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MATRIX INEQUALITIES IN STATISTICAL MECHANICS

N. BEBIANO, J. DA PROVIDÊNCIA JR. AND R. LEMOS

Abstract: Some matrix inequalities used in statistical mechanics are presented. A
straightforward proof of the Thermodynamic Inequality is given and its equivalence
to the Peierls–Bogoliubov inequality is shown.

1. Golden–Thompson Inequality

One of the earlier inequalities involving traces of matrices applied to sta-
tistical mechanics is the Golden–Thompson inequality. In 1965, Golden [8],
Symanzik [17], and C. Thompson [18], independently proved that

tr (eA+B) ≤ tr (eAeB) (1.1)

holds when A and B are Hermitian matrices. ¿From (1.1) Thompson derived
a convexity property that was used to obtain an upper bound for the partition
function of an antiferromagnetic chain tr (e−H/Θ), where H, a Hermitian op-
erator, is the Hamiltonian of the physical system, and Θ = kT where k is the
Boltzmann constant and T is the absolute temperature. Golden [8] obtained
lower bounds for the Helmholtz free-energy function for a system in statistical
or thermodynamic equilibrium. The Helmholtz free-energy function is given
by

F = −Θ log tr (e−H/Θ).

Indeed, for any partition of the Hamiltonian H = H1 +H2, the exponential
can be represented by the well-known Lie–Trotter formula (for a proof see,
for example, [5] or [20])

e−H/Θ = lim
n→∞(e−H1/nΘe−H2/nΘ)n. (1.2)

Since the exponential of a Hermitian matrix is a positive definite matrix, and
recalling the following inequality for positive definite matrices A and B (see,
e.g., [8])

tr(AB)2p+1 ≤ tr(A2B2)2p

, p a non-negative integer, (1.3)
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we have

tr (e−H1/Θe−H2/Θ) ≥ tr (e−H1/2Θe−H2/2Θ)2

≥ tr (e−H1/2pΘe−H2/2pΘ)2p

≥ tr (e−H1/2qΘe−H2/2qΘ)2q

≥ tr e−H/Θ, p ≤ q. (1.4)

Regardless of the mode of partition of the Hamiltonian, these inequalities
provide a set of nested lower bounds for the Helmholtz free energy. Let
H = H1 + H2 (in particular, H1 may be thought of as the kinetic energy
and H2 as the potential energy of the system). In a classical model, H1 and
H2 commute and so the partition function coincides with tr (e−H1/Θe−H2/Θ).
This commutativity of H1 and H2 does not occur in quantal models. For a
non-negative integer q, consider

Fq = −Θ log tr (e−H1/2qΘe−H2/2qΘ)2q

.

As a consequence of (1.4) and of the increasing monotonicity of the log func-
tion, we have

Fp ≤ Fq ≤ F, p ≤ q.

If q = 0, then the Helmholtz function F0 = −Θ log tr (e−H1/Θe−H2/Θ) cor-
responds to what may be termed the pseudoclassical case. Since F ≥ F0,
the classical Helmholtz function provides a lower bound approximation to
the correct quantum mechanical Helmholtz function [12]. The Golden–

Thompson trace inequality has been generalized in several ways (e.g. [1,
4, 6, 9, 14, 19]). For instance, Cohen, Friedland, Kato and Kelly [6] proved
inequalities of the form

φ(eA+B) ≤ φ(eAeB),

where A and B belong to Mn, the algebra of n×n complex matrices, and φ is
a real-valued continuous function of the eigenvalues of its matrix argument.
For example, φ(A) might be the spectral radius of A, which is the maximum
of the magnitudes of the eigenvalues of A.

2. Log Majorization and Golden–Thompson Type Inequalities

For a Hermitian matrix A inMn, we assume that the eigenvalues λi(A), i =
1, · · · , n, are arranged in a nonincreasing order λ1(A) ≥ · · · ≥ λn(A). For
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Hermitian matrices A and B, we write A � B to denote the majorization
[λi(A)] � [λi(B)], that is,

k∑

i=1

λi(A) ≥
k∑

i=1

λi(B), k = 1, · · · , n, (2.1)

n∑

i=1

λi(A) =
n∑

i=1

λi(B). (2.2)

If (2.1) holds but not necessarily (2.2), we say that A weakly majorizes B,
and write A �w B. When A and B are positive definite matrices, we write
A ≺log B to denote the majorization logA ≺ logB, that is,

k∏

i=1

λi(A) ≤
k∏

i=1

λi(B), k = 1, · · · , n− 1,

n∏

i=1

λi(A) =
n∏

i=1

λi(B).

Lenard [14] and Thompson [19] extended the Golden–Thompson inequality
to

eA+B ≺w eB/2eAeB/2,

or equivalently, to ||eA+B|| ≤ ||eB/2eAeB/2||, for any unitarily invariant norm
||.|| and A and B Hermitian matrices. Araki [2] proved that

tr(A1/2BA1/2)rs ≤ tr(Ar/2BrAr/2)s, (2.3)

for A and B positive semidefinite matrices, r ≥ 1 and s > 0. Lieb and
Thirring [15] proved the case s = 1 and applied the result to get inequalities
for the moments of the eigenvalues of the Schrödinger Hamiltonian. The
Araki–Lieb–Thirring inequality (2.3) is also closely related to the Golden–
Thompson inequality. Its special case r = 2 and s = 2p, with p ∈ IN0, is
just (1.3). Kosaki [11] showed that the above inequality remains valid in the
setup of general von Neumann algebras. Araki [2] obtained a more general
log majorization which is equivalent to

(Aq/2BqAq/2)1/q ≺log (Ap/2BpAp/2)1/p, 0 < q ≤ p. (2.4)
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Using this result and the Lie–Trotter formula (1.2), Hiai and Petz [9] strength-
ened the Golden–Thompson trace inequality for Hermitian matrices A and
B:

tr (eA+B) ≤ tr (epA/2epBepA/2)1/p, p > 0. (2.5)

In [7], Cohen obtained some spectral inequalities for matrix exponentials,
some of which extend Bernstein inequality [4],

tr(eT eT ∗
) ≤ tr(eT+T ∗

),

(which is valid for any operator T ), to partial traces defined by

tr
(k)
j (X) =

j∑

i=1

λi(X
(k)), k = 1, · · · , n, j = 1, · · · , Cn

k ,

where X(k) denotes the kth compound of X ∈Mn, and where its eigenvalues
are labeled in nonincreasing magnitude |λ1(X

(k))| ≥ · · · ≥ |λCn
k
(X(k))|. For

example, tr
(1)
n (X) = tr(X) and, when X is a positive semi-definite matrix,

tr
(k)
1 (X) =

∏k
i=1 λi(X).

The following log majorization for the exponential of an arbitrary matrix
T is just a restatement of one of the inequalities in [7],

|eT | ≺log eReT ,

where ReT := (T + T ∗)/2 and |eT |2 := eTeT ∗
. Since for any matrix X,

|Xs| ≺log |X|s, s ∈ IN, (2.6)

the following refinement of the above log majorization holds:

|esT |1/s ≺log |eT | ≺log |eT/p|p ≺log eReT , s, p ∈ IN. (2.7)

The first and second log majorizations follow from (2.6) with X = eT and
with X = eT/p, s = p, respectively. The last log majorization follows from
(2.6) and (2.7), with p ∈ IN, q a multiple of p, X = eT/q and s = q/p, that is

|eT/p|p ≺log |eT/q|q;
and by using once more the Lie–Trotter formula. In particular, replacing
X by X(k) in (2.6), having in mind the Binet–Cauchy formula (XY )(k) =
X(k)Y (k) for X,Y belonging to Mn, and noting that (X∗)(k) = (X(k))∗, we
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prove the validity of (2.6) and (2.7) for the kth compounds. Since log ma-
jorization implies weak majorization, we have the strenghtened version of
Bernstein inequality:

tr
(k)
j (eT/peT ∗/p)p ≤ tr

(k)
j (eT+T ∗

), p ∈ IN, k = 1, · · · , n, j = 1, · · · , Cn
k .

Replacing A and B in (2.4) by A(k) and B(k), respectively, and using the el-
ementary properties of the kth compounds, we easily obtain the strenghtened
version of Golden–Thompson inequality (2.5) for partial traces.

3. Thermodynamic Inequality

In statistical mechanics, the statistical properties of complex physical sys-
tems are described by density matrices. A density matrix D is a positive
semidefinite matrix such that tr(D) = 1. The eigenvalues of a density ma-
trix are the probabilities of the physical states described by the corresponding
eigenvectors. The entropy of a statistical state described by the density ma-
trix D is defined by

S (D) = −tr (D logD)

(convention: x logx = 0 if x = 0). For the energy operator H (H is Hermit-

ian), the statistical average of the energy is

E = tr (HD).

It is an important problem to determine the maximum of the function

ψ(D) = tr (HD) + Θ tr (D logD),

which is an approximation to the Helmholtz free energy. For convenience
we take Θ = −1, which is meaningful in finite dimensional vector spaces.
Denoting a positive definite matrix D by D > 0, we shall now prove:

Theorem 1
(a) Let H be a Hermitian matrix. Then

log tr (eH) = max{tr (HD) + S (D) : D > 0, tr(D) = 1}.
(b) Let D > 0, such that tr(D) = 1. Then

−S (D) = max{tr (HD) − log tr (eH) : H Hermitian}.
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Proof. (a) For every Hermitian S, and for each t ∈ IR in a neighborhood of
0, consider the differentiable function

f(t) = ψ(e−itSDeitS). (3.1)

Observing that eitS = I + itS + · · · is a unitary matrix and recalling that
the trace is invariant under unitary similarity, we see that f(t) can take the
form

f(t) = tr (He−itSDeitS) − tr (D logD).

By the extremum condition, it follows that

f ′(0) = i tr (S[H,D]) = 0,

where as usual, [H,D] = HD − DH is the commutator of the matrices H
and D. Since S is arbitrary, we conclude that [H,D] = 0 and so eH and D
also commute. Having in mind that tr (D) = 1, we get

tr (HD)+S(D) = tr [D(log eH−logD)] = log tr (eH)−tr [D(log tr(eH)+logD−log eH)].

Recalling that eH and D commute, it can be easily seen that this last ex-
pression is equal to

log tr (eH) − tr [eHDe−H log(tr (eH)De−H)].

Taking C = tr (eH)De−H , we obtain

log tr (eH)−tr [eHDe−H log(tr (eH)De−H)] = log tr (eH)−[tr (eH)]−1tr [eHC logC]

= log tr (eH) − [tr (eH)]−1tr [eH(C logC − C + I)]. (3.2)

Observing that x logx − x + 1 ≥ 0 for x ≥ 0, we conclude that (3.2)
is less or equal to log tr (eH) and equality occurs only if C = I, that is,
D = eH/tr (eH). On the other hand, if D = eH/tr (eH), easy calculations
show that ψ(eH/tr(eH)) = log tr (eH) and part (a) of the Theorem is proved.

Next, since

tr ((H + Ik)D) − log tr (eH+Ik) = tr (HD) − log tr (eH), k ∈ IR,

we may assume that tr (eH) = 1.
Following an analogous argument to the one in the first step of the proof

of (a), we can show that the maximum of tr (HD)− log tr (eH) for Hermitian
H, occurs when [H,D] = 0. Thus [D, eH ] = 0. Since under our assumptions,
tr (D) − tr (eH) = 0, we have:

−tr (HD) + tr (D logD) = tr [eHDe−H log(De−H)]− tr( eHDe−H) + tr (eH) =
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tr [eH(Z logZ − Z + I)] ≥ 0, Z = De−H .

Hence, the maximum occurs when H = logD, and (b) follows. �
Theorem 1 implies the important Thermodynamic Inequality [10]:

log tr (eH) ≥ tr (HD) + S (D).

The maximum log tr (eH) is the free energy of equilibrium. For other proofs
see [3, 10]. ¿From the proof of Theorem 1, it follows that the occurrence of
equality in the Thermodynamic Inequality is characterized byD = eH/tr (eH).

For A > 0 and B > 0, the relative entropy of Umegaki is defined by

S(A,B) = tr [A(logA− logB)].

Clearly, S(A, I) = −S(A).
Approximations of the relative entropy were discussed, for instance, by

Ruskai and Stillinger [16]. Considering u(p) = 1
ptr(A

1+pB−p −A), 0 < p ≤ 1,
they proved that

u(−p) ≤ S(A,B) ≤ u(p) (3.3)

and showed that the bounds u(−p) and u(p) tend to S(A,B) as p → 0. Ex-
ploiting Richardson extrapolation, Ruskai and Stillinger also noticed that the
average of these bounds can be used to improve estimates of thermodynamic
variables such as the free energy. Note that the left-hand-side of (3.3) with
p = 1 yields the Klein inequality.

Hiai and Petz [9] obtained the following bounds for the relative entropy:

1

p
tr (A log(B−p/2ApB−p/2)) ≤ S(A,B) ≤ 1

p
tr (A log(Ap/2B−pAp/2)), p > 0

where, again, both bounds converge to S(A,B) as p→ 0. Since log x−x+1 ≤
0 for x ≥ 0, the upper bound is a better estimate than u(p) in (3.3). However,
the lower bound does not improve the one we shall present in part (c) of
Theorem 2.

Let Hn denote the real vector space of n× n Hermitian matrices, endowed
with the inner product < X,Y > = tr(XY ) . Given a function f : Hn →
(−∞,+∞), the conjugate function, or the Legendre transform of f is the
function f ∗ : Hn → (−∞,+∞) defined by

f ∗(Y ) = sup{tr (XY ) − f(X) : X Hermitian}.
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The following corollary, which trivially follows from Theorem 1, shows that
the relative entropy S(A,B), viewed as a function of a positive definite matrix

A of trace 1, is the Legendre transform of log tr (eH+logB), where B is positive
definite, and vice-versa.

Corollary (Hiai and Petz, [9])
(a) Let H be a Hermitian matrix and B > 0. Then

log tr (eH+logB) = max{tr (AH) − S(A,B) : A > 0, tr(A) = 1}.
(b) Let A > 0 such that tr(A) = 1, and let K be a Hermitian matrix. Then

S(A, eK) = max{tr (AH) − log tr (eH+K) : H Hermitian}.

4. Peierls–Bogoliubov Inequality

It is often difficult to calculate the value of the partition function tr (eH).
It is simpler to compute the related quantity tr (eH0), where H0 is a conve-
nient approximation to H. Indeed, let H = H0 + V. The Peierls–Bogoliubov
inequality [10] provides useful information on tr (eH0+V ) from tr(eH0). This
inequality states that, for two Hermitian operators A and B,

tr (eA+B) ≥ tr (eA)etr (BeA)/tr (eA).

This inequality can be easily derived from the Thermodynamic Inequality by
considering H = A+B and D = eA/tr (eA). Having in mind the condition for
equality in the Thermodynamic Inequality, it can be easily seen that equality
occurs if and only if B is a scalar matrix.

For 0 ≤ α ≤ 1, the α-power mean of matrices A > 0 and B ≥ 0 is defined
by

A#αB = A1/2(A−1/2BA−1/2)αA1/2.

In particular, A#1/2B = A#B is the geometric mean of A and B.
Given Hermitian matrices A and B, it would be interesting to compare the

lower bound for tr (e(1−α)A+αB) provided by the Peierls–Bogoliubov inequality
and by Hiai and Petz [9], in terms of the α-power mean:

tr(epA#αe
pB)1/p, p > 0.

We finally prove: Theorem 2. The following conditions are equivalent:

(a)If H and K are Hermitian matrices, then

tr (eH+K) ≥ tr (eH)etr (eHK)/tr (eH).
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(b) If A > 0 such that tr (A) = 1, and D is Hermitian, then

log tr (eD) ≥ tr (AD) + S (A).

(c) If A > 0 and B > 0, then

tr [A(log tr (A) − log tr (B))] ≤ S (A,B).

Proof. (a) ⇒ (b): Let A > 0 with tr (A) = 1. Then there exists a Hermitian

matrix H such that A = eH . If D is Hermitian, then K = D − logA is also
Hermitian. Hence, by (a),

tr (eD) ≥ tr (A) etr (AD−A logA)/tr (A) = etr (AD)+S(A),

and by the monotonocity of the logarithm function, (b) follows. (b) ⇒ (c):

Let A > 0 and B > 0. Replacing in (b) the matrix A by A/tr (A) and taking
D = logB, we have

log tr (B) ≥ 1

tr (A)
tr [A(logB − log

A

tr (A)
)].

By multiplying both sides of this inequality by −tr (A), we have

−tr (A log tr (B)) ≤ S (A,B) − tr (A log tr (A)),

and so (c) holds. (c) ⇒ (a): Let H and K be Hermitian matrices. Taking in

(c) A = eH and B = eH+K, we obtain

tr (eH)(log tr (eH) − log tr(eH+K)) ≤ S(eH , eH+K) = −tr (eHK). (4.1)

Dividing both sides of (4.1) by −tr(eH) and taking the exponential, (a) fol-
lows. �
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