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ACTION OF THE SYMMETRIC GROUP ON SETS
OF SKEW-TABLEAUX WITH PRESCRIBED
MATRIX REALIZATION
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ABSTRACT: Let M be the set of all rearrangements of ¢ fixed integers in {1,...,n}.
We consider those Young tableaux 7, of weight (m1,...,m;) in M, arising from a
sequence of products of matrices over a local principal ideal domain, with maximal
ideal (p),
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where A, is an n X n nonsingular diagonal matrix, with invariant partition a, and
U is an n x n unimodular matrix. Given a partition a and an n X n unimodular
matrix U, we consider the set T(,, M)(U) of all sequences of matrices, as above,
with (ma, ..., my) running over M. The symmetric group acts on T{, 1) (U) by place
permutations of the tuples in M. When ¢ = 2, 3, the action of the symmetric
group on the set of Young tableaux, having the set T(a,M)(U) as matrix realization,
is described by a decomposition of the indexing sets of the Littlewood-Richardson
tableau in T(a’M)(U), afforded by the matrix U. This description, in cases t = 2, 3,
gives necessary and sufficient conditions for the existence of an unimodular matrix
U such that T(ayM)(U) is a matrix realization of a set of Young tableaux, with given
shape c¢/a and weight running over M. If H is the tableau arising from the sequence
of matrices, above, when a = 0, it is shown that the words of the tableaux 7 and H
are Knuth equivalent. The relationship between this action of the symmetric group
and the one described by A. Lascoux and M. P. Schutzenberger [11, 13], on words,
is discussed.

KEYWORDS: combinatorics on tableaux, matrix theory, plactic monoid, symmetric
group.
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1. Introduction

Let M be the set of all rearrangement of a sequence of ¢ fixed integers in
{1,...,n}. We consider those Young tableaux 7, of weight (my,...,m;) in M,
arising from a sequence of products of matrices over a local principal ideal
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domain, with maximal ideal (p),
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where A, = diag(p™,...,p™) is an n x n diagonal matrix with invariant
partition a = (ai,...,a,), and U is an n x n unimodular matrix. When

(my,...,m¢) is by decreasing order, 7 is a Littlewood-Richardson tableau
[1, 2, 3]. Now, for each partition a and n x n unimodular matrix U, let
T(a’M)(U) be the set of all sequences of matrices, as above, with (my, ..., m;)
running over M. The symmetric group S; acts on M by place permutations of
the tuples, and, henceforth, on T\, 5 (U). The action of the symmetric group,
on these sequences of matrices, induces an action on the set constituted by
the indexing sets of the Young tableaux, realized by T{,)(U). We describe
this action, in cases ¢ = 2,3. The action of S; on T, (U), for t = 2,3, is
generated by an explicit decomposition of the indexing sets of the Littlewood-
Richardson tableau in T{, 5 (U). This action of the symmetric group has
been also described, independently, in [6], in a purely combinatorial way.
Here, we shall see a matrix translation of this action.

The paper is divided in six sections. In section 2, we introduce the combi-
natorics of Young tableaux and words. Some well-known results of the plactic
monoid, important in the sequel, are also discussed. We follow the terminol-
ogy of [2, 3] and [9], where strict row tableaux are encoded by indexing sets.
It is shown the correspondence between words and indexing sets.

Section 3 is divided in three subsections. In subsection 3.1, we discuss
properties of integral matrices, decompositions of unimodular matrices, and
subgroups of unimodular matrices. In 3.2, we discuss the notions of matrix
realization of an Young tableau 7, and of a pair of Young tableaux (7, H),
where 7 is of type (a,(m,...,m;),c) and H is of type (0, (mq, ...,my),b)
2, 3, 4]. When such a matrix realization exists, (7', H) is called an admissible
pair [3, 4]. In this paper, we shall be concerned on admissible pairs, where H
is the tableau (0, (1), 2, (1), ...723;1(1"”)). fmy>...>m, (T,H)
is an admissible pair iff 7 is a Littlewood-Richardson tableau [1, 2, 3]. In
subsection 3.3, we introduce the notion of extension of a matrix. A matrix
Z is an extension of X, if X is obtained by zero out some entries of Z. This
concept turns out to be the key for the matrix description of the aforesaid
action of the symmetric group.
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In section 4, we present the main results, theorems 4.1, 4.5 and 4.7 and
their corollaries. Given a tableau 7 of type (a,m,c), these theorems answer
the following questions, in cases ¢ = 2,3: (i) Under what conditions does 7
belong to T4 ) (U); (44) Under what conditions is the pair (7, ’H) admissible.
The answer to question (i) is equivalent to the description of the action of the
symmetric group on T, ) (U), discussed above. The answer to question (i)
follows from the answer to question (z), and from the characterization of the
elements of the Knuth equivalence class of H, proposition 4.4 and [6]. (7,H)
is an admissible pair iff the words of 7 and H are Knuth equivalent. In re-
mark 2, for ¢ = 2, it is shown that, given two unimodular matrices U and V'
realizing the same LR tableau 7', we may have T(, ) (U) # T(o,01)(V). This
means that U and V' generate different decompositions of the indexing sets of
the LR tableau 7', and, thereby, give rise to different parentheses matching
operations of the corresponding Yamanouchi word over a two-letters alpha-
bet. Theorems 4.5 and 4.7 are proved in section 5. In the last section, we
translate into words over a three-letters alphabet the group action generated
by the decomposition of the indexing sets of an LR tableau described in theo-
rem 4.1. This decomposition of the indexing sets is equivalent to a coplactic
parentheses matching operation satisfying the Moore-Coxeter relations for
S3 on the corresponding Yamanouchi word. We compare it with the one
described by A. Lascoux and M. P. Schutzenberger [11, 13] on words.

2. Young tableaux and words

Let N be the set of nonnegative integers with the usual order ” > 7.

A partition is a sequence of nonnegative integers a = (ai,as, ...), all but
a finite number of which are non zero, such that a; > as > ... The number
la| :== >, a; is called the weight of a; the maximum value of ¢ for which a; > 0
is called the length of a and is denoted by l(a). If i(a) = |a] = 0 we have
the null partition a = (0,0,...). If a; = 0, for ¢ > k, we shall often write
a = (ai,...,a). Sometimes it is convenient to use the notation

a=(a",a3”,...,a;"),
where a1 > ag > ... > q; and @], with m; > 0, means that a; appears m;
times as a part of a. We say that a is an elementary partition if there is
m > 0 such that a = (1™).
Suppose a = (ay, ..., a;) is a partition of length k& with |a| = n. The Young
diagram of a is an array of n boxes, (or dots), having k left-justified rows
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with row ¢ containing a; boxes for 1 < ¢ < k. We shall identify a partition
with its Young diagram. For example, the Young diagram of a = (4,2,2,1)
is:

The conjugate partition of a is the partition whose Young diagram is the
transpose of the Young diagram of a. For instance, (4,3, 1,1) is the conjugate
of a = (4,2,2,1). Given two partitions a and ¢, we write & C ¢ to mean
a; < ¢, for all i. Graphically, this means that the Young diagram of a is
contained in the Young diagram of ¢. A skew diagram c/a is obtained by
removing the smaller diagram of a from the diagram of c¢. For example, if
a = (4,2,2,1) and ¢ = (5,4,4,3,2), the following shows the skew diagram
c/a:

NI

L J

[ ]

[ ]

f :
We write |c/a| := |c| — |a|. A skew-diagram is called a vertical [horizontal]
m-strip, where m > 0, if it has m boxes and at most one box in each row

[column].

Let a and ¢ be partitions such that a C ¢, and (my,...,m;) a sequence of
nonnegative integers. A Young tableau (strictly row) T of type (a, (mi, ...,
my), ¢) is a sequence of partitions

T = (" d",...,a") (1)

such that ¢ = @ C a' C ... C @' = ¢ and, for each k = 1,...,t, the skew-
diagram a*/a*~1 is a vertical strip labeled by k, with my = |a*/a*~|. When
a’ # 0, T is often called a skew tableau. The indezing sets Ji, ..., J; of T
[2, 3] are finite subsets of N given by

Je={i caf —a'#£0}, 1<k <t

That is, Ji is defined by the row indices of the boxes of ¢/a labeled by k,
1 < k <t. Notice that (|Ji|,...,|/s|) = (ma,...,m;). The skew-diagram c/a
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is called the shape of the tableau 7" and (my,...,m;) the weight of 7. For
example,

2]
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[ (2)
is a (skew) tableau of type ((4,2,2,1),(4,3,2),(5,4,4,3,2)), with indexing
sets J; = {2,3,4,5}, Jo ={1,4,5}, J3 = {2,3}.

Given n € N, [n] denotes the set {1,...,n}, and 2" the power-set of [n].

A sequence (Jy,...,J;) of subsets of [n] may be represented in a grid of
points of N?, as with matrices, by the set of points (i,k) € N? such that
1 € Jip, 1 < k < t, where the first coordinate, the row index, increases as
one goes downwards, and the second coordinate, the column index, increases
as one goes from left to right. For example, the graphical representation of
the sequence (Jy, J2, J3) defined by the indexing sets of the skew tableau (2),
above, is:

1 2 3

Uk O DN =

(3)

On its turn, each sequence (Jy, ..., J;) of subsets of [n] gives rise to a word
w(Jy, ..., J;) over the alphabet [t], called the word generated by (Ji, ..., Jy),
obtained by reading the grid from top to bottom, along each row, from right
to left, by assigning a label ¢ to each dot in column ¢, for ¢ = 1,...,¢. The
sets Ji, ..., J; are called indexing sets of w(Jy, ..., J;). In picture (3), we have
w(J, Ja, J3) = 231312121. We may now define w(7") the word of the (skew)
tableau T (1) as the word generated by the indexing sets of 7. That is,
w(T) =w(Jy,...,J;). In picture (2), the word of 7 is w(7 ) = 231312121 =
w(Jl, J2, Jg)

Conversely, a word w = ...z, over the alphabet [t| may be represented in
a grid of N? as the set of points (i,2;) € N>, 1 < i < r. Putting F, = {i €
[r] : x; =k}, for k = 1,...,t, we obtain w(F, ..., F}) = xy...z, and F1, ..., F}
are indexing sets of w = xj...x,. For example, according to this definition,
we have respectively the following graphical representations of the words
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w = 231312121, already considered in picture (3), and v = 231132121:
1 2 3 1 2 3

O 00O Utk Wk
O OO W
—

IS
~—

)

The sets F1 = {3,5,7,9}, F» = {1,6,8} and F5 = {2,4} are also index-
ing sets of w = 231312121, and therefore w(Jy, Jo, J3) = w(Fy, Fy, F3) =
231312121, where Ji, Js, J3 are the indexing sets of the (skew) tableau (2).
The sets G1 = {3,4,7,9}, Gy = F, and G3 = {2,5} are indexing sets of
v = 231132121. Clearly, a word may be generated by different indexing sets.
In particular, we may choose always pairwise disjoint indexing sets.

Given a word w over the alphabet [t], we write |w|g, k € [t], to mean the
multiplicity of the letter & in the word w. The sequence (Jwly, ..., |w|) is
called the evaluation (or weight) of w, and |w| = |w|, + ... +|w|; the length of
w. Thus if (Ji,...,J;) are indexing sets of w, the evaluation and the length
of w are respectively (|Ji|,...,|J;]) and |Ji| + ...+ |Ji|. Notice that every
skew tableau gives rise to a word, and every word arises from some skew
tableau.

A word w is said a row if the letters are by strictly decreasing order. Every
sequence of indexing sets p = (Xi,...,X;) of a row word w is such that
X; = 0 if the letter ¢ is missing, otherwise, X; = {z;} and X; = {z;} with
x; > x;, whenever ¢ < j are letters of w. Graphically, a row word may be
identified with a polygonal line p with line segments of nonnegative slope. In
(4), 321 is a row but neither 312 nor 132 are rows.

A word is said a tableau if it is the word of a tableau (1) with a’ = 0. In
this case, the word has a factorization into rows whose sequence of lengths
is the shape of the tableau. For instance, given m; > ... > my, the word
w([mal, ..., [my]) is the tableau (¢...21)™ (¢t —1...21)™-2m (21)m2™s
1™~m2  where exponentiation signifies repetition of the same word, with
shape the conjugate partition of (mq,...,m;). When we mention the rows
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of a tableau we are referring to those whose sequence of lengths is the shape
of the tableau.

Knuth’s relation = [10] on words over the alphabet [t] is the equivalence
relation generated by the so-called elementary transformations, where x, ¥,
z are letters and u, v are words in [¢]:

uxrzyv = uzzyy, r <y < z, (5)

uyzrv = uyrzv, v <y < z. (6)

In picture (4), using Knuth relation(5), w(Jy, J2, J3) = w(F, Fy, F3) = 231
(312) 121 = 231 (132) 121 = w(G1, G2, Gs3) (the parentheses indicate the el-
ementary Knuth operation 312 = 132).The triangular polygonal lines drawn
in (4) represent the words 312 and 132 respectively.

In [16], C. Schensted has described an algorithm, known as Schensted’s
insertion algorithm, which associates to each word w a strictly row tableau
P(w). The elementary step consists in the insertion of a letter = into a
strictly row tableau 7, denoted P(x.7). It takes a positive integer x and a
tableau 7" and puts x in a new box at the end of the first row if possible, that
is, if x is strictly larger than all the entries of the row. If not, it bumps the
smallest entry of that row that is larger or equal to x. This bumped entry
moves to the next row, going to the end if possible, and bumping an element
to the next row, otherwise. The process continues until the bumped entry
can go at the end of the next row, or until it becomes the only entry of a
new row. Here is an example of the insertion of 3 in a tableau:

1245 1235 1235 1235
3— 1 25 4— 125 5— 1 2 4 12 4
2 2 2 25

For an arbitrary word w = zj...xj in [t], one defines P(w) as the result
of inserting xj_; into the unitary tableau z; = P(xy), then inserting xj_o
into the resulting tableau P(zj_;.P(xy)), and so on. As an example of the
general case, the successive steps of the calculation of P(231312121) are:

1 23
1 2 1 2 3
1 2 1 2 1 2
1 - 12 — — - 12 = 1 2 —
1 1 2 1
1 1 1
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23 3

23 3
: (7)

—
e
NN DN

1

In [8, 10, 13] is shown that two words w, w’ are Knuth equivalent if and only
if P(w) = P(w'). Therefore, the word 231312121, in (2), (3) and (4), is
Knuth equivalent with the tableau 321321211 in (7).

Definition 2.1. Let A, B C [n]. We write A > B if there exists an injection
i: B — A such that b < i(b), for all b € B. We call such an injection a
witness for A > B.

Note that if additionally |A| = |B|, every witness of A > B is a bijection.
The relation > defined by A > B is a partial order in 2", and we denote it
by P[n]. This relation can be characterized in a number of ways as we shall
see in the proposition below.

Given a finite set A C [n], let |A| denote the cardinality of A, and let
A:=[n]\ A

Proposition 2.1. [6] Given A, B C [n], the following statements are equiv-
alent:

(a) A> B.

(b) There exists an injection i : B — A such that b < i(b), for all b € B,
and satisfying additionally 4|, , = id), . (id denotes the identity map).

(c) For any k € N, it holds |[{a € A:a >k} >|{be B:b>k}|.

(d) If a = (a1, as, ...a;4},0, ...) and b= (b1, ba,...bjp|,0,...) are the decreasing
rearrangement of the elements of A and B as embedded into NV, then a > b
i the componentwise order.

(e) There exists X C A such that | X| = |B| and X > B.

(f) A\ Z > B\ Z, with Z C AN B.

Observe that, when |A| = |B|, A > B iff B > A.

Notice that using (d) of this proposition, P[n| is clearly a lattice in which
the family of all subsets of a given cardinality forms a sublattice. Thus, given
A > B we may define the least upper bound of B in 24:

mingA =min{X C A:|X|=|B| and X > B}.

Let X be any finite set, and let Sx denote the set of all bijections on X.
In particular, when X = [n] we write S, for the symmetric group of order
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n. Given A > B with |A| = |B| = m, each witness i : A — B, with i), , =
id,,, induces a permutation € € S,,, such that A\ B = {u; > ... > u,},
B\ A= {v.q) > ... > v(n)}, With u; > i(u;) = v;, j = 1,...,7, and £(j) = 7,
j=r+1,..,m. Notice that if A = B, € = id. Therefore, any witness 7 can
be described completely by the permutation that it induces. In what follows,
by a witness of A > B we mean the permutation € € S,,,.

We denote by (uv) the transposition in S, of the integers u and wv.

Definition 2.2. Given A, B C [n| with |A| = |B| and A > B, for each
witness € of A > B, as above, we define the permutation Mg g = | [}_; (urvr)
mnS,.

When ¢ = id, we write Ay p. If A= B, \yp = id. Clearly, Ay p.(A) =
B, Mpe(B) = A, (MaBe)ias = id, Ai'p. = Mpe; and AapAop, =
/\C,D,s)\A,B,g7 if (A U B) N (C U D) = 0.

Using proposition 2.1, we may define another relation in 2!

Definition 2.3. [5] Let A,B C [n]. We write A >,, B if A> X, for some
X C B with | X| = |4].

n| )

The relation >,, is a partial order in 2I"/, and we denote it by P [n]. Let
op denote the reverse permutation of S,. Since A >,, B iff op(B) > op(A),
P°P[n] is isomorphic to the dual lattice of P[n].

A word w over the alphabet [¢] is said a Yamanouchi word [13] if any right
factor v of w satisfies |v|; > |v|]a > ... > |v|;. Recalling proposition 2.1, this
is equivalent to say that if (Jy, ..., J;) are indexing sets of w, then every pair
(Jiy Jiv1), 1 = 1,...,t—1, satisfy condition (c¢) of that proposition. Henceforth,
w(Jy, ..., J¢) is a Yamanouchi word if and only if J; > ... > J;. The evaluation
of a Yamanouchi word is a partition.

Definition 2.4. Let u = uy...u, and v = vy...v,, where uq, ..., Uy, V1, ...,V are
words over the alphabet [t]. The word sh(u,v) = uv1ugvy...uy vy, is called a
shuffle of u and v. That is, sh(u,v) is obtained by moving uw and v through
one another.

Let u, v and ¢ be words. We define recursively the shuffle of three (or more
words) by sh(u,v,q) = sh(sh(u,v),q).

For instance, the shuffles of 1 and 321 are: 1321, 3121, 3211 = 3211 (the
underlines indicate the position of the word 1 in the shuffle). The word 3211
can be written as a shuffle of 321 and 1 into two different ways. The word
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132121 is a shuffle of 321, 21 and 1 but not a shuffle of 3121 and 21. On the
other hand, 312211 is both a shuffle of 321, 21, 1, and 3121, 21.

If (Ji,...,J:) are indexing sets of sh(u,v) then J; = H;UF;,; i =1,...,t,
where (Hy, ..., H;) and (Fy,. .., F;) are indexing sets of u and v respectively,
such that H; N F; = (. In this case, we say that (Ji,...,J;) has a de-
composition into (Hy,...,Hy) and (Fy,..., F;) and we write (Ji,...,J;) =
(Hi,...,H) W (F1,. .. ). o

The word w = 231312121, in (4), is a shuffle of 3121, 21 and 321
(the overlines and underlines indicate the corresponding shuffle components).
Below we exhibit a graphical representation of the word w = 231312121
as a shuffle of the words w({3},{1}) = 2 1, w({9},{8},{4}) = 321, and
w({5,7},{6},{2}) = 3121. Graphically, w is a union of pairwise disjoint
polygonal lines (polygonal lines without overlapping vertexes):

1 2 3

Nel ool N Ne) NG sy GUN W g

Another way to write w = 231312121 as a shuffle of 3121, 21 and 321 is w =
231 3 12 12 1 (the overlined and underlined letters indicate respectively
the subwords 3121 and 21).

The notion of shuffie allows us to give the following characterization of
Yamanouchi word.

Proposition 2.2. Let w be a word with evaluation (mq,...,my), my > ... >
my, and indexing sets (Ji,...,Jy). The following conditions are equivalent:
(a) w is a Yamanouchi word.
(b) (J1,...,Jt) has a decomposition of the form
1
ﬁ% A2
1 A2

ALAL AL
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where A} > ALY > ... > Aﬁ, |AY] = A% = ... = ]A§| = Mg — Mpi1,
1<k <t withmy, =0, and ATNAT=0,1<j<t, r#s.

(¢) w is a shuffle of the rows of the tableau w([m], ..., [my]).
Proof: Let ry, ..., Ty, be the rows of the tableau w([m4], ..., [m¢]), by decreas-
ing order of length, and (ly, ..., l,,) be the conjugate partition of (my, ..., m;).

(a) < (b) By proposition 2.1, (d), J; > ... > Jy iff is the union of pairwise
disjoint polygonal lines with line segments of nonnegative slope p; = (2} >
zxfi) where z} € Ji, k=1,...,0;; 1 <i<m;.

(b) = (c) Suppose (Ji, ..., J;) has a decomposition as displayed in (b). For
1<k<t AF > AL > ... > A¥ are indexing sets of a subword of w which is
a shuffle of my — my, row words k...21.

Now suppose that w is a shuffle of the row words 71, ...,ry,,. Since
Ji1,...,Jy are indexing sets of w, each row r; determines a polygonal line
with line segments of nonnegative slope p; = (X{ > ... > X]) where
Xi={dl} C Jp, k=1,....l;, 1 <i < my. Clearly, py,...p,, are pair-
wise disjoint. Henceforth, (Ji,...,J;) = W piand J; > ... > J,. d

On the other hand

Proposition 2.3. [13, Lemma 5.4.7] The set of Yamanouchi words with
evaluation (ma, ...,m¢), form a single Knuth equivalence class, whose repre-
sentative word is the tableau w([m4], ..., [m¢]).

From these two propositions, we find that Knuth operations on Yamanouchi
words of evaluation (my, ...,m;) are equivalent to shuffle the rows of the
tableau w([mi], ..., [my]). For instance, w =2 313 1 2121 =21 133 2
121=23 132 1 121 = (7) which are shuffles of 321, 1, 321, and 21.

Indeed not every Knuth class satisfy this property. There are two reasons:
either a shuffle of the rows of the tableau in the Knuth class can not be per-
formed by Knuth operations, and we stay out of the Knuth class, or we stay in
the Knuth class but there are Knuth operations which can not be performed
by a shuffle of the rows of the tableau in the Knuth class. For example, in
the first case, the tableau 532142152 # 543212152 = sh(5321,421,52). In
the second case, the Knuth operation 412 = 142 on a Yamanouchi word over
the alphabet [4] always implies a shuffle of the row words 4321, 21 and 1
but, on the other hand, considering the word 434121 = 432141, a shuffle
of the rows of the tableau 432141, the same Knuth operation on this word
can not be performed by a shuffle of the row words 4321, 41, since 434121 =
sh(4321,41) = 431421 # sh(4321,41).
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The dual word of w = z;...x, in the alphabet [t] is w,, 1= op(z;)...op(x1),
a word in the alphabet [t], with op(i) = ¢ — i + 1 the reverse permutation
of . Clearly, given Ji,...,Jy C [n], Ji,...,J; are indexing sets of w iff
op(Jy), ...,op(J1), with op € S,,, are indexing sets of w,.

A word over the alphabet [t] is said a dual Yamanouchi word if it is the
dual of some Yamanouchi word over [t]. Therefore, a word w with indexing
sets Ji, ..., J; is a dual Yamanouchi word iff J; >, ... >4, J;. Attending to
the characterizations of Yamanouchi words given above, we also find that

Corollary 2.4. Let w be a word with evaluation (mq,...,my), my < ... <my,
and indexing sets (Jy,...,Jt). The following conditions are equivalent:
(a) w is a dual Yamanouchi word.
(b) (J1,...,Jt) has a decomposition of the form
Ay
Af, A

AL AL AL
where AY > A5 > ... > Ak AN = |45 = ... = |AR] = my — mu,
L<k<t, withmy=0, and ATNAT=0,1<j<t, r#s.
(c) w is a shuffle of the rows of the tableau w([m], ..., [my]).

Recalling the Knuth relations (5) and (6), since x > y iff op(y) > op(x), we
find that zzy = zzy, with z <y < z iff op(y)op(z)op(z) = op(y)op(x)op(z),
with op(z) < op(y) < op(z). Therefore, we have w = w'" iff w,, = wy,, which
allows us to obtain the following characterization of dual Yamanouchi words:
Corollary 2.5. The set of dual Yamanouchi words with evaluation (my, . ..,
my), m1 < ... < my, form a single Knuth equivalence class, whose represen-

tative word is the tableau w([my], ..., [my]).
Thus, a word w with evaluation (mgq,...,ms), m; < ... < my, is a dual
Yamanouchi word iff it is Knuth equivalent to w([m], ..., [my]).

With the relation > and >,, in 2[”]7 we may give the following definition
of Littlewood-Richardson tableau [12] and opposite Littlewood-Richardson
tableau.

Definition 2.5. [2, 3, 5] Let T be a Young tableau of type (a, (my,...,m;),
¢) with indexing sets Jy, ..., J;. We say that:
(I) T is a Littlewood-Richardson (LR for short) tableau if J, > ... > J.
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(II) T is an opposite Littlewood-Richardson (LR, for short) tableau if
Jl Zop Zop Jt-

Equivalently, 7 is an LR (LR,,) tableau iff w(J/i,..., J;) is a (dual) Ya-
manouchi word. In section 5, we shall look at an LR,, tableau and a dual
Yamanouchi word under the point of view of an action of the symmetric

group.

3. Matrix realizations of Young tableaux

3.1. Smith normal form and subgroups of unimodular matrices.
Let R, be a local principal ideal domain with maximal ideal (p). In this
paper, all matrices are square and nonsingular, with entries over R,. Let
U, be the group of n x n unimodular matrices. We denote by E;; the n x n
matrix having 1 in position (4, j) and 0's elsewhere, and define the elementary
unimodular matrices T;;(z) as follows:

Tij(x) =1+ xE;;, wherei# j and x € Ry;
Tii(v) =1+ (v—1)E;, wherevisa unit of R,,.
It is obvious, that E;;E,s = 0;,Ejs, where d;, denotes the Kronecker symbol,

that is, 65, = 1 if j = r, and equals 0 otherwise. Therefore, if i # j and
r # s, we find that

Ty(@)Traly) = T + By + yEre + ayd Ei ®)

In particular, T;;(x)T;;(y) = Ti;(z +y), if ¢ # j, and the elementary matrices
Tij(x) and T,s(y) commute, whenever ¢ # s and j # .

If o € S, we denote by P, the permutation matrix having d;,(;) in position
(¢,7). Note that if [n] = {i1,...,in} = {Jj1,..sJu}, then > ;1 Eij, = Py,
where o is the permutation defined by o(ji) = ix, for £ =1,...,n.

Lemma 3.1. Let iy, ji € [n], fork =1,...,r, such that {i1, ..., 5, }0{j1, ... jr } =
(D' Then, ng = Hz:l (Zk]k>}

(ll[Tjkjk(—n) (1- Z By ) (1 + Z Euic) (1 - Z Eyi) = Pe. (9)
k=1 k=1 k=1 k=1

Proof: Attending to (8) and since {i1, ..., } N {j1,...,5-} = 0, a simple in-
duction on r shows that [[,_; T3, (1) = I + >_,_; Ei,j,- Therefore, we may
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write the first member of (9) as
,
H [Tjuk(_1)TJM(_1)Tzk]k(1)T]k2k(_1)] =
k=1
T T
= |:T]kjk(_1)( Z Ess + Eilcjk - EJMk)] - H P(’ikjk) = PE'
k=1 iRk k=1
d
Given n xn matrices A and B, we say that B is left equivalent to A (written
B ~p A) if B =UA for some unimodular matrix U; B is right equivalent to
A (written B ~p A) if B = AV for some unimodular matrix V; and B is
equivalent to A (written B ~ A) if B = UAV for some unimodular matrices
U, V. The relations ~, ~r and ~ are equivalence relations in the set of all
n X n matrices over R,,.
Let A be an n x n nonsingular matrix. By the Smith normal form theorem
(see [7], [15]), there exist nonnegative integers as, ...,a, with a1 > ... > a,
such that A is equivalent to

diag(p™, ...,p"").
The sequence a = (ay, ..., a,) by decreasing order, of the exponents of the p-
powers in the Smith normal form of A, is a partition of length < n, uniquely
determined by the matrix A. We call a the invariant partition of A. More
generally, if we are given a sequence of nonnegative integers ey, ..., e,, the
following notation for p-powered diagonal matrices will be used:

diagy(e1, ..., e,) := diag(p®, ..., p™).

Given a partition a of length < n, let A, := diag,(a). If @ = 0 is the null
partition, then Ay = I. If F' C [n], let Dp = diag,(x*), where x¥ is the
characteristic function of F, that is, x'' (i) = 1 if i € F, and equals 0 if i ¢ F.

Given a sequence of nonnegative integers m = (my,...,m;) and o € S, let

om = (Mg-1(1), ..., Mg—1(). That is, om = P,[my...my|". Tt is a simple
exercise to prove that

P,Ay=AyoP,, P;'=PI'=P, 1 and (10)

PIAP, = Ayry = diagy(ag(1), -, Go(n))- (11)

Let (my,...,m;) be a sequence of t integers in [n], and define

M; == {m € Z': m is a rearrangement of (my,...,m;)}. (12)
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Note that there exists o € S; such that o=!(my, ..., m;) is the only partition
of M;. The symmetric group S; acts on M; by place permutations of the t-
uples of M;. For each permutation o € S;, the map ¢(o) : My — M; defined
by ¢(c)(m) = om is a bijection. Thus, the map ¢ : S — Sy, defined by
¢(o)(m) = om, for 0 € S, is a group action on M;.

Definition 3.1. Given F' C [n], let M(F') be the set of n X n matrices of
the form I + X, where X = (z;;) satisfy the condition: z;; # 0 only if i € F
and j ¢ F.

Note that if m = |F| and w € S,, is such that F' = {w(1),...,w(m)} = w[m],
then PTM(F)P, = M([m]). Clearly, M([m]) is a subgroup of U, and,
therefore, M(F) as well. We also consider M,(F) = {l +pX : [+ X €
M(F)}, a subgroup of M(F).

Notice that [M(F)]" = M(F) and M(0) = {I} = M([n]).

Given F, G C [n], we define

M(F,G) .= M(F)NM(G)
and
My(F,G) ={I+pX :1+X e M(F,G)}.
Clearly, M(F,G) is a subgroup of M(F' N G), M(F), and M(G). Notice
that M(F,F) = M(F) and M,(F,F) = M,(F). We have [M(F,G)]" =
M(F,G) = M(F)N M(G); and M(0,G) = {I} = M(F,[n]).

Lemma 3.2. Let F,G,H C [n] such that F C G and H C G\ F. Then,

(1) M(F,G)M(H) = M(H)M(F,G);

(1) M(F,G)Dr = DpM,(F,G).
Proof: 1t is enough to prove the result when F' = [r] and G = [s], with
0<r<s. O
In the conditions of the lemma above, we also have [M(F,G)|" M(H) =
MH)M(F,G)|F, since H C G\ Fiff H C F\ G, and M,(F,G)Dyr =
DpM(F,G).

Given F' C [n], let

Z/{(F) = {I—I—(l’ij) Eunil’ij #Oonly ifi,j EF}.

If m = |F| and w € S, is such that F' = {w(1),...,w(m)} = w([m]), then
PTU(F)P, = U([m]). Note that U([n]) = U,. Clearly, U(F) is a subgroup
of U,,.
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Lemma 3.3. Let F,G,H C [n] such that F C G. Then,

(i) UF)M(F, G) = M(F, GIU(F);

(i4) UF)M(H) = MHDU(F), if H C F;

(iid) (UF)M(E)) (M(HUH)) = (MU ) (UE)MF)), if

H

N

F;

(iv) M(H,G)M(F\ H,G) CU(F)M(F\ H,G)M(H,G), if HC F.
Proof: For (iii), notice that, given an nxn matrix U, det(U+pX) = det(U)+
p, for every n x n matrix X. Thus, if U € U,,, U + pX is also unimodular. [J

Observe that for x € R,, A,-1,Ti;(z) ~1 Ay-1,, whenever o(j) > o(i),
Tij(p)Dr ~g Dp, and Tjj(x)Dp ~g Dp, if i ¢ F.

Theorem 3.4. Let U € U,,. Then, there exists o € S, such that U =
TP,R, where T is a n X n upper triangular matriz, having 1's along the
main diagonal, and R is a n X n unimodular matriz, with units along the
main diagonal, and multiples of p above it.

Proof: Let U = [u;;]. Noticing that every row of an unimodular matrix has
a unit, we define

Jn = mazi<j<p{j : upj is a unit}.

Multiplying U, on the left, by suitable elementary matrices Tj,(x), k < n,
we may use U,j, as a pivot to eliminate all nonzero elements of column j,
above row n. Observe that all these matrices are upper triangular with 1's
along the main diagonal. Denote the product of these elementary matrices
by T,.

By columns operations, we may use u,;, to eliminate all nonzero elements
of row n to the left and right of u,;,. To eliminate the elements to the left
of u,;,, we use lower triangular matrices with 1's along the main diagonal,
and to eliminate the elements to the right, we use upper triangular matrices
whose non diagonal entries are multiples of p. Then, multiplying on the right
by a suitable diagonal matrix, we divide column j, by w,; . We denote the
product of this elementary matrices by R,.

The resulting matrix U, := T,,UR,, has all entries of row n and column j,
zero, except the entry (n, j,), which is 1.

The process is now repeated with row n — 1 of U,, obtaining U, 1 :=
T, 1T, UR, R, 1 with all entries of rows n,n — 1 and columns j,, j,_1 zero,
except the entries (n,j,) and (n — 1, j,—1) which are 1.
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Continuing the process above, we obtain 11..T,UR,,.. Ry = Ej,+...+ Ey;,
with {ji1,...,Jn} = [n]. Define 0 € S, by o(j;) =4, 7= 1,..,n. Then P, =
Eij, + ...+ Eyj, and U = TP,R, where T = T;1..T;" and R = R;'...R;,!
are as requested. ]

Theorem 3.5. Let U € U,,. Then, there exists o € S, such that U =
TP,QL, where T is an n X n upper triangular matriz, with 1's along the
main diagonal, Q is an n X n upper triangular matriz, with 1's along the
main diagonal, and multiples of p above it, and L is an n X n lower triangular
matriz, with units along the main diagonal.

Proof: Given an unimodular matrix U, by theorem 3.4, there exists ¢ € S,
such that U = TP, R, where T is is an n X n upper triangular matrix, with
1's along its main diagonal, and R is an unimodular matrix, with units along
the main diagonal, and multiples of p above it.

Attending to the form of matrix R, the application of theorem 3.4 to R
gives R =T'I R, where T" is upper triangular, with 1’s in the main diagonal,
and multiples of p above it, and R’ is lower triangular matrix, with units
along the main diagonal. So let Q := 7" and L := R'. d

3.2. Matrix realizations of Young tableaux. Now, we analyze products
of matrices of the form A,UDy,, where 1 < m < n and U € U,. By the
previous theorem, we may write U = T P,QQL. Since T is upper triangular
with 1's along the main diagonal, and L is lower triangular with units along
the main diagonal, we have

Az;LUl)b ~ AanQDb7

for any partition b of length < n. Thus, without loss of generality, we may
assume that U = P,(Q, where () is upper triangular with 1’s along the main
diagonal and multiples of p above it, and o € S,,.

Lemma 3.6. Let a be a partition of length < n, and F a subset of {1,...,n}.
Then, there exists a permutation o € S, such that o = o', a + x"") is a
partition, F' > o(F) and o(a) = a. In particular, if a = (ay,...,a,) is such
that a; > ... > a,, a+ X" is always a partition.

Proof: Straightforward. O

In order to avoid cumbersome notation, we write o[m] := o([m]).
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Theorem 3.7. Let U € U,, and 1 < m < n. Given a partition a of length
< n, there exists 0 € S, such that AU Dy, ~ diag,(a+x°™), where a4y
18 a partition.

Proof: Let U = P,Q, with ¢ € §,, and () an upper triangular matrix, with
1’s along the main diagonal, and multiples of p above it. We may write

_ By pBs
Q - |: 0 B3 )
where By and Bs are, respectively, m x m and (n —m) x (n — m) upper
triangular matrices, with 1’s along its main diagonal, and multiples of p
above it. Thus, we have

(13)

AanQD[m] = AGPUD[M]QI; where QI — |: Bl B2 :| )

0 Bs
Therefore, AaPJQD[m] ~R Aozpa'l)[m] ~R AaDo[m] = diagp(a + Xg[m]).

If a4 " is not a partition, then by previous lemma and conditions (10),
there exists a permutation p such that P,A,P, = A, and a + XMl s a
partition. Hence, A,U Dy, ~ diagy(a + X, O
From this proof, it follows
Corollary 3.8. Let U € U, and 1 < m/ < m < n. Let a' be the invariant
partition of AUDy,, and a' the invariant partition of AUDp,. Then,
a' Ca and d'/a is a vertical strip.

Given a sequence of n X n nonsingular matrices Ay, By, ..., By, where A
has invariant partition a, and B, has elementary invariant partition (1),
for r =1,...,¢, it holds

AgB1...By ~ AyU1 Dy \Us Dy U Dy k=1, .00t (14)
for some n x n unimodular matrices Uy, ..., U;. Therefore, by the application
of the previous theorem, there exist o1, ..., 0y € S,, such that (14) is equivalent
to the diagonal matrix

AuDyg )+ Doymy) = diagy(a + ol 44 XU’“[""’“]), k=1,..t
This leads us to the notion of matrix realization of a Young tableau.
Definition 3.2. Let 7 = (a°,a!,...,a") be a Young tableau of type (a, (m,

ey M), ©), with I(c) < n. A sequence of n X n nonsingular matrices Ay, By,
<y By is a matriz realization of T (or realizes T ) if:



ACTION OF THE SYMMETRIC GROUP ON SETS OF SKEW-TABLEAUX 19

I. For each r € {1,...,n}, the matriz B, has invariant partition (1™,
On—m,').

II. For each r € {0,1, ...,t}, the matriz A, := AgB1 ...B, has invariant
partition a”.

Observe that, according to theorem 3.7, given a sequence of n X n nonsin-
gular matrices Ay, B1, ..., By, where Ay has invariant partition a, and B, has
elementary invariant partition (1™, 0"""™), r = 1,...,t, Ag, By, ..., By is a ma-
trix realization of one and only one Young tableau of type (a, (m, ..., my), c),
where c¢ is the invariant partition of A¢Bji...B;. In particular, I, By, ..., B; is
a matrix realization of a Young tableau of type (0, (mq, ..., m¢),b). Thus, it
is natural to give the following definition.

Definition 3.3. Let 7 = (a°dl,...,a") and H = (0,b',...,b") be Young
tableauz of types (a,(mq, ...,my), ¢) and (0, (mq,..., my), b), respectively,
where I(c¢) < n. We say that a sequence of n X n nonsingular matrices
Ag, By, ..., By is a matriz realization of the pair of Young tableaux (7T, H) (or
realizes (T, H)) if:
I. For each r € {1,...,t}, the matriz B, has invariant partition (1™,
Onfmr)‘
II. For each r € {0,1, ...,t}, the matrix A, == AyBy...B, has invariant
partition a”.
III. For each r € {1, ...,t}, the matriz B;...B, has invariant partition b".
(T,H) is called an admissible pair of tableaux.

Clearly H = (O, (1m0, 322 (1), ..., Z;zl(lmi))) is the only Young tableau

of type (0, (my, ...,my), Sor_, (1)), and its indexing sets are [my], ..., [my]. For
the remainder of this paper, we shall consider pairs of Young tableaux (7, H),
where H is this tableau. Thus, in order to verify property I11, it is sufficient
to show that Bj...B; has invariant partition (1™) 4 ... + (1™).

Given a matrix realization Ay, By, ..., By of a pair of Young tableaux (7', H),
there are, in general, many sequences of matrices Sy, ..., .S; realizing H and
such that By...B; = S1...5;. When m; > ... > my, it was proved in [2]
that Ay, Sy, ..., St is also a matrix realization of (7,H). The next theorem
generalizes this result to any sequence (myq, ...,my).

Proposition 3.9. [Hermite normal form| Given an n xn nonsingular matriz
A, there exists a matriz U € U,, such that AU is lower triangular.
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Proof: See [15]. O

Theorem 3.10. Let Ay, By, ..., By be a matriz realization of the pair (T,H).
Moreover, assume that we are given n X n matrices S, ..., Sy such that I, Sy,
..., Sy realizes H and By..B; = S1...5;. Then Agy, S1, ..., S is also a matriz
realization of (T,H).

Proof: We may assume without loss of generality that B = B;...By = 51...5;
is in Smith normal form B = diag,((1") + ... + (1™)). We claim that there
exist unimodular matrices Wy, ..., W; such that Wy = W; = I and

W, B;W; is the Smith normal form of B;. (15)

By the Hermite normal form theorem, there exist unimodular matrices
Wi, ..., Vs_1 such that BV, Vl_lBsz, e vtht_lvt_l are lower triangular.
It follows that V;jBt is lower triangular as well. So, we may assume that
each B is lower triangular and that its diagonal D; = diag(B;) has powers of
p along the main diagonal. Thus, D; contains m, elements equal to p and the
others equal to 1. As D;...D; = diagp((l"“) +..+ (1"”))7 we find that D;
is the Smith normal form of B;, for i = 1,...,t. Therefore we may find lower
triangular unimodular matrices 711, ...,7;—1 in such a way that B17y = Dy,
Ty 'BoTy = Do,.... T, 4By 1T;—1 = D;_1. This forces T, B, = D;. Our claim
(15) is proved.

We may apply the same argument to the S/s. Therefore AyB;...B, and

AyS1...S, are right equivalent, for r =1, ..., . O
Let I, By, ..., B; be a matrix realization of H. Since By...B; ~gr UDjy, )... Djp,)
for some n x n unimodular matrix U, and I,U Dy, j, ..., Dy, is also a matrix

realization of H, it follows from previous theorem:

Corollary 3.11. The following conditions are equivalent.

(a) (T,H) is an admissible pair.
(b) There exists U € U, such that Ay, UDyy, 3, ..., Dy,
(c) There exists U € U, such that A, UDy, 3, ..., Dy,

| realizes (T,H).

] realizes T .

t

t

Therefore, when we are referring to a matrix realization of (7, H) we may
assume, without loss of generality, that it is of the form Ay, UDy,, 1}, ..., D)
for some U € U,,. Thus, often, we shall say that U realizes 7.

Next, we analyze the invariant partitions associated with product of ma-
trices AU Dpy,j Diy,)s where U € Uy, and my, my € [n].
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Proposition 3.12. Let U € U,, and mq,mg € [n]. Then, there ezist o € S,
and I + X € M([mi],[ma]), such that AyUDypy, 1Dy ~ AoPoDipy (I +
X)Dypy) ~ AgU Dy Dy for every partition a of length < n.
Proof: In view of the proof of theorem 3.7, we may write

AaUD[ml]D[mz] ~ AaPUD[ml]Q/D[mg]

where @' is as in (13). Without loss of generality, assume m; > my. We may
write the matrix

Ay pAy Az
Q=10 A 4 |,
0 0 Ag

where Ay, ma X ma, Ay, (M1 —ma) X (M1 —mg), and Ag, (n—mq) X (n—mq),
are upper triangular matrices with 1’s along its main diagonal and multiples
of p above it. Hence,

Imz 0 Xl Al pAQ 0
Ql = 0 Imlfmg 0 0 A4 AS 5
0 0 Infml 0 0 A6
I+X Q"
where X; = A3Ag', I+X € M([my],[m2]) and Q" is unimodular. Therefore,
AaPoD[ml]Q/D[mg] = AJFPD ml](I + X)Q//D[mz]

[
~R AaPaD[ml](] + X)D[mz]
= AaPUD[mg]D[ml]\[mz](I + X)D[mg]
= AaPaD[mg](] + X)D[nz,l]'
(]
According to this proposition, it is enough to consider products of matrices
A.P,(I + X)Dp, with I + X € M(F).
Definition 3.4. Given o € S,,, let {i1,...,i,} = [n] such that [n] = {o(i1) >
.>0(in)}. Wedefineog €S, byal(ix) =k, fork=1,..,n.
We have o (i) > o(j) iff 5(j) > o(i). Thus, given A, B C [n] with |A| = |B|,
we find that o(A) > o(B) iff 5(B) > d(A).
Lemma 3.13. [3] Let F C [n], [+ X € M(F) ando € S,,. Then, there exist
{it,..., iy} € F and {j1,....Jr } C [n] \ F, with o(is) > o(js), for s =1,...,r,
and o(iy) > ... > o(i,), such that
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(1) AaPU(I + X)DF ~ AGPU(I + 22;1 Eikjk)DFy
(ii) A P5(1 + XT)DF ~ AaP&(I + Z;:l Ejkik)Dfﬂ
for every partition a of length < n.

Proof: Fix a partition a, arbitrarily, of length < n. Recall that P A, P, =
diagp(ag(l), ...,ag(n)). Without loss of generality, we may assume that all
nonzero elements of X are units. Let x;; be the unit in row ¢ € F, and
column j ¢ F of X. If 0(j) > o(i) we use 1, in position (j,7) of I + X, as
a pivot to zero out x;; by row operations. Therefore, we may assume that
I+ X € M(F) satisfy x;; # 0 only if x;; is a unit and o(i) > o (7).

If X =0, then A,P,(I + X)Dp = A,PyDp.

If X #£0, let

o(i1) =max{o(t) : i € F and 35 : x;; # 0}
and
o(jr) = min{o(j) - § ¢ F and zy; # 0},

Clearly, o(i1) > o(j1). Also, if i € F and z;; # 0, we have o(i1) > o(i).
Then, we use the unit in position (i1, 1), say z1, as a pivot to zero out the
remaining entries of row i; and afterwards the remaining entries of column
j1in X. Note that iy € F and j; ¢ F.

Therefore, (I + X)Dp ~p T(I + X1 + 21E;,;,)Dp, where z; is a unit, T' is
a product of elementary matrices Tj;, (z) such that o(i1) > o(i), [ + X; €
M(F), and X; = (zj;) has row 71 and column j; null, and z;; # 0 only if zj;
is a unit and o (i) > o(j).

If X; = 0, the reduction process is finished. If not, we repeat the above
process with the matrix X;. Eventually, after a finite number of steps, we
obtain

(I+X)Dp ~g T'(I+zE;j, + ...+ 2.E;)Dp,

where z1, ..., 2, are units, 41, ..., 7, are distinct elements of F', and 71, ..., j, are
distinct elements of {1, ...,n}\ F such that o(i5) > o(js), for s = 1,...,r, and
o(i1) > ... > o(i,y), and T" is a product of elementary matrices Tj;(x) such
that o(i) > o(k).

Let Y := diag(yi, ..., yn), where ys = z; ' if s € {iy,...,i,}, and y, = 1 if
s & {i1,...,ir }. Then

Y_l(l -+ Eiljl + ...+ Eirjr)Y =1+ ZlEi1j1 + ..+ Z7’Ei,.j,.7
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and we may write

Aan([ -+ X)DF ~R AanT/Y(I + Ei1j1 + ...+ Ei,-j,-)DF~ (16)
Since T" is a product of elementary matrices Tj;(x) with o(i) > o(k), using
row operations, we find that A,P,T" ~; A,P,. Therefore,

(16) ~r Aan([ + Ei1j1 + ...+ Ei,.j,.)DF~
Finally, recalling that I+XT € M(F), and that o(i) > o(j) iff 5(j) >

we may repeat on A,P;(I + X)T D the operations performed on A, P, (I +
X)Dp, to get equation (7). In this way, we obtain equation (7). O
Notice that in this lemma, £ = (i1j1)...(¢rjr) € S, satisfy o(F) > o&(F).
This leads us to the following definition.
Definition 3.5. Let F,J C [n] and 0 € S, such that |F| = |J| = m and

o(F)>J. Lete € Sy, be a witness of o(F) > J. We define the n x n matriz
S(o(F),J,0,¢€), whose entry s;; satisfy

{ L L ifo(i) € o(F)\ J and Ay j-0(i) = o(3)

0 , otherwise.

ij —

When € = id, we write S(o(F), J, o).

Clearly, I + S(o(F),J,0,e) € M(F), and if J = o(F), S(o(F), J,0) =
0. Notice that for each witness ¢ € S, of o(F) > J, in the conditions
of definition 2.2, there exist {i,...,3,} C F with o(iy) > ... > o(i,), and
{710} €[]\ F with o(is) > o(js), for s = 1,...,r, and o(je1)) > ... >
0(Je(r)), such that o' X\y(p) j.0 = (i11)...(irjr). Therefore, S(o(F), J,0,¢) =
> k=1 B
Lemma 3.14. In the conditions of the definition above, put S. = S(o(F),
J,0,¢). Then, we have always

AGPU(I + SE)DF ~ AGPUP(U
~pr diag,(a+ X‘]),

) Dr

o (F), 0,0

for every partition a of length < n. In other words, the invariant partition
of AyPy(I + S:)Dp does not depend on the witness € of o(F) > J.

Proof: Fix an arbitrary partition a. Recall that I + S. € M(F). Thus, we
have

AuP (I + S)Dp ~ pAP,(I+S8.)Dp(I — pST) (17)
= A P, (I+S)(I—SHDp. (18)
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Consider now the permutation o' Ay(r) 7.0 = (i171)-..(irjr), and note that,
by lemma 3.1, we have

P(O'fl)\‘]ﬁ(p)wed) = Z(I - Sg)(I + Se)(I - Sg)’

where Z = [],_; Tj.j.(—1). Since o(is) > 0(js), s = 1,...,r, we may use row
operations to zero out all nonzero elements of ST, and obtain

AP, Z(I — ST) ~p AP,
Therefore, we have
AePyPioiy, g ,.0Dr = AP, Z(1 =S+ S)(I—ST)Dp
~r AP (I +S) (I — S Dp. (19)
By (17) and (19) we find that
AyPo(I+ X)Dp ~ AuPps, .00 DE ~r diagy(a+ x7).
O

Theorem 3.15. Given F C [n], I + X € M(F), and 0 € S,,, there exists
J C [n] with |J| = |F| and o(F) > J, such that, by putting S = S(co(F), J, o),

AP, (I +X)Dp ~ AP, (I+S)Dp
~ APy Py, ,00DF
~r diagy(a+x7),
for every partition a of length < n.

Proof: Fix a partition a. Let m := |F|. By lemma 3.13, there exist {i1, ...,4,} C
F and {j1,....75-} € [n] \ F with o(is) > o(js), for s = 1,...,r, and o(i;) >
... > o(iy), such that

AP,(I +X)Dp ~ APy(I + Ejj, + ...+ E; j,)Dp.
Let J := |o(F)\ {U(il),...,a(i,‘)}} U{e(j),...,0()}. Clearly, o(F) > J,
and the permutation € € S,, such that o(j.1)) > ... > 0(j() is a witness of

o(F) > J. Thus, Ay(p),sc = (0(i1) 0(j1))...(c(ir) 0(jr)), and, by definition of
S: = S(o(F),J,0,¢), we obtain I +S. = I + Ej ;, + ... + E; ;.. Therefore,

APy (I + X)Dp ~ AP, (I + S:)Dr ~ diagy(a + x”).
JFrom previous lemma, we may choose € = id, hence
AoPy(I + X)Dp ~ AyPy(I + S)Dp ~ AyPy(I + S)Dr ~ diagy(a+ x).
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O

Observe that if a + x” is not a partition then, by lemma 3.6, there exists

a permutation p such that A,D; ~ diag,(a + X“(J)) and o(F) > J > p(J).
Therefore, we obtain:

Corollary 3.16. In the conditions of the theorem above, given a partition a,
let a + x” be the invariant partition of AyP,(I + X)Dp. If d' is a partition
of length < n such that either o’ /a or a/a' is a vertical strip, then there
exists pu € S, such that the invariant partition of Ay P,(I + X)Dp is given
by a' + "), where J > u(J).

This corollary will be useful in the next section. As an application of the
previous theorem, we shall characterize the tableaux realized by a sequence
of matrices of the form Ay, UDy, ), ..., Djp,), Where n > my > ... > my > 1.

Proposition 3.17. [3] Let U € U, and n > mqy > mg > 1. Then A, U
Diyn,)s Dim,) realizes an LR tableau of weight (my, ms).

Proof: By lemma 3.6 and proposition 3.12, there exists ¢ € §,, such that
AaUD[ml]D[mg] ~ AaPUD[ml](I + X)D[mg] = AaD(r[ml]PtT(I + X)D[mg] (20)

with I 4+ X € M([my], [ms]) and a + x“I™! a partition. Let J; := o[m].
By theorem 3.15, there exists Jy C [n] with o[msy] > J; and | J2| = mg, such
that
(20) ~ diagy(a+ x" +x™),
with a + x”t + x”? is a partition.
Finally, note that J; = o[mi] > o[ms] > Jo. Then Ay, UDyy,,), Dippy) is a
matrix realization of the LR tableau 7 = (a,a + x”',a + x”* + x72). d

Next result generalizes the proposition above.

Theorem 3.18. [3] Let U € U, and n > my > ... > my > 1. Then
Aa,UDpy,y, ..., Dy, realizes an LR tableaw of weight (my, ..., my).

Proof: By induction on t. For ¢t = 1 there exists a permutation ¢ € S, such
that A,UDy,,) ~ diagy(a+ x°™l) where a + ™! is a partition. Therefore,
Ay, UDyy,, realizes the tableau 7 = (a,a + x°l™1), which is an LR tableau.
The case t = 2 was proved in previous lemma.

Let t > 2. By induction, the sequence AU, Dy, ) -y Dpy,_,) 18 @ matrix
realization of an LR tableau with indexing sets J; > ... > J;_1. Therefore,
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there exists an n X n unimodular matrix V such that
AuUDyp .. Dign, 1Dinyy ~2 AV Dip, 1 Djp

where Al = diag,(a + x”* + ... + x72).

By the previous lemma, A1VD[,,,Lt71]D[mt] realizes an LR tableau 7’ with
indexing sets J; 1 > J;. Therefore, A,U Dy, ... Dy, Tealizes the LR tableau
T = (a,at,...,a"), witha' =a+ x' + ... + X/, fori=1,..,t. O

In view of this result, we conclude that a pair of Young tableaux (7, H)
of weight (my,...,m;), where my > ... > my, is an admissible pair only if 7
is an LR tableau. In [2, 3] was also proved that (7,H) is an admissible pair
if 7 is an LR tableau. We shall recover the ”if” part in the last section for
t = 2,3. In [1], using a different characterization of LR tableau, the "if” part
was proved as well.

3.3. Matrix extensions. Let X be an n x n matrix, and denote by R(X)
the set of the indices of the non null rows of X, and by C'(X) the set of the
indices of the non null columns of X. Given an n X n matrix Z, we say that
Z is an extension of X if there exists an n x n matrix X' = (z};) with }; # 0
only if z;; = 0 such that Z = X + X’. When Z = X + X’ is an extension
of X such that C(X)NC(X') =0 [R(X) N R(X") = 0], we say that Z is a
column [row] extension of X.

Let FF C[n|, 0 € S, and I + X € M(F). By the application of theorem
3.15 and lemma 3.6, we conclude that, for every partition a, there exists
J C [n] such that the invariant partition of the product of matrices

AuP,(I+ X) Dy (21)

is a + x”/. In the following results, using lemma 3.13, we analyze the rela-
tionship between the invariant partition of the product (21) and the product
AP, (I + Z)Dp, with I + Z € M(F) and Z an extension of X. We start
with the case where Z is a column extension of X.

Lemma 3.19. Let F C [n], {i1,...,ir} € F, {jo,j1,-7r} C [n]\ F and
o € S, such that o(ix) > o(jr), k = 1,...,r. Consider a matriz X' such
that C(X') = {jo} and R(X') C F. Then, there exist {v1,...,us} C F and
{fla---vf-s’} - {joajla"'7j7‘}f with U(vk) > U(fk)7 k = 1?“'757 and Uf(F> >
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ol (F), where & = (i1j1)...(¢rJr) and & = (v1f1)...(vs fs), such that

Aozpa'(] + Z Eijk)DF ~ diagp(a + X”f(F))
k=1

and

AL,(I+ " Eij + X)Dp ~ APo(I+ Y Eyp,)Dr ~ diagy(a+ x™F),
k=1 k=1

for every partition a of length < n.

Proof: Fix a partition a. The proof will be handle by induction on the number
m of nonzero entries of X’. Let X = ", _; E;,j, and notice that, by theorem
3.15, we have A, P, (I + X)Dp ~ diag,(a + x°¢")), where &€ = (i1j1)...(i,,).-
Without loss of generality, we may assume that all nonzero entries of X’ =
(xij) are units, and that z;;, # 0 only if (i) > o(jo), with ¢ € F and jy ¢ F.
Suppose that m = 1, that is, X’ = 2z E,j, for some unit z. Clearly,
o(ig) > o(jo). If ip ¢ R(X), then by theorem 3.15, we have

AuPo(I+ X +X')Dp = APp(I+ Y Eyj,) D ~ diagy(a + ")),
k=0

where & = (iojo)(i1j1)-..(irjr) satisty o&(F) > o&/(F). If iy € R(X), without
loss of generality, we may assume that iy = ;. Now, either we have o(jy) >
o(j1) or a(j1) > a(jo)-

If o(j0) > o(j1), since j1, jo ¢ F, we may eliminate zy by column operations,
using the unit in position (i1, j1) as a pivot, obtaining A, P,(I+ X +X")Dp ~
A.P,(I + X)Dp. Clearly, € =¢.

If o(j1) > o(jo), since j1,j0 ¢ F, we use zp as a pivot to eliminate, by
column operations, the unit in position (i1, j1). Thus, by theorem 3.15, we
find that

AuPo(I+ X + X"\Dp ~ NuPo(I + Eijy + Y Eij) D ~ diagy(a + "),
k=2

where & := (i1Jo)(i2J2)...(irjr) satisty o&(F) > o/ (F), since o(j1) > o(jo)-
Now, suppose m > 1. Let X’ = (z;;), and denote by z, the unit in position

(io, jo) of X', where o(ig) := maxz{o(i) : i € F' and z;;, # 0} . If igp ¢ R(X),

then we may use 2y to eliminate, by row operations, all entries of column jy
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of X', obtaining

AuPy(I+ X + X')Dp ~ APo(I+ Y Eyj,)Dr ~ diagy(a + 7<),
k=0
where & = (igjo)(i11)-.(irjr) satisfy o&(F) > o& (F).
Assume now that ig = iy € R(X). If o(jo) > o(j1), we use the unit in
position (i1, j1), as a pivot, to eliminate zy by column operations. Thus, for
every partition a, we have

APy(I+ X + X"\ Dp ~ APy (I + X + X")Dp, (22)

where X" has m — 1 nonzero entries in column jy, and zero elsewhere. By the
inductive step and theorem 3.15, there exist {vy,...,vs} C Fand {f1, ..., fs} C
{Jos 71y -y Jr } With o(vg) > o(fi), k=1, ..., s, and 0§(F) > o0& (F'), such that

S
(22) ~ AP, (I + Z Ey 1) Dr ~ diagy(a + 7)),
k=1
where € = (v1f1)-..(v,.):
If o(j1) > o(jo), we use z to zero out, by column operations, the unit
in position (i1,71), and all entries of column j, of X', by row operations.
Therefore, we obtain

AuPy(I 4+ X 4+ X')Dp ~ APy (I + Eiyj, Z Eij, + X")Dp, (23)

where X" has m — 1 nonzero entries in column j, and zero elsewhere. Notice
that, by theorem 3.15, Ay Py (I + Eiyjo + 31— Eiji) Dr ~ diagy(a+ x°¢' ),
where & = (i1jo)(i2j2)...(irJr) satisfy o&(F) > o0& (F). Then, by the induc-
tive step, there exist {vy,...,vs} C F, and {f1,..., fs} € {Jjo,j1,..., Jr} with
o(vg) > o(fi), k =1,...;s, such that o{(F) > o0& (F) > o&"(F) and

(23) ~ AP, (I + Z By 4.)Dr ~ diagy(a 4 "),
k=1

where g” = (vlfl)...(vsfs). O
Theorem 3.20. Let F C [n] and o € S,,. Let I + X, 1+ Z € M(F) such
that Z is a column extension of X. Then, there exist J, J' C [n] with J > J'
satisfying

AuPy(I 4+ X)Dp ~ diagy(a+ x7),
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APy (I + Z)Dp ~ diagy(a + x”),
for every partition a of length < n.

Proof: Fix a partition a, arbitrarily. Since Z is a column extension of X, we
have Z = X + X’ such that C(X) N C(X’) = 0. Without loss of generality,
we may assume that all nonzero entries of X and X’ are units. As in lemma
3.13, using row operations, let us zero out the elements x;; of X and J:Qj of
X' such that o(j) > o(i).

Using the decomposition, of lemma 3.13, on matrix I + X, there exist {i1,
oy i} € [n] and {j1,...,5:} C [n] \ F such that o(ix) > o(ji), k = 1,...,7,
o(iy) > ... > o(i,), and

AuPo(I+ X)Dp ~ AyPo(I + Y Eiyj,) D (24)
k=1
By theorem 3.15, we find that (24) ~ diag,(a+x"), where o(F) > J = 0&(F)
with & = (i1j1)...(4,jr). We may repeat on I + X + X' the operations just
performed on I 4+ X to get (24). So we have

AuPy(I+ X + X')Dp ~ APo(I+ Y Eyj, +Y)Dp, (25)
k=1
where the matrix Y satisfy R(Y) C F and C(Y)NC(X) = 0.
We will prove, by induction on the number m := |C(Y)], the existence of

a set J' C [n] such that J > J' and (25) ~ diag,(a + x”).

When m = 1, the result was proved in proposition 3.19. Suppose now m >
1. Let jo € C(Y') and consider the matrix Y’ obtained from Y by replacing all
nonzero entries, outside column jy, by zero. Again, by proposition 3.19, there
exist {v1,...,vs} € F and {fi,...., fs} C {Jo, J1, -, jr} with o(vy) > o(fr),
k=1,..s, and J > o0& (F), such that

AuPoll+y " By +Y)Dp ~ APy (I 4y Euyp) Dp ~ diagy(a+ x™ ™),
k=1 k=1
(26)
where &' = (v1 f1)...(vs fs). We may repeat on I+, _; E;,j,+Y the operations
just performed on I + >, E;,;, + Y’ to get (26). Therefore, we obtain

(25) ~ AuPy(I+ Y Eyy +Y")Dp, (27)
k=1
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where Y satisfy C(Y") N {f1,..., fs} = 0 and |C(Y")| = m — 1. Applying
the inductive step to equations (26) and (27), there exists J' C [n] such that
(27) ~ diagy(a + x”') and J > o€ (F) > J'. O

Next, we prove the analogous of the theorem above, in the case, of a row
extension of X.

Theorem 3.21. Let ' C [n] and 0 € S,,. Let [ + X, I+ Z € M(F) such
that Z is a row extension of X. Then, there exist J,J' C [n| with J > J'
satisfying
AP, (I + X)Dp ~ diagy(a+ x7),
AoPy(I + Z)Dp ~ diagy(a + x”),
for every partition a of length < n.
Proof: Let a be an arbitrarily partition. Since Z is a row extension of X, we
must have Z = X + X', where R(X)NR(X’) = 0. Note that [+ X", I+ X +
XT e M(F) with C(XT)nC(XT) = (. In view of the proof of theorem
3.20, there exist £, & € S, such that
AuPs(I + XT)Dy ~ AyPs Pe Dy ~ diagy(a + x°¢P))
and
AgPs(I+ X" + X\ Dg ~ AyPsPo Dy ~ diagy(a+ "¢ 7)),
with G¢(F) > 5¢(F). Thus, we have 6¢/(F) > G¢(F), and, by the definition
of & (definition 3.4), we find that o&(F) > o&(F). Finally, recall from (7)
and (i7) of lemma 3.13, that the permutations &, £’ are such that
AuP,(I + X)Dp ~ NP, P:Dp ~ diagy(a + x7)),
and
AP, (I + X 4+ X'\ D ~ AyP, PaDp ~ diagy(a + ¢ ).
]

Next theorem states the relationship between the invariant partition of the
product of matrices A,P,(I + X)Dp and A,P,(I + Z)Dp, when Z is an
extension of X and I + X, I +Z € M(F).

Theorem 3.22. Let ' C [n] ando € S,,. Let [+X,I+7Z € M(F) such that
Z is an extension of X. Then, there exist J, JJ' C [n| with J > J' satisfying

AP, (I + X)Dp ~ diag,(a + x”),
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AoPy(I + Z)Dp ~ diagy(a + x”),
for every partition a of length < n.

Proof: Fix a partition a. Since Z is an extension of X, there exists an n x n
matrix X’ such that Z = X + X'. Let Y be the matrix obtained from X' by
replacing all entries z}; with i ¢ R(X) by zero. Thus, I + X +Y € M(F)
and C(Y) N C(X) = 0. By theorem 3.20, there exist .J,.J C [n] such that
J>1,

A P,(I + X)Dp ~ diagy(a + x7)

and

AJPy(I + X +Y)Dr ~ diagy(a+ x”).
Let Y/ := X’ — Y and notice that R(Y') N R(X +Y) = 0. Therefore, by
theorem 3.21, there exists J' C [n] with J > J > J’ such that

AuPy(I+ X +Y +Y')Dp ~ diagy(a + x”).
0

Notice that if, in the theorem above, either a + x’ or a 4+ x”’' is not a
partition then, by lemma 3.6, there exist permutations u, i’ € S, such that
diagy(a + x7) ~1 diag,(a + x") and diag,(a + x”') ~1 diag,(a + x*'")),
with a+ x*/) and a+ x*'/) partitions, and satisfying J > u(.J), J' > 1/ (J'),
and pu(J) > p/(J'). Therefore, without loss of generality, we may assume
that the sets .J,.J" are such that a + x”/ and a + x” are partitions.

Corollary 3.23. Let U € U,, and 1 < mg < my < mq < n.

(i) If Ji, Jo and Fy, Fy are the indexing sets of AU Dy, .y Dy, and AU Dy,
Dy, respectively, then Jo > Fy.

(i) If J1, Jo and Fy, Fy are the indexing sets of AU Dyyyyy Dipnyy and AU Dy,
Dy, respectively, then Jo > Fy.

Proof: We may assume U = P,(Q), where ¢ € §,, and () is an upper trian-
gular matrix, with 1’s along the main diagonal, and multiples of p above
it. Without loss of generality, assume that a’ := a + x°I™! is a partition,
1=1,2,3.

(1) By proposition 3.12, we may write

AGPUQD["“]D[,%] ~ diagp(al)Pg(] + X)D[",B] ~ diagp(al + XJz),
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where I + X € M([m4], [ms]), and
AoPyQ Dy Dy ~ diagy(a®)Pyr(I+Y +Y') Dy ~ diagy(a® + x™), (28)

where I+Y +Y" € M([ma], [ms]) satisty R(Y’") = R(X), C(Y’) = C(X), and
yij = 0, y; = xy;+p for all (i, j) € R(X) x C(X), where X = (z;5), Y = (y;5)
and Y = (y;;). By column operations, we may eliminate all multiples of p
in I +Y 4 Y’ and obtain

(28) ~p diag,(a®)Pr(I +Y + X)Djpy).

By corollary 3.8, a!/a? is a vertical strip. Then, by corollary 3.16, the in-
variant partition a®+x” of diag,(a®) P,(I+X) Dy, satisty J, > J. Applying
now theorem 3.22, we have J > F5.

(17) Easy calculations, following the proof of proposition 3.12, give

AUD)yy Dy ~ diagy(a®) Py(I + X) Dy ~ diagy(a® + x7),
where I + X € M([ms], [m]), and
ALLUD[mQ]D[ml] ~ diagp(ag)Po(I + X + X/)D[ml] ~ diagp(a2 + XFQ),

where [ + X + X' € M([mg], [m1]) satisfy R(X)N R(X") = 0.

Again, by corollary 3.8, a/a? is a vertical strip. Then, by corollary 3.16,
the invariant partition a® + x”7 of diag,(a®)P,(I + X)Dy,,) satisfy J, > J.
Finally, by theorem 3.22, we have J > F. O

4. The main results

Let ¢ > 2 and consider the transpositions of consecutive positive integers
si=(ii4+1), 1 <i <t—1. Denote the identity by sy. The symmetric group
St, t > 2, is generated by these t — 1 transpositions which satisfy the Moore-
Coxeter relations: s? = sg, s;5; = 58, if [i —j| # 1, and s;8;415; = Si+15iSi+1,
1<i<t—1

The elements of S;, ¢ > 2, can be written as words in the alphabet
{51, ..., 81-1}. We define S; recursively:

81 - {So},
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w
St—1W

S, = St28t 1w, W E Sp1 if t > 2.

)

5189...5t—1W

We call to these presentations of the elements of &;, canonical words. For
example, if ¢ = 2 we have Sy = {s¢,s1}, and if ¢ = 3 we have S3 =
{80781,82,818278281,818281}.

Given m = (mq,...,my) € M; (12), we let D, denote the sequence of
diagonal matrices

Dy, == (Iv D[ml]a D[ml]D[mg]v ey D[ml]D[mQ]---D[mt])a
and define the set of all these sequences, with m running over M,
T]wt = {Dm T m e Mt}

Let o0 € S; such that o~ 'm is the partition of M;. The sequence D,, re-
alizes the unique tableau H, = (0, (1™), 327 (1), ..., 321 (1)) of type
(0, (m17...,mt)72221(1’”i)). We may identify Ty, with the set {H, : 0 €
Si}, the set of tableaux of shape the conjugate partition of M; and words
w([mal, ..., [my]), with m running over M;.

The symmetric group S; acts on M; by place permutations of the tuples.
The map v : §; — Sr,, defined by (s;)(Dy) = Dy, for 0 <i <t —1 and
m € My, is a group action on Tj;,. Thus the action of place permutations on
M, is translated to T}y, by place permutations of the columns of the tableaux
in {H, : 0 € §}. The map O;(H,) = Hs,p, 1 < i <t —1, defines an action
of the symmetric group S; on {H, : 0 € S;}.

For example, if m = (4, 3) the tableaux realized by Ty, = { Dy, Ds,m} are

1
1

Hso - 1 ’ (29)
1

and, if m = (4, 3,2), the tableaux realized by
T]Wg - {Dma Dslmy D.syn,a Dslszmy D.9231'rrL7 D.slsz.slm}



34 0. AZENHAS AND R. MAMEDE

are
1 2 3 123 1 2 3
1 2 3 123 1 2 3
HS() - 1 2 Y H.S’l - 1 2 Y H.92.5’1 - 1 3 Y
1 2 3
1 2 3 123 1 2 3
1 2 3 123 1 2 3
H82 = 1 3 5 H5’182 2 3 ) H828182 = 2 3 .
1 2 3

We may write Ty, = {Hs,, Hs, }, and
T]\Jg - {Hsoa Hslv Hszsla H.927 sty Hslszsl }

Now, fix a partition a = (ay,...,a,) and U € U,. For each m = (my,
cymy) € My, let

AUDy, = (Aa, AU Dy, AaU Dy Dy -y BaU D) Dy Dy )
and define
Ta)(U) := {AUD,, : m € M}.
Clearly the symmetric group S; also acts on T{, a)(U) by putting
w(st)(AaUDm) = AaUD.sim, 0<:<t—1.

For each m € M;, A,UD,, realizes a pair of Young tableaux (7, H,) with
weight m, where o~ !m is the partition of M;. According to corollary 3.11, we
replace the notation (7, H,) by 75, 0 € ;. Thus, we may identify T, 17, (U)
with {7,,0 € & : Im € M;, A,UD,, realizes 7,}. We shall characterize
this set, in cases, t = 2, 3. In order to do this, we need to introduce the
following definitions.

Definition 4.1. [6] Let F} > Fy and F = {(F7, Fy) € (2" : 0 €< 51 >},

We say that F is generated by (Fi, F), if (Fy°,Fy°) = (F1,F2), and the
following relations are satisfied:

() C Fy, (i) F)' > By, |[Fof = [FYY (30)

(i) N Fy CF, (o) FyY = F U (Fy\ EYY). (31)

Recalling definition 2.3, we have Fy* >,, Fy'. Let O(FY, Fy) = (F*7, F3'7).

Then, ©? = id, and the symmetric group S, acts on any set generated by
(F1, F).
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Given sets Fy > F, there exists always a set generated by (Fy, Fy). For
instance, ' := minp,Fy and Fy' := FoU(F) \ ") satisfy (30). In this case,
we say that the set F is x-generated by (Fi, F>) [6].

Definition 4.2. [6] Given Fy > Fy > Fy and F = {(Fy,Fy,Fy) € (2")3 .
0 €< 51,82 >}, with (F}°, Fy°, F3°) = (F1, Fy, F3), we say that F is generated
by (F1, Fy, F3) if

(I) (a) F3' = Fs and {(F{,FY) : 0 €< s1 >} is generated by (Fy, Fy).
(b) Fy? = Fy and {(FY,FY) : 0 €< sy >} is generated by (Fy, F3).
(II) (a) Fy* = Fy* and {(FY™,F5™) : 0 €< sy >} is generated by
(Fy', F5') with Fy? > Fy*™.
(b) Fy** = F3? and {(F7™ Fy™) : 0 €< s1 >} is generated by
(Fy2, F5?) with Fy'™ > Fy'.
(IIT) (a) F3*= = Fy°r, {(FY™ Fy™™) @ 0 €< s1 >} is generated by
(Flszsl’F;?Sl)} and Flsl-s’zsl — Fisls?_
(b) {(Fy*™2, F5*™2), (F5r F3t™*™) } is generated by (Fy'™, F5'™).

In [6] it has been shown directly that if we are given sets Fy > Fy > F3 in
[n], there exists always the set F x-generated by (F1, Fy, F3). Here, in section
5, theorem 4.7, we shall see a matrix interpretation of the generation of a
set F based on the following facts: in [2] it has been proved that given an
LR tableau 7 of type (a,m, c), there exists always an unimodular matrix U
such that A,UD,, realizes 7, on the other hand the symmetric group acts
on T;, a,(U) which leads to a such set F. In the next theorem, the elements
of a set F, generated by (Fy, Fy, F3), are given explicitly.

Theorem 4.1. Let Fy > Fy > F5. The following assertions are equivalent.
(a) F={(FY,Fy,F]): 0 €< 51,89 >} is generated by (I, Fy, F3).

(b) The sequence Fy > Fy > F3 has a decomposition Fy = U?ZIA{, =
U234y, F3 = AU A3,
a4
F17F27F3: A}L Ai
Ay Ay Aj
satisfying:
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(1) Al > A3 > A} > A3, with |Af] = |Aj| = |A3] = | A3,
A} > A5 > A3, with |A}| = |A3] = | A3,
AT > A3, with |A3| = | A3,
(2) AN AL =0, if i # j,
AN AL =0, ifi # .
A3N A =0,
(3) FiN A5 C A3,
(F\ A}) N A5 C A,
[Fy\ (47 U D] 0 A3 € A
FU(A2UAD N A2 C A2, and
[ (A7 1 3 s
[Fy U (A2U A})] N A3 C A3,
such that the sets FY, Fg, Fy, with o € {s1, s2, 5152, 5251, 515251}, are
obtained from Fy, Fy, F3 as follows:

Al Aj
A Az A Al
Fi517F2817F§l: Ai Ag ’ FlSZSlvFQSQSlvF;QSl - Ai A% ’
A1 A% A§ Ai) AZ AS
A
A oAb
Flslszsl’ F2.5’1$2817 F381-5’281 — A% Ag ,
Ag |4 Aél
Al Ay A3
Ai 2 Ai 2
S S S Aé A% S1S: 518 518 Aé Ag
2 Fy? Fy? = A}l , As ,  FP7ESYR R = , Ale As .
Al A5 Ay A
A A A A A A

Proof: (a) = (b) See the proof of the "only if” part of theorem 4.7.
(b) = (a) Obvious. O

Remark 1. In the previous theorem, if J;, J, and J5 are pairwise disjoint,

condition 3 vanishes and, in that case, we may consider, in the decomposition
above, A? = Al = A} = A3 =0.
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Corollary 4.2. Let Iy > F» > Fy and F = {(F{,Fy, F{) : 0 €< s1,82 >}
generated by (Fy, Fy, F3). Fori=1,2, let ©; : F — F defined by

O;(FY, Fy, FY) = (Fy7, Fy'7  Fy'7),0 €< s1,82 > .

Then, ®i2 =1id, 1 = 1,2, and ©:09 1 = ©,0:0,. That is, the symmetric
group Ss acts on the set F.

Proof: Follows from theorem 4.1. O

In what follows we put m = (my,...,m;) for the partition in M;, t = 2, 3.
We may now define o-Yamanouchi word for o € &, t = 2, 3.

Definition 4.3. Let t = 2,3 and 0 € S;. Let w be a word over the alphabet
[t] with evaluation om. We say that w is a o-Yamanouchi word if w = H,.

In [6], definition 4.4, we have introduced this concept using the indexing
sets of the word. We will see that these two definitions do coincide.

Proposition 4.3. Let 0 € Sy and w a word over the alphabet 2], with evalu-
ation om and indexing sets (F1, Fy). The following conditions are equivalent
(a) w is a o-Yamanouchi word.
(b) w is a shuffle of the rows of H,.
(¢) (F1, F2) has a decomposition either of the form
A AL
A2 A2 ,if o = s, or A2 A2 ,if 0= s,
where AL > A3 with |AY| = |A3| = ma, and A1 N A} = A3n AL = 0.
(d) (Fy, Fy) belongs to a set F generated by some J; > Js.

Proof: (a) < (b) follows from proposition 2.3 and corollary 2.5.

(b) & (¢). Notice that Hy, = w([mi],[me]) and Hs, = w([ma], [ma]).
Clearly, w(Fy, Fy) is a Yamanouchi word, when o = id, and w(F, Fy) is a
dual Yamanouchi word, when o = s;. The result follows from proposition
2.2 and corollary 2.4.

(¢) < (d) follows from definition 4.1. O

Proposition 4.4. Let 0 € S3 and w a word over the alphabet [3], with
evaluation om and indezing sets (Fi, Fy, F3). The following conditions are
equivalent:

(a) w is a o-Yamanouchi word.

(b) w is a shuffle of the rows of H,.

(¢) (F1, Fy, F3) has a decomposition according to
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Al Al Al
A% A% s ZfO’ = S0, A% A% ) ZfO' = 851, A% ) A% B Zf
A3 A3 A§ A3 A3 A§ A3 A3 Ag
o = $951,
Al Al Al
A2 A% L if o = 515081, A2 A§ , if o= 89, A2 A§ L if
Ay aj Y A b
— 5192,

where A3 > A3 > A3, with |A3| = |A3| = |A3| = |ms|; ATNAs =0, forr # s,
i =1,2,3, and A} > A}, A3 > A3, A3 > A% with |A?] = |A} = |A}| =
[ma| — |ms|.

(d) (Fy, Fy, F3) belongs to a set F generated by some Jy > Jy > Js.

Proof: (a) < (b). Let o in S5. A careful analysis of the Schensted’s insertion
algorithm, section 2, shows that when we apply this algorithm to a shuffle of
the rows of H,, we get H,. So, if w is a shuffle of the rows of H,, w = H,.

Notice that the tableau H, is respectively (321)™s (21)™27"s 1"™=m2 if g =
Sp; (321)™s (21)m2mms 2Mimme if g = g5 (321)™8 (1) 3T if g =
S981; (321)™s (32)M27s IMTMf g = §15987; (321)™ (31)M M T jf o =
so; and (321)™s (32)™M27Ms 2™ =2 if g = s159. Therefore, if w is a shuffle of
the rows of H,, when applying, to w, the elementary Knuth transformations
ryxr = yzrz, and yry = yyx, with 1 < x <y < 3, we do still obtain a word
of the same form. In the case of the Knuth transformations 132 = 312 and
231 = 213, notice that 31 is a row of the tableau H, only when ¢ = s9s1. In
this case, w is a shuffle of m —msy rows 321, my —mg rows 31 and ms rows 3.
Thus the letter 2 appears only as a letter of the row 321. So, w = H,, implies
that w is a shuffle of the rows of H,. It is now easy to conclude that a Knuth
class containing a word which is a shuffle of the rows of H,, only contains
words which are shuffles of those rows, and the representative tableau of this
Knuth class is H,.

(b) < (c) Notice that w(A3, A3, A3) is a shuffle of m3 rows 321, w(A?, A3)
is a shuffle of my — m3 rows 21, w(A}, A3) is a shuffle of my — m3 rows 31,
w(A3, A2) a shuffle of my — m3 rows 32, w(A}) is a shuffle of m; — my rows
1, w(Ad) is a shuffle of my — m3 rows 2, and w(A}) is a shuffle of my — m3
rows 3.

(¢) = (d) If Fy, F, F; are pairwise disjoint then condition 3 of theorem 4.1
vanishes and we may consider A% = (). Otherwise, it has been shown, in [6],
theorem 4.11, the existence of a set [F x-generated by a sequence J; > Jy > J3,



ACTION OF THE SYMMETRIC GROUP ON SETS OF SKEW-TABLEAUX 39

containing (Fi, Fy, F3). Furthermore, if (F1, Iy, F3) are the indexing sets of
some tableau 7 of type (a,om,c), then J; > Jy > J3 are the indexing sets
of an LR tableau of type (a,m,c).

(d) = (c¢) From theorem 4.1 it is clear that (F}, F», F5) has a decomposition
of one of these forms. g

We are now in conditions to state the two main theorems of this paper. Let
t = 2, 3. Let ¢ be the invariant partition of A,UD,,. Given a Young tableau
T of type (a,om,c), o € S, the theorems, below, show that T € T, ,)(U)
iff the indexing sets of 7 belong to some set F generated by the indexing sets
of the LR tableau in T{, a)(U).

Theorem 4.5. Let T and Ty, be Young tableauz, respectively, with indexing
sets Ji, Jo, F1, Fy, and types (a,m,c), (a,s1m,c), where l(c) < n. Then,
there exists an n x n unimodular matriz U such that Ty, ) (U) = {7, 75, }
iff {(J1, J2), (F1, F»)} is generated by Jy > Js.

This theorem has been stated in [4], without proof, using a different lan-
guage.

Corollary 4.6. Let 0 € Sy. Let T be a Young tableau of type (a,om,c).
Then, (T, H,) is an admissible pair iff w(T) = H,.

Proof: Let Fy, Fy be the indexing sets of 7. From [2] and [5], (7, H,) is
an admissible pair iff w(Fy, Fy) is a Yamanouchi word, when o = id, and
w(Fy, Fy) is a dual Yamanouchi word, when o = s1. Therefore, the result
follows from proposition 4.3. O

Theorem 4.7. For each o € Ss, let T, be a Young tableau of type (a,om,c),
with indexing sets F{, Fy F§, and l(c) < n. Then, there exists an n X
n unimodular matriz U such that Ti, ) (U) = {75, 0 € S3} iff the set
{(FY,F§,Fy): 0 € Ss} is generated by Fy* > Fy° > F3°.

Corollary 4.8. Let 0 € S3. Let T be a Young tableau of type (a,om,c).
Then, (T, H,) is an admissible pair iff w(T) = H,.

Proof: Let Fy, Fy, F3 be the indexing sets of 7. If (7,H,) is an admissi-
ble pair, there exists an unimodular matrix U such that A,UD,,, realizes
(T, H,). Therefore, by previous theorem, 7 is an element of T, y,)(U) and,
by proposition 4.4, we have w(7) = H,.

Conversely, if w(7) = H,, by proposition 4.4, there exists a set F generated
by a sequence J; > Jy > J3 which contains (F}, Fy, F3). By previous theorem,
(7,H,) is an admissible pair. O



40 0. AZENHAS AND R. MAMEDE

5. Proof of the main results

We start this section with an auxiliary result in which we analyze the
structure of some n x n matrices.

Lemma 5.1. [14] Let 0 < m3 < mo < my < n. Let J; = U,tzj AY Ty =
Ui:g AL be subsets of [n], with J, > Jo, and 0,0 € S,, such that

(1) AFN AL =0, fori=1,2, k # 7,
; |1] = ma, |A3] = [A3| = mg — mg, |A}| = |A}| = mg with A} > AS,
ork =23,
(2) J1N A3 C A3,
(S \A}) N A3 C Af,
(3) olma] = A3, a([my] \ [mir1]) = AF, for k =1,2, and 6 = Ay343.

Then,
(1) T+ S(42, 43,00) € M((mo) \ [ms], [m]);
(I1) if |A2| = |A3|, the matriz S(A3, A3, 00) has nonzero entries in position

(i,7) only if i € o7 (A3) and j € o~ 1(A}).

Proof: (I) By definition of S(A%, A3,00) = (si;), if s;; = 1 we must have
Oo(i) € A2\ A3 and 0o(j) € A3\ A3. It follows that i € 071071 (A}) =
o~ (A7) = ]\ [ma].

Suppose j € [my]. Then 0o (j) € Oa[my] = A3U A3 U A}. Since 0o (j) € A}
and the sets A} and A3 are disjoint, we find that 0o (j) € (AIUA?)NA3 C A3,
which is a contradiction.

Therefore, I + S(A?}, A3,00) € M([ma) \ [m3], [m1]).

(IT) Again by definition of S(A?, A3,00), we have 0o (i) € A3\ A2 = A3
and fo(j) € A\ A3 = A2, since the sets A? and A3 are disjoint. O

5.1. The case t = 2. Proof of theorem 4.5 [4, 14]. The “only if” part.
Let 7 and 7;, be tableaux, respectively, of type (a,m,c), with indexing
sets Ji, J2, and of type (a, sym,c), with indexing sets Fi, Fb, with {(c) < n.
Suppose there exists an n x n unimodular matrix U such that T, az,)(U) =
{T,7;,}. We will prove that conditions (4), (i7), (¢i¢) and (iv) of definition
4.1 are fulfilled.

Assume U = P,Q, where ¢ € §,, and @) is a upper triangular matrix, with
1’s along its main diagonal, and multiples of p above it.
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By proposition 3.12, we find that A,P,QDpy, 1 Djy ~ AaPoDppy(I +
X) Dy, with I+ X € M([my],[ms]). Therefore,

Aa, Py Dy Dy \ma))s (I + X ) Dpyyy - realizes  (7,H), (32)

Au, P Dy, (I 4+ X) D \jmo)) Dy realizes (7, H,). (33)

Recalling the type and the indexing sets of 7, we find that A, P, Dy, has

invariant partition a + x*1, and is equivalent to diag,(a + xm2). Tt follows,
by lemma 3.6, that there exists a permutation # = #~! such that

A, = Ny = P APy and Oomsy] = F. (34)
Now, we have

diagy(a+x") ~ AoPy Dy, by hypothesis on 7
= Pg—‘AaPOO'D[’HLg]D([WU]*[’HLQD by (34)
~ AaDgolmg) Poo D (jmi)~[ma))
~ diagp(a+xF1 +X00([771,1]7['rn2])).
Note that Fy N 0o ([mq] \ [ma]) = 0. Hence, there exists an o € S, such
that, with ¢ = afo, it follows J; = F; U &'([m] \ [m2]). In particular, (7)

follows.
By hypothesis,

c—a:=(c1—ap,..,co —an) = x" +x2 = x" + x™ (35)

Hence, subtracting x* on both sides of (35), and using (i), we find (iv).
Furthermore, (35) also shows us that J; N Jy = Fy N Fy. So, necessarily
(i7) follows. Finally, note that, by theorem 3.15, there exists J C [n] with
|J| = mg and fo[msy] > J such that

diagp(a + XJl + XJQ) ~ ALLP(TD['rnl](I =+ X)D[mz]
~ diagy(a + X'h)ng(I + X)D[m?]
~ diagy(a+x" +x7), (36)

with Fy = folmg] > J. If J # Jo then, by lemma 3.6, there exists a
permutation 4 = p~! such that p(a + x*) = a + x/* and J > u(J) = Jo.
Thus, Fy > J; and (30) is satisfied. Therefore, {(Jy, J2), (F1, F2)} is generated
by J1 Z JQ.
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The 7if” part. Given Jy,Jo and Fy, Fy C [n] satisfying (i), (i7), (i4i), and
(iv) of definition 4.1 with ’Jﬂ = ’F2’ = my, ’J2’ = ’Fﬂ = My, let g1 € Sn be

a permutation such that o1[me] = Fy and o1([ma] \ [m2]) = J1 \ Fi.

Since F1 > Ja, we may consider the permutations 3 = Ap, j,, 02 = 6201, and
the matrix S = S(F1, Jo, 01), which, by lemma 5.1, belongs to M ([m], [ma]).

Consider the sequence
Ag, Pr, Dy, (I + S)(I = ST) Dy
In view of the proof of theorem 3.15, we have
(37) = AuDyypyPr(I + S)(I = ST) Dy,

~L AaDleolpgl*lnglD[mg]
~R AaDJlDQQ(n [m2]
= diagy(a + x" + x).

On the other hand, since I + S € M([m], [ms]), we may write

(37) = AanlD[,nQ]D([ml]\[m2])([ + S)(I — ST)D[m2]

= AuPr, Dy (I + S)(I = ST) Dy jma)) Do)

Thus, again, by theorem 3.15, we have

(37) = AuDyypgPri(I + S)(I = ST)Dppyg
~1 AuDp Py Pyoig, e Dy
~r AuDr Dy,o fm,]
= diagy(a+ X+ x ).

Finally, note, that by lemma 3.2, (ii), we have

(37) ~R AaPmD[ml](I + S)D[m2] = Apgl ([ +pS)D[,n1]D[m2].

(37)

(38)

Therefore, the matrix U := P, (I +pS) is such that A,UD,, and A,U Dy,
realizes, respectively, (7,H) and (Z;,,Hy,). That is, {7,7;,} = T ) (U).

O

In view of the theorem above, the indexing sets of 7, satisfy Fy >,, F5.
As a consequence of this result, we obtain, below, necessary conditions for
the admissibility of a pair (7,H), with ¢ > 2. As we shall see, in the case

t = 3, these conditions are not, in general, sufficient.
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Theorem 5.2. Let (mq,...,my) € M, with t > 2, and let T be a Young
tableau of type (a, (M1, ...,my), ¢), with indexing sets F1, ..., Fy. Suppose (T ,’H)
is an admissible pair. Then we have:
(1) If mi > mipa, F; > Fiq.
(2) If mi < mia, F >0p Fiir.
Proof: By hypothesis, there exists U € U, such that Ay, UDy, 1, ..., Dy, is a
matrix realization of (7, H).
Thus, A, UDyy )5 o Dy, ~r A1V, where Ay = diagy(a+xF +...4+xF1)
and V is a unimodular matrix.
If we denote by @’ the partition a + /' + ... + x**1, we have

AlVD[mi]D[miﬂ] ~ diagp(a’ + XFi + XFiJrl).

Now, if m; > m;;1 then theorem 3.17 says that the sequence Ay, V Dy, ],
Dy, ) realizes a pair (77, H'), where 7" is an LR-tableau with indexing sets
Ji, Jiv1, and H' = (07 (1mi), (1"”) + (1"”“)) . Therefore, J; > J;11.

If m; < miy1. The sequence A1,V Dy, Dy, ) realizes a pair of tableaux
(7", H"), where 7" is a tableau with indexing sets F;, Fj11, and H" =
(0, (1), (1) + (1™+1)). Since Ay, V Dy}, D, is & matrix realization of a
pair (F,H), where F is an LR tableau, and H = (0, (17+1), (17+1) 4 (1)),
by theorem 4.5, we have F; >,, Fii1. O

Remark 2. In general, an LR tableau may be realized by more than one
unimodular matrix U. For example, let 7 be the LR tableau (a,a + x”',a +
X7+ x), where a = (3,2,0,0), J; = {4,3,2} and Jo = {1}, and consider
the matrices U = Puyy({ +pEy) and U' = Py (I + Eyz). Let 0 = (14) € Sy,
my = 3 and mg = 1, and note that, by proposition 3.12, since o[m4] = Ji,
we may write

A¢JLP(14) (I + pEl4)D[m1]D[mg] = diagp(a + XJl)P(M)(I =+ E14)D[m2] (39)
and
AoPasy(I + Er2) Dy, Dy = diagy(a+ x") Paay(I + Eiz) Dy, (40)
Now, theorem 3.15 and lemma 3.6 give
(39) ~r diagy(a + XJl)P(14)P(14)D[mQ] = diag,(a + X" +x7)
and

(40) ~, diagy(a + x") PaayPaz)Dimy) ~ diagy(a + x™ + x™).
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Therefore, both matrices U and U’ realize 7. On the other hand, applying
the procedure used above, we may show that AUDy,, Dy, ~ diagy(a +
X+ x) and AU'Dyyy Dynyy ~ diagy(a + x5+ x'2), where Fy = {3},
Fy ={4,2,1}, and F| = {2}, F, = {4,3,1}. That is, matrix U gives rise to
the set {(J1, J2), (F1, F»)} generated by (Ji, J2), while matrix U’ gives rise to
the set {(J1, J2), (F], F3)} generated by (Ji, J2) as well, with F| = miny,J;
and F) = Jo U (J1 \ F{). This is consistent with definition 4.1, given sets
J1 > Jo, there is, in general, more that one set generated by the sequence
(J1, Ja).

5.2. The case t = 3. Proof of theorem 4.7. The "only if” part.

Let o € &3, and suppose there exists an unimodular matrix U such that
AU Dy, realizes (7, H,; ), where the tableau 7, has indexing sets FY, Fy | Fy .
For simplicity, we shall often say that FY,Fy, Fy are the indexing sets of
AUDgp,. We observe, as we shall see through the proof, that in proving
that F = {(F7, Fy,FY) : 0 € 83} is generated by the sequence (F°)?_,, we
also prove that (a) = (b) in theorem 4.1.

By theorem 5.2, the indexing sets of AyUD 1, mym,) satisfy F° > Fy° >
F3°, and the indexing sets of AyUD (1, m, my) satisfy F >,, F5' > Fy', with
Fy* = F3'. Applying theorem 4.5 to the set {A.UDn; my)s AaUD(mymy) }
we find that |F}'| = |Fy°],

FrCEY, FPNF CFr, P> F° and Fy' = FyP U (F\ FY). (41)
There exists an n x n unimodular matrix V' such that A, U Dy ~1 ALV,

where Ay = diagy(a + x™1"). Recalling theorem 5.2, the indexing sets of
AuV Dy gy and AU Dy, 1,y are F5° > F3° and Fy* >,, F3?, respectively.
Thus, applying again theorem 4.5, it follows that |F5?*| = |F3°|,
Fj2 CF", F°"NF CF? Fy*> F® and Fy* = F3° U (F)°\ F3?). (42)
We have A,U Dy, ~1 Agr V', for some unimodular matrix V', with Ay =
cliagp(a—|—>(Fls1 ). Since the indexing sets of AU D, my,my) a0d AU D1y g )
are Fy', Fy' F3° and FY', Fy*°' F3?™', respectively, recalling theorem 5.2, we
find that AyV Dy, m,) has indexing sets Fy' > F;° and AyV Dy, ) has
indexing sets F3*™ >,, F3*"'. Again by theorem 4.5, it follows that |F,"**| =
|1F5°),
Fpor CFyY, FyPNF3e CFP* B > Fy° and F3*™ = Fy° U (F5t\ Fy*™).
(43)
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By (41) and (43), we have Fy*** C Fy* = F;° U (F)°\ F}'), so we may write

F = AJ U A3 (44)
where A5 C Fy' and A2 C Fy° \ F}'. Let Al := (F°\ F}') \ A%.
From (44), and since F;*" > F3° and |Fy?*"'| = |F3°|, we can factorize F3°

as
Ry - AU &,
where A > A3, A3 > A3 are such that |Aj| = |A3|, |A3| = |A3|, F5'NAJ C A3,
and Fy' N A% C A3
Recall again theorem 5.2, and consider AU Dy g my) and AqU D15 1y m,),
which have indexing sets

F' > FPt >, F3?™ and FY'2°0 >, BV >0 FR2 (45)
respectively. The application of theorem 4.5 to the set {A,UD(n, my), AU
D(mg,mg)} gives

Flslszsl g F181’ FlSl N F25251 g F1518281, F1815281 Z F25231 and

B = B U (R \ ) (16
Since Fy'* > F3*" = AJU A}, and |F}***"| = |F)**, define
A = min{X C F7'®" . | X| = |AS| and X > A3},
and
Al = Fproesn\ AD
Since Fy'*** C Fy' ) let A3 := '\ Fy'**1. Then we obtain Fy'***' = AU Af
and Fy'*"' = A3 U A} U A3, From the inequality F}***" > F}*"' and the
definition of A3, it follows that
Al > A7 > A2 and A} > A) > A).

Also, from (41), (43) and (46), we obtain F; N A3 C A3,

Observe that A,UDy,, m,) has indexing sets F7* > Fy?, and from (45),
AyUD(y, my) has indexing sets F7* > F3**'. Then, by corollary 3.23, (i), we
must have

Fj? > Fy». (47)

Since the tableaux AU D 1, mym,) and AgU Dy, m, my) have indexing sets

S2 __ S0 52 52 5152 5152 52
Ff2 = F F32 F32 and FP'™2 F3'®2 F32)
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theorem 4.5 applied to {AoUD 1, my)s AaUD (g m,)} gives

Fpv2 C R FYONES CEPY™2, By > Fy? and Fy'™ = FyO U (F°\ Fy).
(48)

Observe that A,U Dy, m,) has indexing sets Fy*™ >,, F3*™, and AU Dy, m,)

has indexing sets F}* >,, Fy*. Then, by corollary 3.23, (i7), we must have

Fie > By (49)

Finally, consider the tableaux AoU D, m, m,) and AgU Dy mym,), Which
have, respectively, indexing sets

S152 S1S52 S9o 515251 5182581 S2S51
Fi2 Bz Fi2 and Fyoes Fies s

with Fy"" = Fy'"' There exists an unimodular matrix V" such that
AUDyy, ~p AgnV". Then, the application of theorem 4.5 to the set
{Aa”’V”D(ml,mg)a Aa”’V”D(mg,ml)} giVCS

F2818281 C F28182’ F28182 N F;z C F2-91-92517 F2818281 > F;z and

B = B (B o), (50
From (42) and the inclusion AJUA2UAS = Fy'*2* C Fy'*? = FR?UAIUAZUAS,
it follows that
A5 C FP U AL
But the sets A3 and Al are disjoint. Therefore A3 C Fy2. Let A3 := Fy?\ A}
and A3 := F}° \ F}?. Since |Fy?| = |F}**|, we also have |A}| = |Aj], |A3| =
|A3], (F2\ AD)N AL C AY and <F1 \ (A3U A‘{)) N A3 C A% . Moreover, from
the inequality Fy'*> > Fy? we obtain A} > A3. From the inequalities (47)
and (49), we find that A3 > A? and A7 > A3.
Thus, the sequence (Fy*, Fy°, F3°) satisfy (b) of theorem 4.1, and, therefore,
F is generated by Fy° > F}° > Fy°

The 7if” part.

Suppose the set F' = {(F7)?_, : 0 € 83} is generated by (F°)?_,. Then,
there exists a decomposition of (F;°)?  satisfying (b) of theorem 4.1. We
will prove the existence of a unimodular matrix U such that {7, : 0 € S3} =
71((1,]%3)([])'

Let mj := |A}| and m) := |F}* \ A}|. Let oy be a permutation in S, such
that
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oi([ms]) = A},
oi([ma] \ [m3]) = Aj,
ai([ma] \ [ms]) = A7,
ar([mi] \ [ma]) = Af,
ar([mi] \ [my]) = Aj,

and consider the following permutations:
O = Az a3, O35 = Az a3,
020 = Aga a3, O = Az a3,
O3 = Ags a3, Or2 = Aus a2
Let 09 = 0239249250’1 and o3 — 9329359120‘2. Note that since (A% U A%) N
(A3UA3) = 0, the permutations a3 and 615 commute. Consider the following
matrices:
525 = S(A?,Ag,al), Slg = S(A%,A%,UQ)7
524 = S(A%,A%,02501)7 535 == S(Ag,Ag,ngaQ),
523 = S(A‘f7 A‘; 0924092501)7 332 = S(A%7 A%, 9359120’2).
Notice that by lemma 5.1, (1), the entry (4,j) of Sia is non null only if
i € [mg]\ [m4] and j € [m}]\ [me]. Again, by lemma 5.1, (I), we have

I+ So5, 1 + S35 € M([mg]a[ml])v
I+ 59y, I+ 530 € M([mi‘)] \ [mg], [ml])7 (51)
I+ Sy € M({mﬂ \ [mf}]a [ml])

Let Sij; := (I+5i;)(I—S), and consider the following product of matrices
AuPy, Dy 1825524593 Dy S12535 532 Dy - (52)
Recall (51). Since D)\ (m,]) commute with S25524523, we may write
(52) = AqPr, Diyny1S258248 23D (i o)) Djima) 912535532 D)
= AoPyr, Djy,1525524823 D)y 1512535552 Diny)- (53)

Matrices Dyy,,; and D, )\fm,]) commute with S12 and S35532, respectively.
Thus, we have

(53) = DAoLy, Djpyy1S25.524523512 Dy S35.532 Diny - (54)
Note that S15S5235 = 523512, and the diagonal matrices D o\ my)) and Dy
commute with S95594512 and Sas, respectively. So,

(54) = AapolD[771,3]§25§24§12D[mg]§23§35§32D[m1]- (55)
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Consider again (52), and observe that the diagonal matrices D)\ jm,y)) and
D,y commute with 51253553 and Sas, respectively. So, we get

(52) = AuPr, Dy 1525524 Dy S23512535.532 Dy - (56)
Finally, note that D(j,,}\(m,)) commute with S25594. Therefore,
(56) = AgPr, DipnyS25524Djyy 1 S23512535.532 Dy (57)

We will show that (52), (53), (54), (55), (56) and (57) are, respectively,
matrix realizations of the pair of Young tableaux (7,,H,), for o = sg, s1,
S981, $18281, S2, S152. Consider the sequence (52). Recalling lemma 3.14, we
may write
A PmDml] A Dal 7711]Pa1 ~R A Dal [ma]»
AaPtTlD[771,1]825S24S23D[m2] = A D [ml]Pa1525824823D[m2]
~L A Dal[ml]PazD[mz]
= A DO’][ﬂl]]DO‘Q[ﬂlQ]PO'Q
~R A DO’][ﬂl]]DO‘Q[ﬂlQ]?
and
(52) - ALLDO'l['HLl]DO’Q[T”,Q]‘PO'2§12§35§32D[7”3]
~L AaDal [ml]DJQ[7Tl2]‘PO'3D[7Tl3]
~R ALLDtTl[ml]D(TQ[ﬂlQ]DO'g[ﬂlg]'
Since o3[m;| = F;* for i = 1,2,3, we obtain (52) ~ AyDps Do Dgso. By a
similar process, we find that

(53) ~ A DUl (ma] D02[7,111D03 [ma] =A,Dp le ”DFl
(54) ~ A aDe(ma) Doysosima) Dosim) = A DFsz 1DF 951 DFsz 1.
(55) ~ AaDo, 1m5) D1205105501 ] Dorglima] = DaDpsrszsr Dpsisas Dpsisasa.
(56) ~ AaDo, (10,1 Dy105501[ms] Dorgfims) = DaDpsz Dps2 D .

(57) ~ AaDal[mg]nggﬁal[ml]DJS[mQ] = AaDFflsQDF;”?DF;lS?-

By theorem 3.10, it remains to prove the existence of an unimodular matrix
U such that

P01D['ml]525524523D[mz]§12§35§32D[mg] ~R UD['ml]D[nlq]D[nz,g]'
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We start by noticing that, attending to (51) and to lemma 3.3, (iv), we
may write

where A; € U([m;])M([m], [m1]) and B; € M([my], [m1]), i = 2,3. Thus, by

lemma 3.2, (i), we have

(52> = A PolD[ml]AQBQ [mQ](I—FSm)(I S )A535
~R AaPo, AyDiy Dy By (I + S12) (I = 1) A3 Dy, (58)
whete Ay € U(Ima)M,([m],[mi]) and By € My(fma], Tral) € (fma)
My([mu]).

Next, note that
I+ Siz € U([ms)) M([ms)]).
Then, by lemma 3.3, (iii), there exist C,C" € U([ms])M([ms]) and B} €
U([m1])M,(Jmi]) such that
D[ml] [mQ]BQ(I + 812) = D[ml]D[mg]CBg = ClD[ml]D[mg]Bg'

Attending to the structure of Si,, we have I — ST, € M([m}]\ [mz]). Thus,
by lemmas 3.3, (i7), and 3.2, (i), we may write

( ) A Pm A/ C'D [m4] mg]Bé’AéFD[m,g]a (59)

for some matrices F' € M([m}] \ [m2]) and A € U([ms]) M([ms],[m1]) C
U([ms3])M([ms3]). Finally, again by lemmas 3.3, (iii), and 3.2, (i7), we obtain

(59) ~r Ao Py, AyC' AS Dy 1 Dy Dy

for some A4 € U([ms])M([ms]). Therefore, the matrix U := P, ALC' A} is
unimodular and satisfy {7, : 0 € S3} = T4 11)(U). O

6. Final remarks and examples

In this section we translate into words the action of the symmetric group
described in theorems 4.1 and 4.7, and relate it with the action of the sym-
metric group generated by the parentheses matching operation on words as
described by A. Lascoux and M. P. Schutzenberger in [11, 13].

A parentheses matching operation 6;, 1 <7 <t — 1, on a word w over the
alphabet [¢] consists of a longest matching between letters i + 1 and letters
7 to their right, by putting a left parenthesis on the left of each letter i + 1,
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and a right parenthesis on the right of each letter ¢, such that the unmatched
right and left parentheses indicate a subword of the form i* (i+1)" which will
be replaced in w with ¢"(i + 1)®. Clearly, the operations 6;, i = 1,...,t — 1,
are involutive.

A. Lascoux and M. P. Schutzenberger have introduced involutions 6}, for
1 =1,...,t — 1, to describe the following parentheses matching operation on
words over the alphabet [t]. Let w be a word over the alphabet [t]. To
compute 67 (w), first extract from w the subword w’ containing the letters i
and 7 + 1 only. Second, bracket every factor i + 17 of w’. The letters which
are not bracketed constitute a subword w) of w’. Then bracket every factor
i+ 14 of w}. There remains a subword wj. Continue this procedure until it
stops, giving a word wj, of type " (i + 1)°. Then, replace it with the word
i* (1 + 1)" and, after this, recover all the removed letters of w, including the
ones different from ¢ and i + 1.

The operations ¢; are compatible with the plactic or Knuth equivalence =
[11, 13].

For example, let w = 231312121 be a Yamanouchi word over the alphabet
[3]. To compute 6%(w), we get w' = (21)1(21)(21), and w} = 1 = 12", Thus,

0 (w) =231322121, (60)

where the underlined letter is the subword w} replaced with 2 = 1°2. To
compute 03 (w), we get w' = 23(32)2, w} = 2(32), and wh = 2 = 2'3". Thus,

O5(w) =331312121, (61)

where the underlined letter indicates the subword w} replaced with 3 = 2°3!.
Therefore, we have

0:05(w) = 332322121,
0307 (w) = 331322131, (62)
010307 (w) = 332322131 = 636:05(w).

Let w be a Yamanouchi word over the alphabet [3] of evaluation (mq, ma, ms).
The set W* = {0*(w) : 0" €< 07,05 >} is called the set *-generated by w. In
our example above, the elements x-generated by w = 231312121 are displayed
in (60)-(62). Clearly, S3 acts on W*.

Given a group G =< x1,...,x:1 > satisfying the Moore-Coxeter relations
for &, we say that * € G and ¢ € &; have the same word if there exist
Q1,50 €{1,...,t — 1} such that x = x;, ... z;, and 0 = s, ...

k k*
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Let H = {H, : 0 € S3} be the set of o-Yamanouchi tableau words of
evaluation om. That is, H, = 6*(Hs,) whenever the 6* and o have the
same word. Recall w = H,, iff 6*(w) = H,. Indeed, given a word w over
the alphabet [t], for each i = 1,...,¢ — 1, we might have several parentheses
matching operations ¢; on w. Some of them are giving rise to the same output
as 0F and others are not. From [6], we know that for every word w and for all
i=1,...,t=1,0;(wyiisy) = 0; (wygiiy). Equivalently, 0;(wgi41y) = 07 (u'),
for some word v’ = w1y with «' over the subalphabet {4,i + 1}. This
means, that 6;(w) = 6} (u), where u is the word obtained from w replacing
wygii+1y with o', For ¢t > 2, we may have w # u, and, henceforth, ;(w) =
0f(u) # 07 (w). It is to exhibit parentheses matching operations §;, i = 1,2,
satisfying the Moore-Coxeter relations for S5 on a Yamanouchi word over
the alphabet [3] which do not preserve the Knuth equivalence class ‘H, . For
example, given the Yamanouchi word 3211,

3211 +— 3211 +—— 3212 3312
3211 «— 3212 «— 3312 «— 3312,

and 3312 = 3132 # 0760507(3211) = 3213 = Hy,s,5,- Although, £(322) =
05(232) = 332, with 322 = 232, we have 3212 # 2312 and, henceforth,
05(3212) = 3213 # 05(2312) = &(3212) = 3312.

Given a Yamanouchi word w over the alphabet [3], the parentheses match-
ing operations 6;, i = 1,2, satisfying the Moore-Coxeter relations for Ss on
w, are said coplactic if f(w) = H,, whenever § €< 61,05 > and o have the
same word. That is, putting W = {#(w) : 0 €< 0,6, >}, the set generated
by w and < 64,605 >, we have §(w) = H,, with 6 and o with the same word.

Using theorem 4.1, we characterize a family of coplactic parentheses match-
ing operations 6;, i = 1,2, on a Yamanouchi word w. The translation into
words of the action generated by the decomposition given in theorem 4.1 says:
write the Yamanouchi word w as a shuffle of 0 < k£ < m3 words v = 3121,
mgz — k words wg = 321, my — m3 words wy = 21, and m; — mo — k words
wy = 1; compute 6*(wy), 6*(ws), and 6*(v), with 0* running over < 67,65 >
as displayed below:

o1

3
w1:1 3

oz 03 g1
wy = 21 «— 21 «+—— 31 — 32

w1:1
03
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05 o1 05

wy = 21 31 32 32

v=3121 <L 3221 <2 3931 L 3931
v =3121 <2, 3121 <71 3221 2, 3931, (63)

The row word w3 = 321 is invariant under 6.
Write

w = sh(wé"rk, wy? M, wi’”_mrk, vk). (64)
For cach 6% €< 0,05 >, let sh(wy™ ™, (0 wq)™ ™, (0*w,)™ ">k (9 v)F)
be the word obtained by replacing in sh(w;”’rk7 wy' " wg”’“"”rk , oF), w;

with 0*w;, ¢+ = 1,2, and v with 8*v. Let ij ...k be a word over the alphabet
[2] and put

9:0; o 9;;(11}) _ Sh(u}'éngfk7 (9*w2>m277u3’ (e*wl)mlfmgfk’ (e*v)k)’

where 6° = 07 07...0;. Clearly, that 6;, : = 1,2, are matching operations
satisfying the Moore-Coxeter relations for S3 on w. From proposition 4.4, we
have O(w) = sh(w§ ™", (0*wy)™ "3, (6 w)™ ™, (0*v)*) = H,, and thus
f; are coplactic operations.

Let

W = {sh(w* ™, (0" w)™ ™, (0"w,)™ ™k (0%0)F) : 0* €< 07,05 >}. (65)

Fix arbitrarily indexing sets (Fi, Fb, F3) of w, and let F = {FY, FY, Fy{ : 0 €
83} such that

w(FY, Fy ) = sh(wg™™", (6 wp) ™", (§"wi)™ """, (§"0)"),  (66)
where 6° and ¢ have the same word. Translating to W the involution
©;, © = 1,2, defined on F, corollary 4.2, we find that ©(Fy, Fy, F3) are
indexing sets of sh(wj™ %, (@*wy)™ ™, (§*w;)™ "2k (6*v)F), where the
word of © €< ©;, Oy > and §* €< 607, 5 > is the same. For each
i=1,2 0;,(F7, Fy, F{) is equivalent to a matching operation 6;, on the word
w(EFY, Fy, FY) (66) such that 0;(w(FY, Fy, FY)) = sh(wé”"‘*k7 (0F0%wo )27,
(0:0%w;)™ 2=k (920%v)*). Thus we have

0(10) _ w(Ff,Ff,F{) _ Sh(wgng—k’ (0*,1112)771,2777%7 (e*wl)mlfmsz’ (9*v>k>

where 6 €< 6y, 85 >, 6* and ¢ have the same word.
In [6], proposition 4.6 and theorem 4.9, it is shown that when *-generation
is considered in theorem 4.1, the action of symmetric group described in that
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theorem coincides with the action of the symmetric group generated by the
involutions ¢, ¢ = 1,2 on a Yamanouchi word w. Let us denote by

x/  m3—k mo—ms mi—mo—k _k
sh*(wy™ ™", wy , Wy ,0%)

the shuffles of w afforded by the decompositions of the indexing sets (F1, F, F3)
given by *-generation. Then, %-generation by w corresponds to the *-generation
by the class of indexing sets of w,

WH — {09*(11]) — Sh*(w':rgngfk7 (9*w2)m2—m3’ (e*wl)ml—mg—k’ (e*v)k) . (67)
0" e< 67,05 >}

and, henceforth, the action of symmetric group generated by the parentheses
matching operation 7 on a Yamanouchi word w is achieved. As we shall see
below *-generation on indexing sets may give rise to several decompositions
of the indexing sets and, henceforth, to several shuffles of w. Nevertheless, all
of them are giving rise to the same group action, that is 6*(w) = sh*(wg”’rk,
(0 wy) M2~ (9*wy)™ ™2~k (9*v)*) and among them there exists one that
coincides with the parenthesization of 6*.

We observe that the construction given by theorem 4.1 does not give all
coplactic parentheses matching operations on a Yamanouchi word. For ex-
ample, the following diagram exhibits all the sets W generated, according
theorem 4.1, by the elements of the Knuth class [3211]

* * * * * *

3211 <4 3212 <2, 3213 <1 3213, 3211 <2 3211 < 3212 <2 3213
9; 07

o \05 6 03 i 03

3121 <1, 3221 <2, 3231 <1, 3231; 3121 <2 3121 s 3221 <2 3231
o5 o3

:5\ \e;
9321 <%, 3321 2321 <72, 3321
(68)

1321 & %3321, 1321 2 ‘i

but
3211[= 3121] < 3221[= 2321] <25 3321 &% 3321
3211 £ 3211 &5 3221[= 3212] 25 3321[= 3231],

where pu;, i = 1,2, satisfy the Moore-Coxeter relations on 3221, shows that
W = {u(3211) : p €< py, po >} is not generated by theorem 4.1.

Let H = {H, : 0 € S3} be the set of o-Yamanouchi tableau words of
evaluation om. That is H, = 0" (Hs,) = w3? (0 we)™ " (6% wy)™ ™,
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where the word of 6* in &3 is 0. Clearly, H is s-generated by H,,. Let
W = {sh(w§ ", (0% wy)™"s, (§*wy)" =k (0 0)F) : 6* €< 0%, 03 >} as
in (67), generated by (64), a shuffle of H,,. We address the question: How
are the sets H and W related?

Note that from (63), 0*v = 6*(3121) = w3 (*wy) = (0*wy) w3, where
0* € < 607,05 >. For cach §* €< 67,05 >, replace in the word sh(wy™ ¥,
(0 wy) ™27 (G )™ M2k (0*0)F), 6% with ws 0% (w;). We obtain a word

gi\z(wg”B, (0 wq)™=™s (0% wy)™™2). This defines a set
W = {sh(wy™, (0 w)™ ™, (6" w))™) : 6" €< 6;,05 >}

generated by the word w obtained replacing in w, v = 3121 with wsw; =
3211. Now, by proposition 4.4, for each §*, we may again to shuffle sh(w;",
(0*,1112)771,2777%7 (H*wl)"’“’"’?) to gCt HO’ — wgns (0*w2)m27m3 (e*wl)mlfmg’ and,
therefore, H.

Consider again the word w = 231312121 and fix indexing sets J; = {3,5,7,9},
Jo ={1,6,8} and J3 = {2,4}.

Example 1.

The grid below exhibits a decomposition of the sequence (Jy, Jo, J3) satis-
fying (b) of theorem 4.1,

OO0~ Tk W

This decomposition of the indexing sets is equivalent to write the word
w = 231312121 as a shuffle of the words wy = w({3},{1}) = 21, w3 =
w({7},{6},{2}) = 321, and v = w({5,9},{8},{4}) = 3121. According to
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this decomposition we have the following action of Ss:

1 2 3 1 2 3 1 2 3
1 1 1
2 2 2
3 3 3
4 4 4
5 o5 I
6 6 6
7 T T
8 8 8
9 9 9
02 o

1 2 3 1 2 3 1 2 3
1 1 1
2 2 2
3 3 3
4 54 2
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9

The translation of this action into words yields:

w=723T312121 <& 237322121 <2 337322131
62 61
1 1 , (69)
337312121 <™. 332322121 <%, 332322131

where the overlined letters define the word we and its image under the op-
erations #;, i = 1,2, the underlined letters define v and its image under 6;,
1 =1,2, and the remaining letters define ws.

Below, we illustrate this action on a set of skew Young tableaux generated
by an LR tableau 7 whose word is w = 231312121:
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o o 0 o 2 o o 0 o 2 o o 0 o 3
e o 1 3 e o 1 3 e o 1 3
T = e o 1 3 2 e o 2 3 2 e o 2 3
o 1 2 o 1 2 e 1 2
1 2 1 2 1 3
l92 191
e o 0o o 3 e o o o 3 e o 0o o 3
e o 1 3 e o 2 3 e o 2 3
e o 1 3 <0—1>0023 <0—2>0023
o 1 2 e 1 2 e 1 2
1 2 1 2 13

Example 2.

The decomposition of (Ji,.Js, J3), in the previous example, gives rise to a
matching operation #; which coincides with 6. Compare (69) with (60)-
(62). the grid below exhibits another decomposition of (J, J2, J3), satisfying
(b) of theorem 4.1, giving rise to the symmetric group action described by
Lascoux and Schutzenberger as well, but which corresponds to a different
parentheses matching.

OO U= Wb —

The translation into words of the action of S35 on the set generated by this
decomposition of (Ji, J2, Js) gives:

w=23T7312121 <& 937322121 <2, 337322131

02 01

i ! (70)
337312121 <% 3372322121 <25 332322131,
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where the overlined letters define the word we = w({3},{2}) = 21 and its
image under the operations 6;, the underlined letters define v = ({5, 9}, {8},
{2}) = 3121 and its image under 6;, i = 1,2, and the remaining letters define
wy = w({7}, {6}, {4}) = 321. Although, the action of the symmetric group
obtained by this decomposition of (Ji, Jo, J3) coincides with the one in (60-
62), the matching between letters 3 and letters 2 to their right, respectively,
in f1w and fjw, and in 6102w and 0507w is not the same.

Example 3.

The next grid exhibits a decomposition of the indexing sets (Ji, Jo, J3),
satisfying (b) of theorem 4.1, whose matching operation 6; gives rise to an
action of the symmetric group different from the one described by 6] and 65,

1 2 3

OO0 ~JO Ui Wh -

According to this decomposition, we have w =231312121 as a shuffle of
w;, i = 2,3, and v, which, by (63), leads to the following action of Ss:

|—=

21 «2 331323121

w=231312121 «* 231322

— = o

(71)

331312121 AN 332322121 AL 332323121

Below, we illustrate this action on a set of skew Young tableaux generated
by the LR tableau 7 considered previously:

e o 0 o0 2 e o 0 o 2 e o 0 o 3

e o 1 3 e o 1 3 e o 1 3
T = e o 1 3 <0—1>0023 <0—2>0023

e 1 2 e 1 2 e 1 3

1 2 1 2 1 2
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g 1

e o 0o o 3 e o o o 3 e o 0o o 3
e o 1 3 e o 2 3 e o 2 3

e o 1 3 <0—1> e o 2 3 <6—2> e o 2 3

e 1 2 e 1 2 e 1 3

1 2 1 2 1 2

Example 4.

Finally, we consider a decomposition of the indexing sets (J1, J2, J3) such that
w is a shuffle of the row words w; = w({5}) =1, wy = w({1,3}) = 21, and
wi = w({7,6,2}) = 321 = w3 = ({9,8,4}). According to this decomposition,
we have w = 231312121 as a shuffle of w;, i = 1,2, where w; = 1, and w},
w3. Thus, by (63), the symmetric group acts on w in the following way:

w=23T312121 <& 937322121 337332121
[

1 f (72)
3 .

b2
—

337312121 <% 332322121 <2, 3323

This action clearly differs from the one considered in (60-62) but the out put
is still in the same Knuth class.
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