are more complicated. The amplitude of
each finite element is a function of x2, that is, hi = hi(x2), where x2 is the
length of the axis rod. So in order to obtain the partial derivatives ∂FH

∂x2
(x)
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and ∂BHH

∂x2
(x) we must calculate the derivative dhi

dx2
and the derivatives ∂Fi

∂x2
(x)

and ∂Bi

∂x2
(x) of the element vector Fi and of the element matrix Bi.

By (63), the elementary vector force Fi defined in (37) becomes

Fi(x)
T =

[
q

2x2
hi

p

2x2
hi

p

12x2
h2

i

q

2x2
hi

p

2x2
hi − p

12x2
h2

i

]
, (67)

where hi depends on x2, that is, hi = hi(x2). In particular, for a uniform
mesh with n finite elements such that hi(x2) = x2

n , we have that

∂Fi(x)

dx2

T

=

[
0 0

p

12n2 0 0 − p

12n2

]
. (68)

Hence by assembling these elementary vector forces we obtain ∂FH

∂x2
(x) = 0.

For the same mesh the derivative ∂BHH

∂x2
(x) is computed by assembling the

derivatives ∂Bi

∂x2
(x) for all the finite elements i = 1, 2, ..., n, with

∂Bi

∂x2
(x) = E(x1)
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. (69)

Note that it is not possible to conclude whether ∂BHH

∂x2
(x) is a positive definite

matrix in this case.
Similarly to problems 1 and 2, the sign of ∂f

∂x1
(x) is impossible to determine

even when the matrix ∂BHH

∂x1
(x) is positive definite, as the sign of the term

−(∂BHH

∂x1
(x)ψH)T (u(x)−ψ) is not known for each x. The sign of ∂f

∂x2
(x) is even

more difficult to guess, since it is not known if ∂BHH

∂x2
(x) is a positive definite

matrix. Thus the projected-gradient algorithm is also needed to detect the
increase or the decrease of the objective function f(x1, x2).

6.4. Problem 4 (material optimization for a plate). This problem 4
is analogously to problem 1 and the admissible set X of outer variables is
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defined by

X =
{
x ∈ [0, 1] : V min

f ≤ x ≤ V max
f

}
. (70)

The variable x has only one component, which represents the fiber volume
fraction Vf . The objective of this problem 4 is to find the fiber volume
fraction of the plate which satisfies the data of table 1 (Em = 3.45GPa,
Ef = 86GPa, t = 0.002m, νm = 0.30GPa, νf = 0.222GPa, Gm = 1.33GPa,
Gf = 35.2GPa) and minimizes the objective function of the MPEC (48). In
addition the plate is subjected to the action of a vertical force, per unit of
area, of intensity p independent on x.

Now, the coefficients of elasticity Q11, Q12, Q22, Q33 defined in (41) are
functions of x, as the Young’s modulus E1 and E2 defined in (42) verify

E1(x) = Efx+ Em(1 − x), E2 =
EfEm

Ef(1 − x) + Emx
. (71)

The table 8 presents the results for problem 4 with the projected-gradient
algorithm and the solution obtained is x∗ = V min

f .
The examination of this table 8 indicates that for the two obstacles ψ3

and ψ4, the solution x∗ = V min
f = 0.01 is obtained in two iterations with

the projected-gradient algorithm. This number of iterations does not change
with the different intensities of the force and with the increase of the number
of finite elements. Consequently the derivative df

dx(x) in (72) must be always
positive in these cases. As already remarked in the previous rod problems,
this solution obtained with the projected-gradient method agrees with the
expected mechanical properties of the plate, as the minimum value for the
fiber means a soft material.

The figure 9 represents the deformed middle plane of the plate, repre-
sented by the displacement u for the constant obstacle ψ3 with the force
p = −20000N and 225 finite elements. The figure 10 shows the displace-
ment u of the middle plane of the plate for the obstacle ψ4, with the force
p = −90000N and 400 finite elements.

By using formula (12) and since FH defined in (43) is independent on x,
the gradient of the objective function f satisfies


df

dx
(x) = −

(dBHH

dx
(x)ψH

)T

(u(x) − ψ)

−1

2
(u(x) − ψ)T dBHH

dx
(x)(u(x) − ψ),

(72)
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Table 8. Results for Problem 4

Obstacle n p (N) x∗ MLCP itBPP it PG
−10000 0.01 2 1 2

100 −20000 0.01 2 2.5 2
−30000 0.01 2 3 2
−10000 0.01 2 1 2

ψ3 225 −20000 0.01 2 2.5 2
−30000 0.01 2 4 2
−10000 0.01 2 1 2

400 −20000 0.01 2 4 2
−30000 0.01 2 6 2
−20000 0.01 2 2 2

100 −50000 0.01 2 3 2
−90000 0.01 2 4 2
−20000 0.01 2 2 2

ψ4 225 −50000 0.01 2 3.5 2
−90000 0.01 2 3.5 2
−20000 0.01 2 3.5 2

400 −50000 0.01 2 4.5 2
−90000 0.01 2 5 2
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Figure 9. Displacement u for Problem 4 with obstacle ψ3
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Figure 10. Displacement u for Problem 4 with obstacle ψ4

where ψ = ψi for i = 3 or i = 4. Similarly to the previous problems, in
order to compute dBHH

dx (x) it is enough to calculate the derivative of the ele-
ment stiffness matrix Bi defined in (38) and then to assemble all the element
stiffness matrices, as is usual in the finite element method. Hence

dBi

dx
(x) =

t3

12

∫
Ωi

NT
i

dD

dx
(x)Ni (73)

and

dD

dx
(x) =




dQ11

dx (x) dQ12

dx (x) 0

dQ21

dx (x) dQ22

dx (x) 0

0 0 dQ33

dx (x)




3×3

. (74)

So to obtain the expression of dBHH

dx (x) it is sufficient to derive the elasticity
coefficients with respect to x and to apply (73-74). Due to the complexity

of the derivatives
dQij

dx (x), for i, j ∈ {1, 2} it is not possible to know a priori

by a direct observation whether dD
dx (x) is a positive definite matrix, and so it

is not known if dBHH

dx (x) is a positive definite matrix. The projected-gradient

algorithm is needed once more to compute the sign of df
dx(x) and the solution

of problem 4.

It follows from all these experiments that the results achieved with the pro-
jected-gradient algorithm confirm the expected mechanical properties of the
rod or plate. Furthermore the number of iterations of the projected-gradient
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algorithm and of the block pivoting algorithm are always quite small. This
indicates that these techniques are quite appropriate for their purposes.

More general structural optimization problems, whose solutions can not be
predicted, both from the mathematical and mechanical view-point, may be
determined by the iterative technique proposed in this paper. In fact, we can
allow in the definition of the set X other linear constraints. As far as the
implementation of the algorithm is concerned, this only affects the definition
of the projection PX . However, it may induce a significant alteration in the
problem in such a way that it is impossible to guess in advance an acceptable
mechanical solution. For instance, it would be interesting to consider a mate-
rial optimization problem, such as problem 1, for a composite rod subjected
to an applied load, which may come in contact with a rigid obstacle, and
such that the rod is made of a variable Young’s modulus Ej, in each finite
element j, and with a constant global Young’s modulus E. This implies that


Ej = Efxj + Em(1 − xj), for j = 1, . . . , n

E =
∑n

j=1Ej =
∑n

j=1

[
Efxj + Em(1 − xj)

]
0 ≤ xj ≤ 1, for j = 1, . . . , n,

(75)

where n is the number of finite elements in the mesh. The equation E =∑n
j=1

[
Efxj +Em(1−xj)

]
is a linear constraint that should be included in the

definition of the set X. The projected-gradient algorithm can also be applied
in this case, but the projection operator PX should be computed by one of
the algorithms described in Helgason, Kennington and Lall [12], Robinson,
Jiang and Lerme [21] and Pardalos and Kovoor [18] for this so-called strictly
convex quadratic knapsack problem.

This process would give the amount of fiber volume fraction xj in each
finite element j ∈ {1, . . . , n}. This means that for a rod with a constant
Young’s modulus, we could know the distribution of the material in the rod
(more or less fiber in the regions determined by the finite elements), which
is not predictable in the majority of the cases.

Conclusion
A projected-gradient algorithm that includes a block principal pivoting

algorithm is proposed in this paper for a particular MPEC whose objective
function is differentiable. This technique has been applied to four material
and shape optimization problems with constraints that include a contact
problem with a rigid obstacle. The numerical results confirm the suitability
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of this method. The methodology discussed in this paper can also be very
useful to solve more general material and shape optimization problems. This
will certainly be one of the main objectives of our future research.
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gal

E-mail address: rosa@noe.ubi.pt


