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1. Introduction
Dirac structures were introduced by Courant and Weinstein and Dorfman

by the end of the eighties [3, 4]. They are a generalization of Poisson struc-
tures which, roughly speaking, replace the canonical symplectic foliation of
Poisson manifold by a presymplectic one. Roughly speaking still, we can
think on Dirac structures as a Poisson manifold endowed with a distinguished
distribution which, speaking in mechanical terms, defines a set of implicit
constraints. Mechanical systems with constraints, singular Lagrangian sys-
tems, and many engineering systems are naturally described by a Dirac mani-
fold. These applications in engineering are defined through the theory of Port
Controlled Hamiltonian Systems introduced by van der Schaft, Maschke and
coworkers (see for instance [13, 16] and references therein).

¿From a geometrical point of view, Dirac structures are intimately related
to Lie algebroids and bialgebroids [2, 9, 8]. A Dirac structure on a manifold
M was defined in [3, 2] as a subbundle D of the Whitney sum TM ⊕ T ∗M
satisfying certain properties, which correspond to the definition of a Lie al-
gebroid structure. Later, the concept was generalized to similar subbundles
defined on Whitney sums of the form A⊕A∗ where (A,A∗) is a Lie bialgebroid
[9].

The deformation of structures by using Nijenhuis operators is a concept
often used in the Literature. Originally proposed within the framework of
integrable systems (see the introduction and references of [11]), it allows a
deformation of Lie algebra structures defined on different types of manifolds.
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It has been recently extended to the Lie algebroid case, and therefore a very
interesting example seems to be the study of the deformation of Lie algebroid
structure which corresponds to a Dirac manifold. In [5], the problem was
discussed for the case of Poisson manifolds (corresponding to the case of
Poisson-Nijenhuis manifolds [6, 7]). Within the Lie algebroid domain, the
Jacobi-Nijenhuis case (i.e. the deformation associated to a Jacobi manifold)
was also studied in [12, 14]. We propose a generalization of the concept
to general Dirac structures, which includes the Poisson-Nijenhuis case as a
particular example, and can be adapted to the Jacobi-Nijenhuis framework
(see [1]). Besides the intrinsic interest of the concept, we also have in mind
eventual applications to Engineering within the framework of Port Controlled
Hamiltonian systems.

The structure of the paper is as follows. In Section 2 we introduce the
main properties of Lie algebroids which we are going to use in the paper,
from the definition itself to the exterior algebra and the Schouten bracket.
We also present the definition of Dirac structures in the simplest situations,
the constant case and the definition as a subbundle of TM ⊕ T ∗M . In Sec-
tion 3 the notion of Dirac structure is generalized to general Lie bialgebroids:
we discuss the definition of a Lie bialgebroid, and some properties and ex-
amples, as well as the notion of Courant algebroids. Then, Dirac structures
are defined as suitable subbundles within that framework. The notion of
the characteristic pair of a Lie algebroid, which will be very important for
us later, is also discussed. The last sections are devoted to the deformation
of the structures presented so far: Section 4 studies the deformation of Lie
algebroids and Lie bialgebroids, since they are necessary to define the defor-
mation of Dirac structures themselves. This is done in two steps: Section 5
studies the deformation of the Dirac bundle alone, via transformations that
do not affect the underlying Lie bialgebroid. Finally, Section 6 presents the
conditions for a deformation of a Lie bialgebroid to define also a deformation
of a Dirac structure defined on it.

2. Dirac structures and Lie algebroids
2.1. Lie algebroids. The idea behind Lie algebroids has been used in the
last fifty years in the algebraic geometric framework, under different names
but the first proper definition, from the point of view of Differential Geome-
try, is due to Pradines [15].
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Definition 2.1. A Lie algebroid on a manifold M is a vector bundle A →
M , in whose space of sections we define a Lie algebra structure (ΓA, [·, ·]A),
and a mapping ρ : A → TM which is a homomorphism for this structure
in relation with the natural Lie algebra structure of the set of vector fields
(X(M), [·, ·]TM ). We have therefore:

ρ([X,Y ]A) = [ρ(X), ρ(Y )]TM ∀X,Y ∈ ΓA,

Besides, the structure allows a derivation-type property for the module of
sections:

[X, fY ]A = [X,Y ]A + (ρ(X)f) Y ∀X,Y ∈ ΓA, ∀ f ∈ C∞(M) . (1)

The main idea we have to keep in mind is that a Lie algebroid is a geomet-
rical object very similar to a tangent bundle. The sections of the bundle A
play the role of vector fields. The other basic objects of differential calculus
on TM can be defined for A as well. The sections of the dual bundle A∗

play the role of one-forms, and the sections of its skew-symmetrized tensor
product that of the p-forms. There is a cohomology defined by an exterior
differential as follows:

• For functions d : C∞(M) → ΓA∗ such that:

〈df,X〉 = ρ(X)f ∀f ∈ C∞(M), X ∈ ΓA.

• For higher orders forms we take the direct analogue of the usual defi-
nition d : Γ

∧p(A) → Γ
∧p+1(A):

dθ(σ1, . . . , σp+1) =

p+1∑
i=1

(−1)i+1ρ(σi)θ(σ1, . . . , σ̂i, . . . σp+1)

+
∑
i<j

(−1)i+jθ([σi, σj], σ1, . . . , σ̂i, . . . , σ̂j, . . . σp+1) ∀σi ∈ ΓA θ ∈ Γ
∧p

A∗,

(2)

where by the symbol σ̂i we mean that the corresponding section is
omitted.

Lemma 2.1. The differential for A can be related to the de Rham differential
of the base manifold M as:

dA = ρ∗ ◦ d. (3)

Proof : It follows directly from the definition of dA and the homomorphism
property of the anchor mapping.
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Note: In the following, we will denote the differential of A as d unless
some confusion with the usual de Rham differential arises.

The action of an A-section X on a p-form ω is defined in the natural way,
as the p − 1 form given as:

iXω(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1) ∀X1, · · · , Xp−1 ∈ ΓA.

And finally, the Lie derivative for sections of the dual bundle can be defined
by generalizing Cartan’s formula:

LA
σ = iσ ◦ d + d ◦ iσ σ ∈ ΓA.

This definition leads to the following result, that some authors use as the
definition of the Lie derivative:

Lemma 2.2. Let A be a Lie algebroid, with anchor ρ and differential d.
Then, the following property holds:

〈Y,LXα〉 = ρ(X)〈Y, α〉 − α([X,Y ]). (4)

Proof : ¿From the definition of the Lie derivative:

LXα = iX ◦ dα + diXα.

Then,

〈Y,LXα〉 = iY LXα = iY (ix ◦ dα + diXα) = ρ(Y )〈X,α〉 + (dα)(X,Y ) =

ρ(Y )〈X,α〉+ρ(X)〈Y, α〉−ρ(Y )〈X,α〉−α([X,Y ]) = ρ(X)〈Y, α〉−α([X,Y ]).

The concept of Lie derivative applied to sections of Γ
∧pA is a bit more

involved. It requires the definition of the Schouten bracket as a extension
of the Lie bracket [·, ·]A to A–multivectors. The procedure is completely
analogous to the usual case, though (see [10]).

2.2. Simple Dirac structures. The simplest example of Dirac structure is
defined on vector spaces. Let V be a vector space and consider also its dual
space V ∗ with respect to the dual inner product 〈·, ·〉.

Consider a bilinear operation (·, ·)+ defined on V × V ∗ as:

((v1, w1), (v2, w2))+ = 〈v1, w2〉 + 〈v2, w1〉 ∀(v1, w1), (v2, w2) ∈ V × V ∗. (5)
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We can consider a subset D of the space V ×V ∗ which is maximally isotropic
with respect to (·, ·)+, i.e. such that D⊥ = D where,

D⊥ = {(w1, w2) ∈ V × V ∗|〈v1, w2〉 + 〈w1, v2〉 = 0 ∀(v1, v2) ∈ D ⊂ V × V ∗} .

We will say that this subspace D is a constant Dirac structure. Any
subspace D ⊂ V × V ∗ of dimension n = dimV such that:

〈v, v∗〉 = 0 ∀(v, v∗) ∈ D (6)

will define a constant Dirac structure.
The definition of a constant Dirac structure can also be generalized to the

non constant case, when we consider that this vector space V is the tangent
space to a manifold M in one point. A constant Dirac structure on the point
p ∈ M is defined on TpM as a subspace D ⊂ TpM × T ∗

p M verifying the

condition above (D⊥ = D). We define a global structure making this D
depend on the point p ∈ M , where now the vectors become vector fields as
well as the co-vectors become one forms. The inner product is the natural
pairing 〈·, ·〉 : X(M) ×

∧1(M) → C∞(M) (we denote by X(M) the set of
vector fields on M and by

∧1(M) the set of one forms) and the definition of
D⊥ becomes now:

D⊥ = {(Y, β) ∈ TM ⊕ T ∗M |〈X,β〉 + 〈Y, α〉 = 0

∀(X,α) ∈ D ⊂ TM ⊕ T ∗M} .

And the definition of (·, ·)+ is now:

((X1, α1), (X2, α2))+ = iX1
α2 + iX2

α1. (7)

The condition to be satisfied by the set D (actually it must be a subbundle
of TM ⊕ T ∗M) is still the same:

Definition 2.2. A subbundle D ⊂ TM ⊕ T ∗M is said to be a generalized
Dirac structure defined on a manifold M if and only if it is maximally
isotropic with respect to (7), i.e.

D⊥ = D.

Equivalently, D can be defined as the subbundle where the operation (·, ·)+ is
identically zero.
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To define a closed Dirac structure (or simply a Dirac structure) it is neces-
sary to ensure that the skew-symmetric operation (11) is inner in the space
of sections of the subbundle D, i.e. that given any two sections σ1, σ2 ∈ ΓD,

[σ1, σ2] ∈ ΓD .

This can be achieved by imposing two different conditions: the plain con-
dition above or the following one (see [2, 16]):

Definition 2.3. A generalized Dirac structure is said to be closed if for
any three sections σ1 ≡ (X1, α1), σ2 ≡ (X2, α2), σ3 ≡ (X3, α3) the following
property holds:

〈X1,LX2
α3〉 + 〈X3,LX1

α2〉 + 〈X2,LX3
α1〉 = 0. (8)

2.3. Dirac structures as Lie algebroids. Consider now again the mani-
fold M and the Whitney sum TM ⊕ T ∗M . A closed Dirac structure defines
an integrable subbundle on it:

D ⊂ TM ⊕ T ∗M, (9)

which yields a Lie algebroid structure on it. The original definition is due to
Courant in [2] and is as follows:

• The vector bundle is, of course, the bundle D and the base the mani-
fold M .

• The anchor mapping is the natural projection:

ρ : D → TM. (10)

• The Lie algebra structure is defined as:

[(X1, α1), (X2, α2)] =

(
[X1, X2],LX1

α2 −LX2
α1 −

1

2
d(iX1

α2 − iX2
α1)

)
.

(11)

Being a Lie algebroid, the cohomology complex of D can be considered,
and its coboundary operator dD.

Equivalently, we can formulate the integrability condition in the following
way:

Theorem 2.1 (Courant). A Dirac structure is closed if and only if it is a
Lie algebroid, with the natural projection ρ : D → TM as anchor mapping
and (11) as the Lie algebra structure on the space of sections.
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2.4. Examples.

Example 2.1. Given a symplectic manifold (M,ω), the symplectic form de-
fines a mapping:

ω̂ : TM → T ∗M

ω̂(X)(Y ) = ω(X,Y ) ∀Y ∈ X(M). (12)

It is straightforward to check that the subbundle defined in TM ⊕ T ∗M by
the graph of ω̂ defines a generalized Dirac structure:

D = {(X, ω̂(X)) |X ∈ X(M)}.
The proof is trivial and based in the antisymmetry of the symplectic form. It
is immediate that this D has the right dimension (one half of the dimension
of TM ⊕ T ∗M ) and that it satisfies (6):

〈X, ω̂(X)〉 = ω(X,X) = 0.

Example 2.2. Another very interesting example is the case of a Poisson
manifold (M,J) (we denote by J the Poisson tensor). In this case, it is well
known that there is a mapping equivalent to (12), but in the other direction,
and particularly useful when applied to exact one forms:

Ĵ :T ∗M → TM

Ĵ(df)(dg) = J(df, dg) = {f, g}.
It is again straightforward to check that the subbundle defined by the graph

of the mapping Ĵ defines on M a generalized Dirac structure:

D = {(Ĵ(α), α)|α ∈ T ∗M}. (13)

The proof is again based in the antisymmetry of the tensor J , and it follows
step by step the previous one.

3. More general definitions: Lie bialgebroids and Cou-
rant algebroids

The definitions above represent the simplest characterization of Dirac struc-
tures from a geometrical point of view. There exist generalizations of the con-
cept of Dirac structures and generalized Dirac structures, which represent the
usual framework for the research carried out in the differential geometric side
of Dirac structures nowadays.
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3.1. Lie bialgebroids. Let us consider first the integrable case. Let us
assume that (A, [·, ·], ρ) is a Lie algebroid over a base manifold M . Consider
also the corresponding dual bundle A∗ → M . Assume that it is also possible
to define a Lie algebroid structure for this bundle, i.e. there exist a Lie algebra
structure [·, ·]∗ and an anchor mapping ρ∗ : A∗ → M which satisfies the
conditions specified in Definition 2.1. In both cases, there exist cohomology
operators, which we denote by d and d∗. As the bundles are dual, each
operator acts on the set of sections of the other bundle. If these actions are
derivations with respect to the Lie algebra structure of the sections, the pair
(A,A∗) is called a Lie bialgebroid:

Definition 3.1. A Lie bialgebroid is a pair of dual Lie algebroids (A,A∗)
such that the differential d is a derivation of the Schouten-bracket of A∗, i.e.

d[α1, α2] = [dα1, α2] + [α1, dα2] ∀α1, α2 ∈ ΓA∗. (14)

Analogously, d∗ is also a derivation for the commutator of the sections of A:

d∗[X1, X2] = [d∗X1, X2] + [X1, d∗X2]. (15)

There are trivial examples of Lie bialgebroids provided by Lie algebroids.
Take a Lie algebroid A and consider its dual bundle A∗. We can endow A∗

with a Lie algebroid structure by choosing an abelian algebra structure and
a null anchor mapping (i.e. all the sections of A∗ → M go to the zero section
of TM). It is trivial to see that such a choice fulfills the conditions above
and then (A,A∗) becomes a Lie bialgebroid. This is the case, for instance,
of the trivial Lie algebroid structure of TM , which hence allows TM ⊕T ∗M
to be considered as a Lie bialgebroid.

3.2. Dirac structures on Lie bialgebroids. Given a Lie bialgebroid
(A,A∗), we can consider the Whitney sum B ≡ A⊕A∗, the duality between
the two bundles can be used to define two canonical forms, one symmetric
〈〈·, ·〉〉+ : B × B → B and one skew-symmetric 〈〈·, ·〉〉− : B × B → B:

((X1, α1), (X2, α2))± = 〈X1, α2〉 ± 〈X2, α2〉 ∀(X1, α1), (X2, α2) ∈ B. (16)

The symmetric one is precisely the product (7) for the case of TM ⊕T ∗M .
Hence, it is trivial to see how the concept of Dirac structure is trivially
extended to the case of more general Lie bialgebroids:
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Definition 3.2. Consider a Lie bialgebroid (A,A∗). A subbundle of D ⊂
A ⊕ A∗ → M is called a generalized Dirac structure on M if it is maximally
isotropic with respect to the symmetric operation (16).

For the definition of the Lie algebra structure on the space of sections of
D, the structures of both Lie algebroids are used. The operation is defined
on the sum A⊕ A∗, but defines a Lie algebra operation only on the sections
of the subbundle D:

Definition 3.3. Consider the Whitney sum bundle B = A ⊕ A∗. We can
endow the set of sections of B with a bilinear, skew-symmetric operation, in
the form:

[(X1, α1), (X2, α2)] = ([X1, X2]A + [X,Y ]LA∗ , [α, β]LA + [α1, α2]A∗) , (17)

with

[X,Y ]LA∗ = LA∗
α1

X2 − LA∗
α2

X1 −
1

2
d∗(iX1

α2 − iX2
α1)

and

[α, β]LA
N

= LA
X1

α2 − LA
X2

α1 +
1

2
d(iX1

α2 − iX2
α1),

where LA
X ,LA∗

α correspond to the Lie derivatives on A and A∗ (acting on
A-forms or A∗-forms, i.e., sections of A∗ or A), i.e.:

LA
X = iX ◦ d + d ◦ iX LA∗

α = iα ◦ d∗ + d∗ ◦ iα.

For this operation, bi-linearity and skew-symmetry are trivial to prove. On
the other hand, Jacobi identity is not satisfied on the whole space of sections
of B. It is possible, though, that the property holds for the space of sections
of a generalized Dirac structure D ⊂ B.

Definition 3.4. A generalized Dirac structure D ⊂ B is a Dirac structure if
the operation above defines a Lie algebra structure on the space of its sections.

Analogously to the TM ⊕ T ∗M case, Dirac structures and Lie algebroids
are deeply related:

Proposition 3.1. Consider the Whitney sum bundle B = A ⊕ A∗ for the
Lie bialgebroid (A,A∗). Consider also the operation [·, ·] and the mapping
ρB = ρ⊕ρ∗ : B → TM . A subbundle D ⊂ B is a Dirac structure if and only
if (D, [·, ·], ρ|D) is a Lie algebroid.
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Proof : The operation [·, ·] is trivially skew-symmetric. Bilinearity follows
from the bilinearity of the commutators [·, ·]A and [·, ·]A∗ and the properties
of the Lie derivative (as it happens in the TM⊕T ∗M case). Jacobi identity is
assumed by the statement for the sections of D, thus providing a Lie algebra
structure for ΓD. The only points to be proved are:

• Homomorphism condition for ρ|D. We must prove that:

ρ[(X,α), (Y, β)] = [ρ(X,α), ρ(Y, β)] ∀(X,α), (Y, β) ∈ ΓD.

As [·, ·] and [·, ·]∗ trivially satisfy the condition, the only thing to prove
is that:

ρ[X,Y ]LA∗ + ρ∗[α, β]L
A

= [ρX, ρ∗β] + [ρY, ρ∗α].

The proof can be found in Proposition 4.2 of [9].
• Derivation property for the module:

[(X,α), f(Y, β)] = f [(X,α), (Y, β)] + (ρ(X,α)f)(Y, β).

This point is simple, because [·, ·] and [·, ·]∗ satisfy this property, and
the brackets [·, ·]LA∗ and [·, ·]LA also satisfy it because of the properties
of the Lie derivatives (the proof is completely analogous to the proof
of the cotangent bundle of a Poisson manifold carrying a canonical
Lie algebroid structure).

3.3. Characteristic pairs. The characterization of Dirac structures can be
done in terms of subbundles of A and suitable A-tensors. This generalizes
the description proposed in [16] for the case of Dirac structures defined on
TM ⊕ T ∗M . We will follow Liu’s construction, described in [8].

Definition 3.5. Consider a Lie bialgebroid (A,A∗) and a maximally isotropic
subbundle of its Whitney sum D ⊂ A ⊕ A∗. Any pair of a smooth subbun-
dle I ⊂ A and a bivector Ω ∈ Γ(

∧2A) corresponds to a maximally isotropic
subbundle of A ⊕ A∗ with respect to the symmetric product in (16). The
characteristic pair of the Dirac structure D is a pair (I,Ω) which corre-
sponds to it. The subbundle I ⊂ A is called the characteristic bundle.
The expression of the Dirac structure is as follows:

D =
{
(X + Ω#α, α)| ∀X ∈ I, ∀α ∈ I⊥

}
= I ⊕ graph (Ω#|I⊥), (18)

where I⊥ ⊂ A∗ stands for the co-normal bundle of I.
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For the sake of simplicity, we will assume hereafter that the intersection
D ∩ A is of constant rank.

Lemma 3.1. Given a Dirac structure D ⊂ A ⊕ A∗ and a subbundle I ⊂ A
which belongs to D, the existence of the bundle map Ω# restricted to I⊥ is
equivalent to a bivector field on the quotient bundle A/I.

Proof : Consider an A–tensor Ω on M defined by the Dirac structure, i.e.

(Ω#(α), α) ∈ D α ∈ A∗.

Skewsymmetry of Ω follows from the definition of the Dirac structure. Obvi-
ously the mapping Ω# is well defined only on I⊥, since the image of the null
section of A∗ is I. This leads to a natural restriction:

Ω# : I⊥ → A/I.

Therefore, we can define an equivalence relation on the space of charac-
teristic pairs, by claiming that two characteristic pairs (I1,Ω1), (I2,Ω2) are
equivalent if and only if :{

I1 = I2 ≡ I

Ω#
1 (α) − Ω#

2 (α) ∈ I ∀α ∈ I⊥.
(19)

This definition leads then to the equivalence of the equivalence classes with
the set of Dirac structures of a given Lie bialgebroid.

Note 3.1. The equivalence class of characteristic pairs thus defines the con-
cept of a generalized Dirac structure for the general Lie bialgebroid case.
The main point here is that the concept associated to the characteristic pair
is merely the existence of a maximally isotropic subbundle of the Lie bial-
gebroid with respect to the product (16). The closeness of the Lie algebra
structure (17) restricted to the subbundle is not required yet.

But these characteristic pairs are subject to some conditions in order to
represent a Dirac structure. We saw above how, for the TM ⊕ T ∗M case,
closeness of the Dirac structure was equivalent to the Schouten bracket con-
dition for the Poisson tensor (in Poisson manifolds) or to the closeness of
the symplectic form (for symplectic ones). For the general case, a similar
condition arises:
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Theorem 3.1 (Liu). Let (A,A∗) be a Lie bialgebroid and D a subbundle
of A ⊕ A∗ maximally isotropic with respect to the symmetric product (16),
and corresponding to the characteristic pair class (I,Ω). Then, D is a Dirac
structure if and only if:

• I is a Lie subalgebroid.
• Ω satisfies the Maurer-Cartan type of equation:

d∗Ω +
1

2
[Ω,Ω] = 0 mod I . (20)

• The following bracket is closed on ΓI⊥:

[α, β] = [α, β]A∗ + LA
Ω#αβ − LA

Ω#βα − d(Ω(α, β)) ∀α, β ∈ ΓI⊥. (21)

We also present some technical lemmas which will be useful in the next
sections:

Lemma 3.2. Let D be a generalized Dirac structure with characteristic pair
(I,Ω). Then,

LXα ∈ I⊥ ∀X ∈ I ∀α ∈ I⊥.

Proof : We have to check that, for any Y ∈ I:

〈Y,LXα〉 = 0.

By using Cartan identity LX = ix ◦ d + d ◦ iX and the fact that 〈X,α〉 = 0
we obtain:

〈Y,LXα〉 = 〈Y, iXdα〉 = iY iXdα = dα(X,Y ) =

X(α(Y )) − Y (α(X)) − α([X,Y ]).

As X,Y ∈ I, the first two terms vanish, and hence:

〈Y,LXα〉 = −α([X,Y ]).

Hence, if (I, [·, ·]) is integrable, the conclusion follows.

Corollary 3.1. For the TM ⊕T ∗M case, the theorem above reads as follows:
a generalized Dirac structure defined by the characteristic pair (I,Ω) is a
Dirac structure iff I is a Lie subalgebroid and Ω defines a Poisson structure
on the quotient space Ω#(ΓI⊥)/I.

Lemma 3.3. Consider a Lie bialgebroid (A,A∗) and a generalized Dirac
structure described by the equivalence class of characteristic pairs [(I,Ω)].
Then, if one representant satisfies the conditions of Theorem 3.1, so do all
others.
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Proof : As we saw above, two representants (I1,Ω1), (I2,Ω2) of the same
generalized Dirac structure are related as:{

I1 = I2 ≡ I

Ω#
1 (α) − Ω#

2 (α) ∈ I ∀α ∈ I⊥.

This implies that given a one form α ∈ I⊥, we can write

Ω#
2 (α) = Ω#

1 (α) + Xα Xα ∈ I. (22)

Consider now the three conditions of Theorem 3.1. Assume that the pair
(I,Ω1) does define a Dirac structure, i.e. it satisfies Maurer-Cartan-type
equation, and defines a closed Lie algebra structure on I⊥. Let us verify that
the pair (I,Ω2) also does.

• The subbundle I is also closed.
• For the second point, we follow Liu’s proof in [8]. Given two elements

(Ω#
1 (α), α), (Ω#

1 (β), β) ∈ D ⊂ A ⊕ A∗ the commutator

[(Ω#
1 (α), α), (Ω#

1 (β), β)] = (d∗Ω +
1

2
[Ω,Ω])(α, β)+

Ω#
1

(
[α, β]∗ + LA

Ω#
1 α

β − LA
Ω#

1 β
α − d(Ω1(α, β))

)
+(

[α, β]∗ + LA
Ω#

1 α
β − LA

Ω#
1 β

α − d(Ω1(α, β))
)

is supposed to belong to D. This implies Maurer-Cartan equation.
Now, assuming that this relation holds, we have to verify that replac-
ing Ω1 by Ω2 the relation is also satisfied.

If we use relation (22), we obtain:

[(Ω#
2 (α), α), (Ω#

2 (β), β)] = [(Ω#
1 (α), α), (Ω#

1 (β), β)] + [Xα, (Ω#
1 (β), β)]+

[(Ω#
1 (α), α), Xβ] + [(Xα, 0), (Xβ , 0)].

Hence, as Ω1 is assumed to satisfy Maurer-Cartan equation, the
first term does belong to D. As I is an integrable subbundle, the last
term also belongs to D. And the two middle terms, correspond to a
commutator of an element of I and an element of D defined by the
graph of Ω#

1 , which belongs to D as it is proved in Theorem 3.1.
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• For the last point, we must proof that the bracket (21) defined by Ω2
is closed on ΓI⊥ if the one defined by Ω1 is. We can write then:

[α, β] = [α, β]∗ + LA
Ω#

2 α
β −LA

Ω#
2 β

α − d(Ω2(α, β)) ∀α, β ∈ ΓI⊥.

But rewriting Ω#
2 as above we get:

[α, β] = [α, β]∗ + LA
Ω#

1 α
β − LA

Ω#
1 β

α − d(Ω1(α, β)) + LA
Xαβ − LA

Xβα,

where we have used that Ω2(α, β) = 〈Ω#
2 (α), β〉 = 〈Ω#

1 (α), β〉 =
Ω1(α, β) because α, β ∈ ΓI⊥.

As we are assuming that the bracket with Ω1 is closed, we have to
prove just that:

LA
Xαβ − LA

Xβα ∈ ΓI⊥.

But this has been proved in Lemma 3.2. This completes the proof.

3.4. The dual Dirac bundle. Consider a Dirac structure D ⊂ A ⊕ A∗

defined from a Lie bialgebroid (A,A∗). We are interested now in its dual
bundle D∗.

It is simple to see that D∗ is a subbundle of the Whitney sum A∗ ⊕A. But
we have the following result:

Theorem 3.2 (Kosmann-Schwarzbach). If (A,A∗) is a Lie bialgebroid, so
is (A∗, A).

Taking this into account, it will be helpful to define a bundle isomorphism
between the two Whitney sums:

Definition 3.6. Consider a Lie bialgebroid (A,A∗) and the corresponding
Lie bialgebroid (A∗, A). Consider also the two Whitney sums

B = A ⊕ A∗ B∗ = A∗ ⊕ A.

Then, we can define a bundle isomorphism θ : B∗ → B as

θ(α,X) = (X,α), ∀X ∈ A ∀α ∈ A∗. (23)

It is immediate, that the transformation is nilpotent, i.e.

θ2(X,α) = (X,α) ∀(X,α) ∈ B∗.

With this result, we can try to define a Dirac structure to represent the
bundle D∗. To do that, we need some previous results:
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Lemma 3.4. Consider a Dirac structure D ⊂ A ⊕ A∗ as above. Then,

A ⊕ A∗ = D ⊕ θ(D∗). (24)

Proof : It is clear that both bundles D and θ(D∗) have the same dimension,
equal to the dimension of the bundles A or A∗. The only thing to prove is
that

D ∩ θ(D∗) = ∅.
Consider a point (Y, β) ∈ D. If Y = 0 or β = 0 the dual element in D∗ has
the other element in the pair null. If both elements in the pair are different
from zero, there must be some element (α,X) ∈ D∗, such that

〈(Y, β), (α,X)〉 = 〈Y, α〉〈X,β〉 = 1.

If we consider now θ(α,X) ∈ D, we must have:

((Y, β), (X,α))+ = 〈Y, α〉 + 〈X,β〉 = 0.

But then,

〈Y, α〉2 = 〈X,β〉2 = −1

which is absurd. Hence, we conclude that (X,α) /∈ D. But obviously
(X,α) ∈ θ(D∗). Therefore,

D ∩ θ(D∗) = ∅.

Corollary 3.2. Consider a Lie bialgebroid (A,A∗) and a generalized Dirac
structure D ⊂ A⊕A∗. Obviously, the bundle θ(D) ⊂ A∗ ⊕A is a generalized
Dirac structure. But from the lemma above we conclude also that the bundle
D∗ is a generalized Dirac structure too, and θ(D∗) as well.

3.5. Courant algebroids.

Definition 3.7. A Courant algebroid is a vector bundle E → M , en-
dowed with a non-degenerate symmetric bilinear form (·, ·), a skew-symmetric
bracket [·, ·] and a mapping ρ : E → TM with the following properties:

• For any three sections e1, e2, e3 ∈ ΓE, the obstruction to the Jacobi
identity to hold can be computed as:

[e1, [e2, e3]] + [e3, [e1, e2]] + [e2, [e3, e1]] = dT (e1, e2, e3), (25)
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where

T (e1, e2, e3) =
1

3
((e1, [e2, e3]) + (e3, [e1, e2]) + (e2, [e3, e1])) (26)

and d : C∞(M) → ΓE is the map defined by

d =
1

2
β−1ρ∗d (27)

with d the usual exterior differential of the base manifold M and β is
the isomorphism β : E → E∗ given by the bilinear form (·, ·).

• For any two sections e1, e2 ∈ ΓE,

ρ([e1, e2]) = [ρ(e1), ρ(e2)], (28)

where the last bracket is the commutator of vector fields.
• For any to sections e1, e2 ∈ ΓE and any function f ∈ C∞(M)

[e1, fe2] = f [e1, e2] + (ρ(e1)f)e2 − (e1, e2)df. (29)

• The operator d is in the kernel of ρ, i.e. ρ ◦ d = 0. This implies that,
given any two functions f, g ∈ C∞(M), (df, dg) = 0.

• Given any three sections, e,h1, h2 ∈ ΓE,

ρ(e)(h1, h2) = ([e, h1] + d(e, h1), h2) + (h1, [e, h2] + d(e, h2)). (30)

It is possible to see that any Lie bialgebroid (A,A∗) yields a Courant alge-
broid structure on the Whitney sum A⊕A∗ with the choices ρ = ρ + ρ∗, the
natural symmetric bilinear form and the bracket (17).

It is easy to identify in the definitions above many similarities with the defi-
nition of a Lie algebroid, and interesting relations with the definition of closed
Dirac structures. Given then the canonical Lie bialgebroid (TM,T ∗M), we
endow the sum TM ⊕ T ∗M with a Courant algebroid structure. We can
consider a maximally isotropic subbundle of TM ⊕ T ∗M with respect to the
bilinear form (·, ·). Such a subbundle is a generalized Dirac structure, which,
can be formulated in the more general context of Courant algebroids:

Definition 3.8. Let (E, ρ, (·, ·), [·, ·]) be a Courant algebroid. A generalized
Dirac structure D is a subbundle of E, which is maximally isotropic with
respect to the bilinear form (·, ·).

It is clear from the first axiom above, that on the module of sections of a
Courant algebroid, the bracket [·, ·] does not define a Lie algebraic structure,
since it does not satisfy Jacobi identity. The obstruction for this to happen
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is equal to the action of the differential d on T . If we look more carefully to
the definition of T , we observe that, for the case of the canonical structure
on TM ⊕ T ∗M :

3T (e1, e2, e3) = 〈X1,LX2
α3〉 + 〈X3,LX1

α2〉 + 〈X2,LX3
α1〉

∀e1 ≡ (X1, α1), e2 ≡ (X2, α2), e3 ≡ (X3, α3) ∈ Γ(TM ⊕ T ∗M). (31)

Hence, the condition for the sections of the bundle D to become a Lie algebra
is just

Definition 3.9. Let the Courant algebroid E be defined as above. Let D ⊂ E
be a generalized Dirac structure in E. We say that D is a (closed) Dirac
structure if it is closed for the product (17).

Lemma 3.5. Let the Courant algebroid E be defined as above. Let D ⊂ E
be a generalized Dirac structure in E. Then D is a closed Dirac structure if

T (e1, e2, e3) = 0 ∀e1, e2, e3 ∈ ΓD. (32)

The subbundle whose sections satisfy the condition above can be endowed
with a canonical Lie algebroid structure as (D, ρ, [·, ·]). The condition holds
trivially for the Whitney sum of any Lie bialgebroid.

4. Deformations of Lie algebroids and Lie bialgebroids.
4.1. Nijenhuis operators on Lie algebroids.

4.1.1. Definition. The first concept to consider is a Nijenhuis transformation
on a Lie algebroid. The concept is well known ([14, 12, 7]) as a simple
generalization of the usual concept for vector fields.

Definition 4.1. Let (A, [·, ·], ρ) be a Lie algebroid. A linear transformation

N : A → A

is said to be a Nijenhuis transformation of A if and only if the torsion tensor
TN defined as:

TN(X,Y ) = [N(X), N(Y )] − N([X,N(Y )]) − N([N(X), Y ]) + N2([X,Y ])

∀X,Y ∈ ΓA (33)

vanishes.

A Nijenhuis transformation yields a deformation of the Lie algebra struc-
ture at the module of sections of A:



18 J. CLEMENTE-GALLARDO AND J. M. NUNES DA COSTA

Lemma 4.1. Consider the vector bundle A and a Nijenhuis operator N :
A → A. Define the following bracket on the sections of A:

[X,Y ]N = −N([X,Y ]) + [X,N(Y )] + [N(X), Y ]. (34)

Consider the mapping:

N̂ = ρ ◦ N : A → TM. (35)

Then, (A, [·, ·], N̂ ) is a Lie algebroid.

Proof : The bracket (34) defines a Lie structure on ΓA which is a cohomo-
logically trivial deformation of the original one (see [5], Theorem 3.1). The

mapping N̂ defines a homomorphism of Lie algebras, since:

N̂ [X,Y ]N = ρ(N [X,Y ]N) = ρ([NX,NY ]) = [ρ(N(X)), ρ(N(Y ))] =

[N̂(X), N̂(Y )] X,Y ∈ ΓA,

where we use the fact that ρ is a homomorphism for the original Lie algebra
structure [·, ·] and the fact that TN(X,Y ) vanishes.

Finally, the definition of a derivation on the module of sections of A follows
also from the properties of the original algebroid structure:

[X, fY ]N = −N([X, fY ]) + [N(X), fY ] + [X,N(fY )] =

f(−N([X,Y ]) + [N(X), Y ] + [X,N(Y )])

− N(ρ(X)fY ) + ρ(NX)fY + ρ(X)fN(Y ) =

f [X,Y ]N + (N̂(X)f)Y,

where we used the linearity of all the mappings and the fact that the original
structure is a Lie algebroid.

4.1.2. Deformation of the exterior derivative and the Schouten bracket. The
deformation of the Lie structure of the algebroid yields a transformation
for both the exterior derivative and the Schouten bracket of A-multivectors.
From relation 2 it is clear that a change in the Lie structure must affect the
exterior derivative. The effect can be summarized in an operator where iN
is the superderivation of degree zero on the forms Γ

∧•A∗ defined as:

iNθ(X1, · · · , Xp) =

p∑
i=1

θ(X1, · · · , NXi, Xi+1, · · · , Xp). (36)
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This operator allows us to summarize the effect of the deformation on the
exterior derivative in the following way:

Lemma 4.2. The exterior differentials of the algebroids (A, [·, ·], ρ) and

(A, [·, ·]N , N̂) (and the same for the dual) are related by:

dN = [iN , d] = iN ◦ d − d ◦ iN . (37)

Proof : The exterior differential of a Lie algebroid is defined by its action on
the ring of functions of the base manifold, and the usual extension to higher
order forms. The action of the exterior differential on functions for a Lie
algebroid (A, [·, ·], ρ) is defined as:

iXdf = ρ(X).f ∀X ∈ ΓA,∀f ∈ C∞(M). (38)

It is simple to see thus that for the Lie algebroid structure (A, [·, ·]N , N̂)
we have:

iXdNf = N̂(X)(f) = 〈df,NX〉 = 〈N∗df,X〉 = iX(N∗df) =

iXiNdf ∀f ∈ C∞(M),∀X ∈ ΓA.

The extension to higher order cases is immediate by taking into account
the relation between N̂ and ρ and the definition of dN .

It is worth noting that this definition does not hold for a deformation
N = Id, for which it would give a vanishing exterior derivative (if N = Id,
iN = Id and dN = 0) instead of the (correct) undeformed one d.

Being defined as an extension of the Lie algebra structure of the sections
of the Lie algebroid, the Schouten bracket of A-multivectors heritages the
deformation defined by the Nijenhuis operator. In the following, we need the
explicit form of this deformation for the computations, hence we present it
here. The result can be found in Section 6.4 of [7], where it is presented in
the context of differential Lie algebras (the structure defined on the set of
sections of the Lie algebroid by the algebroid Lie bracket):

Proposition 4.1. Let N be a Nijenhuis operator on a Lie algebroid A. The
Schouten bracket defined on Γ

∧•A by extension of the deformed bracket [·, ·]N
satisfies:

[Q,Q′]N = [iN∗Q,Q′] + [Q, iN∗Q′] − iN∗[Q,Q′], (39)
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where iN∗ is the superderivation of degree zero on the sections of Γ
∧•A defined

as:

iN∗Ψ(θ1, · · · , θp) =

p∑
i=1

Ψ(θ1, · · · , N∗θi, θi+1, · · · , θp). (40)

Proof : If we consider the biduality property (N∗)∗ = N , it is clear that the
expression above is valid for 0-vectors (functions on the base of the algebroid)
and sections of A. As the Schouten bracket is defined as a graded derivation
of multisections and it is bilinear, the relation is extended to the general case.

4.2. Nijenhuis operators on Lie bialgebroids. The next step is to con-
sider the action of a Nijenhuis transformation on a Lie bialgebroid. In prin-
ciple, we can consider two different transformations applied on each factor,
i.e.: {

N : A → A

N∗ : A∗ → A∗,
(41)

such that they define two new Lie algebroid structures on the factors, i.e.
(A, [·, ·]N , N̂) and (A∗, [·, ·]N∗ , N̂∗) are Lie algebroids. We must verify now
whether they define a new Lie bialgebroid, i.e. if the conditions (15) hold.
First of all, we must realize that the transformation on the Lie algebroid
structures implies a transformation of the Lie algebroid cohomologies, i.e.
there are two new exterior differentials dN and dN

∗ which are the ones to
consider.

It is important to distinguish two different operators acting on each bundle:
the Nijenhuis-like operators N , N∗; and their duals:

(N)∗ : A∗ → A∗ (N∗)
∗ : A → A,

which are defined as:

〈X, (N)∗α〉 = 〈N(X), α〉 ∀X ∈ ΓA, ∀α ∈ ΓA∗ (42)

and

〈(N∗)
∗X,α〉 = 〈X,N∗α〉 ∀X ∈ ΓA, ∀α ∈ ΓA∗. (43)

Definition 4.2. Consider a Lie bialgebroid (A,A∗) and a transformation of
the type (41). We say that the pair (N,N∗) defines deformation of the Lie
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bialgebroid structure if and only if the pair
(
(A, [·, ·]N , N̂), (A∗, [·, ·]N∗ , N̂∗)

)
defines a new Lie bialgebroid structure. The equations to fulfill are:{

dN
∗ [X,Y ]N = [dN

∗ X,Y ]N + [X, dN
∗ Y ]N

dN [α, β]N∗ = [dNα, β]N∗ + [α, dNβ]N∗.
(44)

It is important to realize that in the right hand side of (44), the bracket
involved is the deformed Schouten bracket of multisections of A, as defined
in (39).

Lemma 4.3. Given a Lie bialgebroid and a deformation as above:

iN∗ ◦ NX = N ◦ iN∗X ∀X ∈ ΓA ⇔ (N∗)
∗NX = N(N∗)

∗ ∀X ∈ ΓA.

Proof : The definition of iN∗X can be written as:

〈iN∗X,α〉 = 〈X,N∗α〉 = 〈(N∗)
∗X,α〉 ∀α ∈ ΓA∗.

Then, the expression above turns out to be a section of A whose action on
the dual reads:

〈iN∗ ◦ NX,α〉 = 〈NX,N∗α〉 = 〈(N∗)
∗NX,α〉 ∀α ∈ ΓA∗.

In the same way:

〈N ◦ iN∗X,α〉 = 〈N(N∗)
∗X,α〉 ∀α ∈ ΓA∗.

Consider the simplest example of deformation of a Lie bialgebroid: a defor-
mation of the algebroid A which does not involve a deformation of the dual
A∗. In such a case, the transformation is as follows:{

N ≡ N : A → A

N∗ ≡ Id : A∗ → A∗.
(45)

In these circumstances, the two new Lie structures are as follows:

[X,Y ]N = −N [X,Y ] + [NX,Y ] + [X,NY ] ∀X,Y ∈ ΓA

[α, β]N∗ = [α, β] ∀α, β ∈ ΓA∗.

And the corresponding exterior derivatives:{
dN = iN ◦ d − d ◦ iN

dN
∗ = d∗.

(46)
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The condition for (45) to define a deformation of the Lie bialgebroid (A,A∗)
is then written as:{

d∗[X,Y ]N = [d∗X,Y ]N + [X, d∗Y ]N ∀X,Y ∈ ΓA

dN [α, β] = [dNα, β] + [α, dNβ] ∀α, β ∈ ΓA∗.
(47)

• By using the expression for the deformed bracket we can write:

d∗[X,Y ]N = −d∗N [X,Y ] + d∗[NX,Y ] + d∗[X,NY ].

For the last two terms, we can use the fact that d∗ is a derivation for
the original Lie bracket and write:

d∗[NX,Y ] = [d∗NX,Y ] + [NX, d∗Y ]

d∗[X,NY ] = [d∗X,NY ] + [X, d∗NY ].

We can write the action of N on the sections of A as:

N(X) = iN∗X ∀X ∈ ΓA.

In that case we obtain:

d∗[X,Y ]N = −d∗iN∗[X,Y ] + [d∗iN∗X,Y ] + [iN∗X, d∗Y ]+

[d∗X, iN∗Y ] + [X, d∗iN∗Y ].

The development of the right hand side of Condition (47) by using
the expression of the deformed Schouten bracket leads to:

[d∗X,Y ]N + [X, d∗Y ]N = −iN∗[d∗X,Y ] − iN∗[X, d∗Y ]+

[iN∗d∗X,Y ] + [d∗X, iN∗Y ] + [iN∗X, d∗Y ] + [X, iN∗d∗Y ].

Comparing both sides, many terms cancel and we obtain:

− d∗iN∗[X,Y ] + [X, d∗iN∗Y ] + [d∗iN∗X,Y ] =

− iN∗d∗[X,Y ] + [X, iN∗d∗Y ] + [iN∗d∗X,Y ].

As the Schouten bracket is linear, we conclude that the first relation
in (47) holds if and only if [iN∗, d∗] is a derivation for the original Lie
bracket of A.

• For the second relation in (47), we have:

dN [α, β] = iN ◦ d[α, β] − d ◦ iN [α, β] = iN [dα, β] + iN [α, dβ] − diN [α, β].
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This relation must hold for any α, β ∈ ΓA∗. Assume now that we
consider closed sections of A∗, i.e. dα = 0 = dβ. Then, the expression
above reduces to:

dN [α, β] = −diN [α, β].

On the other hand, the corresponding right hand side of (47) reads:

[dNα, β] + [α, dNβ] = [iNdα, β] − [diNα, β] + [α, iNdβ] − [α, diNβ].

Adding and subtracting [iNα, dβ] + [dα, iNβ], we obtain:

[dNα, β] + [α, dNβ] =

[iNdα, β] + [dα, iNβ] + [iNα, dβ] + [α, iNdβ] − d[iNα, β] − d[α, iNβ].

For closed sections, we obtain:

[dNα, β] + [α, dNβ] = −d([iNα, β] + [α, iNβ]).

Hence, we obtain that the second condition in (47) holds if and only
if

iN [α, β] = [iNα, β] + [α, iNβ] + θ(α, β) θ(α, β) ∈ Z1(A).

If we assume now the case dα = 0 we obtain:

iN [α, dβ] = [iNα, dβ] + [α, iNdβ].

Hence, we conclude that the relation above must hold for also for the
Schouten bracket, and that, therefore, θ(α, β) = 0.

By comparing both expressions, and remembering that they must hold for
any two sections of A, we conclude:

Theorem 4.1. An operator (N, Id) defines a deformation of the Lie bialge-
broid (A,A∗) if and only if

δNA = iN∗ ◦ d∗ − d∗ ◦ iN∗ (48)

is a derivation of the original Schouten bracket on A and iN is a derivation
of the A∗-Schouten bracket. As d is assumed to be also a derivation for it,
we conclude that the operator:

δNA∗ = iN ◦ d − d ◦ iN (49)

is also a derivation of the A∗-Schouten bracket.
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The next step is to consider a deformation of the Lie bialgebroid where
both factors change. Consider then a deformation of the algebroid A defined
by a Nijenhuis operator

N : A → A

and the corresponding transformation defined on the dual bundle via the
dual mapping, i.e.:

N∗ = N∗ : A∗ → A∗.

Proposition 4.2. Let (A,A∗) be a Lie bialgebroid. Consider the deformation{
N : A → A

N∗ : A∗ → A∗.
(50)

Then, assume that:

• dN = iN ◦ d − d ◦ iN is a derivation of the Lie bracket [·, ·]∗,
• dN

∗ = iN∗ ◦ d∗ − d∗ ◦ iN∗ is a derivation of [·, ·],
• [iN∗, dN

∗ ] = 0 = [iN , dN ].

Then, the deformed structure ((A,N ◦ ρ, [·, ·]N ), (A∗, N∗ ◦ ρ∗, [·, ·]N∗) is a Lie
bialgebroid.

Proof : The conditions to fulfill are:{
dN
∗ [X,Y ]N = [dN

∗ X,Y ]N + [X, dN
∗ Y ]N ∀X,Y ∈ ΓA

dN [α, β]N∗ = [dNα, β]N∗ + [α, dNβ]N∗ ∀α, β ∈ ΓA∗.

Rewriting the expressions above in terms of the undeformed objects and
using the conditions above, the result follows.

Finally, let us consider again a general deformation of type (41). From
what we learned above, we can claim:

Proposition 4.3. A sufficient condition for (N,N∗) to be a deformation of
the Lie bialgebroid (A,A∗) is that iN∗ is a derivation for [, ] and that [dN

∗ , N ] =
0. Equivalently for the dual objects.

Proof : Consider the definition of the differential dN
∗ = [iN∗ , d∗] and the Lie

bracket [·, ·]N . Writing everything in terms of the undeformed objects, we
obtain:

dN
∗ [X,Y ]N = [iN∗, d∗] (−N([X,Y ]) + [N(X), Y ] + [X,N(Y )]) .
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For each factor, we have:

[iN∗ , d∗]([N(X), Y ]) =

[iN∗d∗N(X), Y ] + [d∗N(X), iN∗Y ] + [iN∗N(X), d∗Y ] + [N(X), iN∗d∗Y ]

− [d∗iN∗N(X), Y ] − [iN∗N(X), d∗Y ] − [d∗N(X), iN∗Y ] − [N(X), d∗iN∗Y ] =

[[iN∗ , d∗]N(X), Y ] + [N(X), [iN∗ , d∗]Y ].

The expression for [X,N(Y )] is analogous. The conditions chosen imply that
in the first term, with a similar computation we obtain:

[iN∗, d∗]N [X,Y ] = N [[iN∗ , d∗]X,Y ] + N [X, [iN∗ , d∗]Y ].

This concludes the proof.

4.3. Application: Poisson-Nijenhuis structures. As an example of de-
formation of a Lie bialgebroid, let us review Kosmann-Schwartzbach’s con-
struction in [6]. The goal is to test our results on a well known situation.

Consider a Poisson manifold (M,Λ). It is well known that the cotangent
bundle T ∗M can be endowed with a Lie algebroid structure, by using Λ# :
T ∗M → TM as anchor mapping and the Lie product:

[α, β]Λ = LΛ#(α)β − LΛ#(β)α − dΛ(α, β) ∀α, β ∈ ΓT ∗M. (51)

The tangent bundle TM can be endowed trivially with a structure of Lie
algebroid, and hence the pair (TM,T ∗M) is a pair of dual Lie algebroids. It
is also possible to see that the corresponding exterior derivatives are compat-
ible, in such a way that the pair (TM,T ∗M) endowed with the two structures
above, is a Lie bialgebroid.

We can now consider a deformation of the canonical structure of Lie alge-
broid on TM by means of a Nijenhuis operator. The effect on the Poisson
bivector Λ suggests the introduction of a special type of deformations, the so-
called compatible deformations, which yield the concept of Poisson-Nijenhuis
manifolds (see [7, 11]):

Definition 4.3. A Poisson-Nijenhuis manifold (or PN manifold) is a
Poisson manifold (M,Λ) and a Nijenhuis operator N : TM → TM which is
compatible with the Poisson structure, compatible meaning:

• NΛ# = Λ# ◦N∗, what implies that the tensor NΛ is skew-symmetric.
• Magri’s concomitant (see [7, 11]) vanishes, i.e. C(Λ, N)(α, β) ≡

[α, β]NΛ − ([N∗α, β]Λ + [α,N∗β]Λ − N∗[α, β]Λ) = 0.
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The advantage of PN manifolds is the behavior of the Lie bialgebroid
structures on them:

Theorem 4.2 (Kosmann-Schwarzbach). Consider a Poisson manifold
(M,Λ) and a Nijenhuis operator N . The pair (TM,T ∗M) endowed with the
structures:

TM, ρ = N, [X,Y ]N = [NX,Y ] + [X,NY ] − N [X,Y ] ∀X,Y ∈ ΓTM

T ∗M,ρ = Λ#, [α, β]Λ = LΛ#(α)β − LΛ#(β)α − dΛ(α, β) ∀α, β ∈ ΓT ∗M,

is a Lie bialgebroid if and only if M is a PN manifold.

It is simple to verify that the conditions described above are satisfied in
this deformation of Lie bialgebroids. The conditions are the same contained
in Proposition 3.2 of [6], but presented in a slightly different way. Roughly
speaking, the conditions presented there correspond to the definition of a
deformation of a Lie bialgebroid (i.e. the transformed exterior differentials
are derivations of the transformed Schouten brackets). We can always test
the first condition: is the operator δΛ = iN∗ ◦ dΛ − dΛ ◦ iN∗ a derivation of
the original commutator of vector fields for M?

This condition implies that for any two vector fields X,Y ∈ ΓTM ,

δΛ[X,Y ] = [δΛX,Y ] + [X, δΛY ].

But this means:

iN∗ ◦ dΛ[X,Y ] − dΛ ◦ iN∗[X,Y ] = iN∗[Λ, [X,Y ]] − [Λ, N [X,Y ]],

[δΛX,Y ] = [(iN∗ ◦ dΛ − dΛ ◦ iN∗)X,Y ] = [iN∗[Λ, X], Y ] − [[Λ, NX], Y ],

[X, δΛY ] = [X, (iN∗ ◦ dΛ − dΛ ◦ iN∗)Y ] = [X, iN∗[Λ, Y ]] − [X, [Λ, NY ]].

But the operator dΛ is a derivation of the original Schouten bracket. Hence,
adapting the proof of Theorem 4.1, we obtain the desired result.

5. Deformation of Dirac structures I: the isolated case.
Let us recall that the characterization of Dirac structures on Lie bialge-

broids was done in terms of the characteristic pairs (I,Ω). Our intention
now is to establish the conditions on Nijenhuis operators of Dirac structures
in terms of these elements. This process directly generalizes the well known
constructions for symplectic and Poisson manifolds.
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5.1. The transformation. We can consider two different types of transfor-
mation yielding a deformation of the Lie structure of the Dirac structure:

• A deformation of the Lie bialgebroid (A,A∗) where the Dirac structure
D is defined, i.e.:

N : A ⊕ A∗ → A ⊕ A∗

N (X,α) = (N(X,α), N∗(X,α)),

where the components N and N∗ must be bilinear and must define
new Lie structures on each sub-factor, i.e. they must be Nijenhuis
operators for A and A∗ respectively. The Dirac structure heritages
that deformation and produce a new Lie structure on the space of its
sections. We analyze this case in the next section.

• Directly at the level of the Dirac structure keeping the same structure
on the Lie bialgebroid where D is defined. We are going to see how in
this case, it is very useful the description of Dirac structures in terms
of the characteristic pairs, since it allows us to write the conditions
on the transformation without writing its explicit form. In this con-
text we are going to find a situation which has no counterpart in the
Poisson case: for Poisson-Nijenhuis manifolds, there is a transforma-
tion of the bundle D ⊂ A ⊕ A∗ into a different vector bundle, since
it is defined through the Poisson tensor, and this is changed in the
transformation. In the general Dirac case, though, it makes sense to
consider a transformation of the Lie structure which defines the Lie
algebroid structure of D, without changing the bundle itself. This case
will be interesting in applications, since the bundle structure will be
defined by the physical structure of the problem, but there is freedom
in the choice of the Lie structure.

For both situations above, we will define the concept of Dirac-Nijenhuis
structures:

Definition 5.1. Let (A,A∗) be a Lie bialgebroid defined on a differentiable
manifold M . Consider a Dirac structure D represented by a characteristic
pair (I,Ω). Then, M shall be said to be endowed with a Dirac-Nijenhuis
structure with respect to the Lie bialgebroid (A,A∗) if there exists a Ni-
jenhuis operator N : A ⊕ A∗ → A ⊕ A∗ which is compatible with D in
the sense that the transformed characteristic pair (IN ,ΩN) represents a new
Dirac structure on M for the Lie bialgebroid.



28 J. CLEMENTE-GALLARDO AND J. M. NUNES DA COSTA

With respect to this definition, the two types of deformations discussed
above correspond to situations where the Lie bialgebroid structure is pre-
served or is transformed by N .

5.2. Transformation at the level of the Dirac structure. Let us con-
sider now a Lie bialgebroid (A,A∗) and a Dirac structure defined on it
D ⊂ A ⊕ A∗. Consider an operator N : D → D which transforms the
Lie algebraic structure on the module of sections of D, in such a way that
the corresponding Nijenhuis torsion vanishes, i.e.:

N 2[e1, e2]−N [N e1, e2]−N [e1,N e2]+[N e1,N e2] = 0 ∀e1, e2 ∈ ΓD. (52)

Our purpose now is to obtain the conditions to be satisfied by N , in terms
of the characteristic pair which defines the Dirac structure.

In such a framework, the expression of a Nijenhuis operator reads:

N ([(I,Ω)]) = [(I ′,Ω′)]. (53)

Hence, a linear transformation, in general, transforms a characteristic pair
in another characteristic pair (since they are geometrical objects). Now, we
must impose conditions for it to be a Nijenhuis transformation:

5.2.1. The transformation of the bundle. In a Nijenhuis transformation, the
bundle involved is preserved, only the Lie algebraic structure is changed.
From this point of view, the generalized Dirac structure underlying any Dirac
structure must be preserved by the Nijenhuis transformation. This implies
that the Nijenhuis transformation maps the original class of characteristic
pairs on itself, what implies:

• The subbundle I is preserved, i.e.

N(I) = I, (54)

where N = π1 ◦ N and π1 : D → A is the natural projection.
• The 2-section Ω transforms in a new ΩN . The new object can be

written in terms of the old 2-section by asking (see [7]):

(ΩN)# = NΩ#. (55)

Lemma 5.1. The tensor (ΩN)# is skew-symmetric if and only if

NΩ# = Ω#N∗. (56)
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Proof : The skew symmetry condition is written as follows:

ΩN(α, β) = −ΩN(β, α) ∀α, β ∈ ΓA∗.

If we write it with the bundle isomorphism Ω#:

ΩN(α, β) = 〈(ΩN)#(α), β〉 = 〈NΩ#(α), β〉 = 〈Ω#(α), N∗β〉 = Ω(α,N∗β) ,

while

ΩN(β, α) = 〈(ΩN)#(β), α〉 = 〈NΩ#(β), α〉 = 〈Ω#(β), N∗α〉 = Ω(β,N∗α) ,

As Ω is skew-symmetric we obtain that the skew symmetry of ΩN is
equivalent to:

Ω(N∗α, β) = Ω(α,N∗β) ∀α, β ∈ ΓA∗.

The condition above can be rewritten as:

〈Ω#N∗(α), β〉 = 〈NΩ#(α), β〉 ∀α, β ∈ ΓA∗.

This concludes the proof.

Hence, the transformation N : D → D can be rewritten in terms of
the characteristic pairs as:

N (I,Ω) = (N(I),ΩN ) = (I,ΩN), (57)

where (ΩN)# = NΩ# = Ω#N∗.
As we want the transformed Dirac bundle to be the same as the

original one, we must impose that the equivalence class is preserved,
i.e.

[(I,ΩN )] = [(I,Ω)]. (58)

This implies that:

(ΩN )#(α) − Ω#(α) = NΩ#(α) − Ω#(α) = Ω#(N∗(α)) − Ω#(α) ∈ I

∀α ∈ ΓA∗.

These condition can be rewritten on the bundle A/I asking the
tensor ΩN to coincide with Ω.
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5.2.2. The transformation of the Lie structure. ¿From the result above, we
conclude that a Nijenhuis transformation maps the subbundle I on itself, and
the transforms the tensor Ω in new tensor which coincides with the original
one when projected on the quotient bundle A/I.

By using now Liu’s theorem, we obtain some extra properties of the trans-
formation N :

• As the transformed subbundle N (I) = I must be a Lie subalgebroid
of A (whose algebroid structure is assumed to not be modified by
the transformation), we conclude that the restriction of N to the
subbundle I must be a (normal) Nijenhuis operator, with vanishing
Nijenhuis torsion:

[N(X), N(Y )]−N [X,N(Y )]−N [N(X), Y ]+N2([X,Y ]) = 0 ∀X,Y ∈ ΓI,
(59)

where N = π1 ◦ N . Then, a new bracket can be defined on I:

[X,Y ]N = −N [X,Y ] + [X,N(Y )] + [N(X), Y ] ∀X,Y ∈ ΓI. (60)

In these circumstances, (I, [·, ·]N , N ◦ ρ) defines a Lie subalgebroid
of (A, [·, ·], ρ).

As a corollary, we also obtain a condition on the action of N∗ on
the dual bundle:

Lemma 5.2. I⊥ is stable under the action of N∗, i.e.

N∗(I⊥) ⊂ I⊥. (61)

Proof : As I is stable, we have:

〈N(X), α〉 = 0 ∀X ∈ I, α ∈ I⊥.

But then, by dualizing the action, we obtain:

〈N(X), α〉 = 0 ⇔ 〈X,N∗(α)〉 = 0 ∀X ∈ I, α ∈ I⊥.

Hence, if α ∈ I⊥, N∗(α) ∈ I⊥.

• In what regards the tensor Ω, we can use the previous results to study
the suitable transformation. The two conditions to be fulfilled now
are:

(d∗Ω
N − 1

2
[ΩN ,ΩN ])#(α) ∈ I ∀α ∈ ΓI⊥

[α, β]∗ + [α, β]ΩN is closed on I⊥.
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But both conditions are granted by lemma 3.3 if the transformed
characteristic pair belongs to the same equivalence class.

6. Deformations of Dirac structures II
There is of course another possible framework to study the deformation of

a Dirac structure: consider a deformation of the Lie bialgebroid structure
and make the Dirac bundle to heritage the deformation.

Then, consider a Lie bialgebroid (A,A∗), and a Dirac bundle D ⊂ A⊕A∗.
We consider a general transformation of the Lie bialgebroid:{

N : A ⊕ A∗ → A ⊕ A∗

N (X,α) = (N(X,α), N∗(X,α)),
(62)

where the components N and N∗ must be bilinear and must define new Lie
structures on each sub-factor, i.e. they must be Nijenhuis operators for A
and A∗ respectively. The Dirac structure heritages that deformation and
defines a new bundle, with a new Lie algebraic structure on the space of its
sections.

6.1. The simplest case: only one of the Lie algebroids is trans-
formed. Consider the simplest case, as we studied it for the Lie bialgebroid
case. Let us assume that the transformation in (62) is such that

N∗ = Id. (63)

Hence we are considering the transformation driven by a Nijenhuis operator
for the Lie algebroid A only, the Lie algebroid A∗ not being transformed. We
know from Theorem 4.1 that such a transformation defines a deformation of
the Lie bialgebroid if and only if

δNA = iN∗ ◦ d∗ − d∗ ◦ iN∗ (64)

is a derivation of the original Lie bracket on A and iN is a derivation of the
A∗-Schouten bracket.

We have to study now whether there are further conditions to fulfill in order
to define also a deformation of the Dirac structure. As we have Proposition
3.1, the first thing to prove is that the Lie product (17), transformed by the
deformation, defines a closed structure on the transformed vector bundle.
Then, we have to consider the Lie bracket:

[(X1, α1), (X2, α2)]N =
(
[X1, X2]N + [X,Y ]LA∗ , [α, β]LA

N
+ [α1, α2]∗

)
, (65)
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with

[X,Y ]LA∗ = LA∗
α1

X2 − LA∗
α2

X1 −
1

2
d∗(iX1

α2 − iX2
α1)

and

[α, β]LA
N

= (LN)X1
α2 − (LN)X2

α1 +
1

2
dN(iX1

α2 − iX2
α1),

where (LN)X and dN correspond to the deformed Lie derivative and the
deformed exterior differential on A respectively.

We have to ask the transformation to be such that the transformed bundle
is again a Lie algebroid. This implies that the image must be such that the
bracket above defines a Lie structure.

Theorem 6.1. Consider a Lie bialgebroid (A,A∗), a Dirac structure D ⊂
A ⊕ A∗ and a deformation as above. Then, the deformed bundle is a Dirac
structure if and only if, for any three elements e1 ≡ (X1, α1),e2 ≡ (X2, α2),
e3 ≡ (X3, α3):

〈[X1, X2]N , α3〉+N◦ρ(X3)(e1, e2)−+ c.p = 〈[X1, X2],α3〉+ρ(X3)(e1, e2)−+ c.p,
(66)

for ((X1, α1), (X2, α2))− = iX1
α2 − iX2

α1.

Proof : As the deformed structure still defines a Lie bialgebroid, we can con-
sider on A⊕A∗ a deformed Courant algebroid structure. Hence, consider the
tensor:

TN (e1, e2, e3) =
1

3
((e1, [e2, e3]N) + (e3, [e1, e2]N) + (e2, [e3, e1]N)) (67)

for the deformed case. The result is (see Lemma 3.2 of [9]):

2TN = 〈[X1, X2]N , α3〉 + 〈X3, [α1, α2]∗〉
+ Nρ(X3)(e1, e2)− − ρ∗(α3)(e1, e2)− + c.p. (68)

¿From Definition 3.9, we know that a Dirac structure on a Lie bialgebroid
is equivalent to a vanishing tensor T . The original Dirac structure being
closed, we know that:

2T = 〈[X1, X2], α3〉 + 〈X3, [α1, α2]A∗〉
+ ρ(X3)(e1, e2)− − ρ∗(α3)(e1, e2)− + c.p = 0.

Hence, we can use this result to replace the second and fourth term in (68)
by the undeformed terms. This proves the result.
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An equivalent formulation can be done in terms of characteristic pairs.
Following Liu’s construction, and assuming the same scheme above, let us
consider the effect that a deformation of the type (63) has on the character-
istic pair (I,Ω) of an original Dirac structure D:

• The new subbundle is easily obtained:

N : I → IN ≡ N(I). (69)

• In what regards the bisection, the transformation is clearly given as:

N : Ω# → (ΩN)# ≡ NΩ#. (70)

In order to ensure the skewsymmetry, we know from Lemma 5.1 that
the Nijenhuis operator must be compatible with the bisection as:

NΩ# = Ω#(N∗).

Hence, we obtain:

Lemma 6.1. The pair (N(I), NΩ#) defines a generalized Dirac structure on
the deformed Lie bialgebroid.

The conditions for the new characteristic pair to define a closed Dirac
structure can be read from Liu’s theorem 3.1.

• The bundle IN ≡ N(I) must be a subalgebra of (ΓTM, [·, ·]N ). As we
know that the Nijenhuis torsion of N vanishes, the unique requirement
is that the operation is closed, i.e.:

[N(I), N(I)]N ⊂ N(I). (71)

• Maurer-Cartan equation takes now the form:

d∗Ω
N + [ΩN ,ΩN ]N ∈ N(I).

• The transformed bivector must be such that

[α, β] + [α, β]ΩN = [α, β] + LΩN#(α)β − LΩN#(β)α − dN
A ΩN(α, β),

is closed for any α, β ∈ (IN)⊥.
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6.2. More general deformations. Consider now a general transformation{
N : A ⊕ A∗ → A ⊕ A∗

N (X,α) = (N(X,α), N∗(X,α)),
(72)

which still defines a deformation of the Lie bialgebroid (A,A∗).
Again, the condition for the transformation to define a deformation of the

Dirac structure is written in terms of the deformation of the tensor T , since
the transformed structure is defined on a Courant algebroid.

Theorem 6.2. Consider a Lie bialgebroid (A,A∗), a Dirac structure D ⊂
A ⊕ A∗ and a deformation as (72). Then, the deformed bundle is a Dirac
structure if and only if, for any three elements e1 ≡ (X1, α1),e2 ≡ (X2, α2),
e3 ≡ (X3, α3), TN(e1, e2, e3) = 0, i.e.

〈[X1, X2]N , α3〉 + 〈X3, [α1, α2]N∗〉+
N ◦ ρ(X3)(e1, e2)− − N∗ ◦ ρ∗(α3)(e1, e2)− c.p = 0, (73)

for ((X1, α1), (X2, α2))− = iX1
α2 − iX2

α1.

Proof : The result follows directly from the properties of Courant algebroids.

Again, another characterization is possible, in terms of characteristic pairs.
Denoting as (I,Ω) a representant in the class of characteristic pairs of the
original Dirac structure D, and as (IN ,ΩN ) the transformed pair we have:

• The annihilator of the new subbundle, (IN)⊥ may be different from
the image of the original by the operator N∗. Hence, a compatibility
condition which arises is:

N∗(I
⊥) = (IN)⊥ = (N(I))⊥. (74)

We can also rewrite this condition as:

iN∗N(I) = I, (75)

or equivalently
iNN∗(I

⊥) = I⊥. (76)

• In what regards the tensor, condition (56) is still necessary in order
to ensure the skew-symmetry of the new tensor. It is important to
remark that the condition affects only the operator N .

If the bi-section satisfies condition (56) we have, as in the previous case,
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Lemma 6.2. The pair (N(I), NΩ#), satisfying the conditions above, defines
a generalized Dirac structure on the deformed Lie bialgebroid.

The conditions for the new pair to define a closed Dirac structure, once
again, are read from Theorem 3.1.

• The bundle IN ≡ N(I) must be a subalgebra of (ΓA, [·, ·]N ). As
we know that the Nijenhuis torsion of N vanishes on A, the unique
requirement is that the operation is closed, i.e.:

[N(I), N(I)]N ⊂ N(I). (77)

This condition is again trivially fulfilled because of the properties aris-
ing from the deformation of the Lie bialgebroid structure. The proof
is completely analogous to the one in the previous case.

• Maurer-Cartan equation takes now the form:

dN
∗ ΩN + [ΩN ,ΩN ]N ∈ N(I).

• The transformed bivector must be such that

[α, β] + [α, β]ΩN = [α, β] + LΩN#(α)β − LΩN#(β)α − dNΩN (α, β)

is closed for any α, β ∈ (IN)⊥. The fulfillment of condition (74) is
necessary for this expression to make sense.

6.3. Examples.

6.3.1. The simplest case. As we did above, let us consider first the simplest
possible deformation on a Lie bialgebroid. Consider an algebroid A → M
and the trivial algebroid structure on its dual A∗ → M defined by an null
anchor mapping and vanishing structure constants, i.e.:{

A, ρ, [·, ·]
A∗, 0, [α, β] = 0 ∀α, β ∈ ΓA∗.

(78)

Consider then a Dirac structure defined on A⊕A∗ and a general deforma-
tion as (72). As the Lie algebroid structure on A∗ is not affected, and the
deformed pair: {

A,N ◦ ρ, [·, ·]N
A∗, 0, [α, β] = 0 ∀α, β ∈ ΓA∗ , (79)

is still a Lie bialgebroid, we can consider the effect on the Dirac structure D.
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As discussed above, D is represented by an equivalence class of characteris-
tic pairs. Consider a representant (I,Ω). The transformation N transforms
the pair as we saw above:

N (I,Ω) = (IN ,ΩN ) =

{
IN = N(I)

ΩN = NΩ.
(80)

If NΩ# = Ω#◦N∗ the new tensor is skew-symmetric and the pair (IN ,ΩN )
is the characteristic pair of a new generalized Dirac structure. The conditions
for it to be closed are:

• Maurer-Cartan type equation: [ΩN ,ΩN ]N
# ⊂ IN .

• The condition for the algebra defined on (IN)⊥ is now:

[α, β]ΩN ⊂ (IN)⊥ ∀α, β ∈ (IN)⊥.

There is also an extra requirement concerning the compatibility of both alge-
broid deformations. As in principle, A and A∗ are deformed independently,
we have to ask the transformations to be such that:

(N(I))⊥ ⊂ Im N∗. (81)

If this condition is fulfilled, the two conditions above can be taken directly. If
it is not, the second condition must be restricted to the subbundle (N(I))⊥∩
Im N∗.

6.3.2. Poisson-Nijenhuis structures. Consider a simple example of Dirac
structure: a Poisson structure Λ defined on a manifold M . We know that
in these circumstances we can define a Lie bialgebroid structure on the pair
(TM,T ∗M) as:{

(TM, ρ = Id, [·, ·])
(T ∗M,ρ = Λ#, [α, β] = LΛ#(α)β − LΛ#(β)α − Λ(α, β)),

(82)

where we denote by [·, ·] the usual commutator of vector fields.
We also know [6], that under a deformation, the resulting structure is also

a Lie bialgebroid if and only if the manifold is Poisson-Nijenhuis:{
(TM, ρ = N, [·, ·]N )

(T ∗M,ρ = Λ#, [α, β] = LΛ#(α)β − LΛ#(β)α − Λ(α, β)).
(83)
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We want to study now the new conditions to be imposed to the transforma-
tion in order to deform a Dirac structure defined on the first Lie bialgebroid,
into another Dirac structure defined on the second.

Consider the Dirac structure defined by the graph of the Poisson tensor on
the first bialgebroid, i.e.

D = {(Λ#(α), α)|α ∈ T ∗M}. (84)

Thinking in terms of characteristic pairs, this Dirac structure is represented
by (0,Λ), and the closeness condition corresponds to the well known condi-
tion:

d∗Λ + [Λ,Λ] = 2[Λ,Λ] = 0,

where [·, ·] is the Schouten bracket on M , and we used that the exterior
derivative for the Lie algebroid (T ∗M,Λ#, [·, ·]Λ) corresponds to dΛ = [Λ, ·].

Finally, the condition

[α, β] + [α, β]Ω = [α, β]Λ + [α, β]Λ

is immediate in this case, since both objects define Lie algebra structures,
being I = ∅.

Now, consider a deformation of the form (63). For the transformed Lie
bialgebroid, we know that the image of the points of the graph of the tensor
Λ are of the form

N (Λ#(α), α) = (NΛ#(α), α).

As we know that the manifold M is Poisson-Nijenhuis, the tensor NΛ is also
a Poisson tensor, and hence we can consider its graph on the Lie bialgebroid
as a candidate to Dirac structure. The situation is slightly different, though,
because the Lie algebroid structure on T ∗M is defined by using the original
Poisson tensor Λ and we assume that this structure is not modified by the
deformation. The conditions are as follows:

• Maurer-Cartan equation reads now:

d∗(NΛ) +
1

2
[NΛ, NΛ]N = [Λ, NΛ] +

1

2
[NΛ, NΛ]N = 0.

• While the second condition corresponds to:

[α, β] + [α, β]ΩN = [α, β]Λ + [α, β]NΛ

being closed. This condition is obviously satisfied.

Therefore, we conclude that:
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Theorem 6.3. Let M be a Poisson-Nijenhuis structure. Consider the defor-
mation of the Lie bialgebroid structure (82) into (83) . Then, the condition
for a Dirac structure D defined as the graph of the Poisson tensor Λ, to
be deformed into a new Dirac structure, corresponding to the graph of the
deformed Poisson tensor NΛ is:

[Λ, NΛ] +
1

2
[NΛ, NΛ]N = 0. (85)

It is important to realize that the condition of NΛ being a Poisson tensor
is not enough to ensure that the graph defines a Dirac structure, since this
fact depends on the Lie bialgebroid structure encoded in the pair (A,A∗).
Only if we consider a trivial Lie algebroid structure on T ∗M , with the anchor
mapping and the Lie structure vanishing, the condition of NΛ being a Poisson
tensor ensures the definition of a Dirac structure on its graph.
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