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NUMERICAL RANGES OF UNBOUNDED OPERATORS
ARISING IN QUANTUM PHYSICS

N. BEBIANO, R. LEMOS AND J. DA PROVIDÊNCIA

Abstract: Creation and annihilation operators are used in quantum physics as the
building blocks of linear operators acting on Hilbert spaces of many body systems.
In quantum physics, pairing operators are defined in terms of those operators. In
this paper, spectral properties of pairing operators are studied. The numerical
ranges of pairing operators are investigated. In the context of matrix theory, the
results give the numerical ranges of certain infinite tridiagonal matrices.
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1. Creation and Annihilation Operators
In quantum mechanics, states of a particle are described by vectors be-

longing to a Hilbert space, the so called state space. For physical systems
composed of many identical particles, it is useful to define operators that
create or annihilate a particle in a specified individual state. Operators of
physical interest can be expressed in terms of these creation and annihilation
operators [1, 2].

Only totally symmetric and anti-symmetric states are observed in nature
and particles occurring in these states are called bosons and fermions, respec-
tively. If V is the state space of one boson and m ∈ N, the mth completely
symmetric space over V , denoted by V(m), is the appropriate state space to
describe a system with m bosons. By convention, V(0) = C.

Let V be an n-dimensional vector space with inner product (·, ·), and let
{e1, . . . , en} be an orthonormal basis of V . The creation operator associated
with ei, i = 1, . . . , n, is the linear operator fi : V(m−1) → V(m) defined by

fi(x1 ∗ · · · ∗ xm−1) = ei ∗ x1 ∗ · · · ∗ xm−1, (1)

for x1∗· · ·∗xm−1 a decomposable tensor in V(m−1). The annihilation operator

is the adjoint operator of the creation operator fi, explicitly, it is the linear
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operator gi : V(m) → V(m−1) defined by

gi(x1 ∗ · · · ∗ xm) =
m

∑

k=1

(ei, xk) x1 ∗ · · · ∗ xk−1 ∗ xk+1 ∗ · · · ∗ xm, (2)

for x1∗· · ·∗xm in V(m). Denote by ek
i the symmetric tensor product ei∗· · ·∗ei

with k factors. Clearly, fi(e
m−1
i ) = em

i and gi(e
m
i ) = mem−1

i . These operators
can also be defined on the symmetric algebra over V : Γ∗ =

⊕+∞
m=0 V(m). We

consider Γ∗ endowed with the norm induced by the standard inner product
defined by (x1 ∗ · · · ∗ xm, y1 ∗ · · · ∗ ym) = per [(xi, yj)], for x1 ∗ · · · ∗ xm and
y1∗· · ·∗ym decomposable tensors in V(m). Here, perX denotes the permanent
of the matrix X.

The creation and annihilation operators satisfy the following canonical

commutation relations: [fi, fj] = [gi, gj] = 0, [gi, fj] = δij, i, j = 1, . . . , n,
where [f, g] = fg − gf denotes, as usual, the commutator of the operators f
and g.

The bosonic number operator in state i is the linear operator Ni : Γ∗ → Γ∗

defined by Ni = fi gi, for i = 1, . . . , n. It will be shown that the nonnegative
integers are the eigenvalues of this operator. This is related to the physical
fact that an arbitrary number of bosons can occupy the same quantum state.

Let V be C2. For the symmetric algebra Γ∗ over C2, the pairing operator

B : Γ∗ → Γ∗ is the linear operator defined in terms of the creation and
annihilation operators by

B = c f1g1 + d f2g2 + k f1f2 + l g1g2, c, d, k, l ∈ C. (3)

These operators are unbounded. Moreover, B commutes with f1g1 − f2g2

and so, adding a multiple of this operator to B, we can take the coefficients
of f1g1 and f2g2 equal. We can also substitute f1 (f2) by eiαf1 (eiαf2), α ∈ R,
and choose α such that the arguments of k and l are equal.

The numerical range or field of values of a linear operator T on a complex
Hilbert space H with inner product (·, ·), is defined by

W (T ) = {(Tx, x) : x ∈ H, (x, x) = 1}.
One of the most fundamental properties of the numerical range is its convex-
ity, stated by the famous Toeplitz-Hausdorff Theorem (see e.g., [3] and [4]).
In the finite dimensional case, W (T ) contains the spectrum of T, and it is a
connected and compact subset of C. In the infinite dimensional case, W (T )
is neither bounded nor closed.
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We recall that a tridiagonal matrix is a matrix A = (aij) such that aij = 0
whenever |i− j| > 1. The numerical ranges of tridiagonal matrices deserved
the attention of some authors (e.g., [5, 6, 7, 8]). One of the main aims of
this paper is the investigation of the numerical range of pairing operators
B defined on the subspace Γ(q) of the symmetric algebra over C2. These
operators admit well-structured infinite tridiagonal matrix representations.
The numerical ranges of the pairing operators under consideration have an
interesting relation with the numerical ranges of certain linear operators on
an indefinite inner product space.

Let Mn be the algebra of n × n complex matrices, and let S ∈ Mn be a
selfadjoint matrix. The positive S-numerical range of A ∈Mn is denoted and
defined by

V +
S (A) = {x∗Ax : x ∈ C

n, x∗Sx = 1}.
This set is always a convex set [9]. If S is the n× n identity matrix In, then
V +

S (A) reduces to the classical numerical range of A ∈Mn. If S is a nonsin-
gular indefinite selfadjoint matrix, some authors use W+

S (A) = V +
S (SA) as

the definition of a numerical range of a matrix A associated with the indefi-
nite inner product 〈x, y〉S = y∗Sx. In this case, if A is not a S-scalar matrix,
that is, A 6= λS where λ ∈ C, V +

S (A) is unbounded and may not be closed
[9, 10].

This paper is organized as follows. In Section 2, some preliminary results
concerning the Bogoliubov linear transformation are presented. In Section 3,
spectral properties of certain pairing operators are investigated. In Section
4, the numerical ranges of the previously considered pairing operators are
studied. In particular, the numerical ranges of the infinite tridiagonal matrix
representations of the pairing operators are characterized.

2. The Bogoliubov Transformation
For convenience, consider the annihilation and creation operators defined

on the symmetric algebra over V arranged in a vector α with components

αi = gi, αn+i = fi, i = 1, . . . , n. (4)

The invertible linear operator that maps the vector α into the vector β with
components

βi = g̃i, βn+i = f̃i, i = 1, . . . , n, (5)
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is called a canonical transformation if it preserves the canonical commutation
relations and it is usually called a Bogoliubov transformation.

We recall a useful characterization of a Bogoliubov transformation.

Proposition 2.1. [2] Let α and β be the column vectors with entries (4) and

(5), respectively. The following conditions are equivalent:

(i) The linear operator that maps the vector α into the vector β is a Bogo-

liubov transformation;

(ii) The matrix T such that β = Tα, satisfies TLT T = L and TTLT = L,

where

L =

[

0 In
−In 0

]

.

The linear operators g̃i are the adjoint operators of f̃i if the matrix T
associated with the Bogoliubov transformation in Proposition 2.1 (ii) is a
block matrix of the form

T =

[

X Y
Y X

]

, X, Y ∈Mn. (6)

Let the linear operator Ñi : Γ∗ → Γ∗ be defined by Ñi = f̃ig̃i, i = 1, . . . , n.
The following proposition is an easy consequence of the canonical commuta-
tion relations for the operators f̃i and g̃i, i = 1, . . . , n.

Proposition 2.2. If the operators f̃i and g̃i satisfy the canonical commuta-

tion relations, then

[Ñi, f̃
r
j ] = r δij f̃

r
i and [Ñi, g̃

r
j ] = −r δij g̃ r

i , i, j = 1, . . . , n, r ∈ N0.

Proof : Let r ∈ N0. By induction on k, we prove that

Ñi f̃
r
j = k δij f̃

r
i + f̃ k

j Ñi f̃
r−k
j , i, j = 1, . . . , n, k = 0, . . . , r. (7)

In fact, if k = 0, (7) is trivial. Suppose that (7) is true for k − 1. Then we
successively have:

Ñi f̃
r

j = (k − 1) δij f̃
r

i + f̃ k−1
j Ñi f̃

r−k+1
j

= (k − 1) δij f̃
r

i + f̃ k−1
j f̃i(δij + f̃jg̃i)f̃

r−k
j (8)

= (k − 1) δij f̃
r

i + f̃ k
j (δij + f̃ig̃i)f̃

r−k
j (9)

= k δij f̃
r
i + f̃ k

j Ñi f̃
r−k

j ,
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where (8) is a consequence of [g̃i, f̃j] = δij, and (9) follows from [f̃i, f̃j] = 0

and f̃i δij = f̃j δij. Hence, (7) holds for k = 0, . . . , r. The case k = r gives the
asserted set of relations on the left-hand side. By transconjugation of these
relations, the result follows.

3. Spectral Properties of Pairing Operators
The symmetric space C

2
(m) is spanned by the vectors ek

1∗em−k
2 , k = 0, . . . ,m.

For q ≥ 0, denote by Γ(q) the subspace of the symmetric algebra over C2

spanned by the vectors en
1 ∗ en+q

2 , n ∈ N0, and, for q < 0, the subspace
spanned by the vectors en−q

1 ∗ en
2 , n ∈ N0. It is clear that any two subspaces

Γ(q) are disjoint. It can be easily seen that the symmetric algebra Γ∗ over C2

is given by Γ∗ =
⊕+∞

q=−∞ Γ(q). The subspaces Γ(q), q ∈ Z, satisfy the following
property.

Proposition 3.1. For q ∈ Z, the subspace Γ(q) is invariant under the pairing

operator B.

Proof : For q ≥ 0 and n ∈ N0, we have

B(en
1 ∗ en+q

2 ) = (cn+ d(n+ q)) en
1 ∗ en+q

2 +

+ k en+1
1 ∗ en+1+q

2 + l n(n + q)en−1
1 ∗ en−1+q

2 ∈ Γ(q).

Analogously, for q < 0 and n ∈ N0, we find

B(en−q
1 ∗ en

2) = (c(n − q) + dn)) en−q
1 ∗ en

2 +

+ k en+1−q
1 ∗ en+1

2 + ln(n − q) en−1−q
1 ∗ en−1

2 ∈ Γ(q).

Since B is a linear operator, it satisfies B(Γ(q)) ⊆ Γ(q), for any integer q.

Remark 3.1. The matrix representation, in the standard basis, of the pairing
operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2 restricted to Γ(q), q ≥ 0, is the
infinite tridiagonal matrix T q

c,d given by















dq l
√

1 + q 0 0 . . .

k
√

1 + q c+ d+ dq l
√

2(2 + q) 0 . . .

0 k
√

2(2 + q) 2(c+ d) + dq l
√

3(3 + q) . . .

0 0 k
√

3(3 + q) 3(c+ d) + dq . . .
...

...
...

... . . .















, c, d, k, l ∈ C.
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For q < 0, the matrix representation, in the standard basis, of the pairing
operator B = c f1g1+d f2g2+k f1f2+l g1g2 restricted to Γ(q) is the tridiagonal
matrix T−q

d,c .

In the sequel, we adopt the following notation: D = {z ∈ C : |z| < 1} .
For z ∈ D, let f̃1 and f̃2 be the linear operators on Γ∗ defined by

f̃1 =
1

√

1 − |z| 2
(f1 − zg2), f̃2 =

1
√

1 − |z| 2
(f2 − zg1). (10)

Their adjoint operators are

g̃1 =
1

√

1 − |z| 2
(g1 − zf2), g̃2 =

1
√

1 − |z| 2
(g2 − zf1), (11)

respectively. The linear operator that maps the vector αT = (g1, g2, f1, f2)
into the vector βT = (g̃1, g̃2, f̃1, f̃2) is a Bogoliubov transformation.

Proposition 3.2. The Bogoliubov transformation defined by (10) and (11)
takes the pairing operator B : Γ∗ → Γ∗ defined by B = c f1g1 + d f2g2 +
k f1f2 + l g1g2, c, d, k, l ∈ C, into B = λ0 ι + c̃ f̃1g̃1 + d̃ f̃2g̃2 + k̃ f̃1f̃2 + l̃ g̃1g̃2,
where ι denotes the identity map, z ∈ D, and

λ0 =
1

1 − |z| 2

(

(c+ d)|z| 2 + kz + lz
)

, (12)

c̃ =
1

1 − |z| 2
(c+ d|z| 2 + kz + lz), (13)

d̃ =
1

1 − |z| 2
(c|z| 2 + d+ kz + lz), (14)

k̃ =
1

1 − |z| 2

(

(c+ d)z + k + lz 2
)

, (15)

l̃ =
1

1 − |z| 2

(

(c+ d)z + kz 2 + l
)

. (16)

Moreover,

c̃ = c+ λ0 and d̃ = d+ λ0. (17)

Proof : The Bogoliubov transformation defined by (10) and (11) is associated
with a matrix T of the form (6), where the submatrices X and Y are

X =
1

√

1 − |z| 2
I2, Y =

1
√

1 − |z| 2

[

0 −z
−z 0

]

.
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Since α = T−1β and

T−1 =
1

√

1 − |z| 2









1 0 0 z
0 1 z 0
0 z̄ 1 0
z̄ 0 0 1









,

the following inverse relations hold:

f1 =
1

√

1 − |z| 2
(f̃1 + z̄g̃2), f2 =

1
√

1 − |z| 2
(f̃2 + zg̃1) (18)

and

g1 =
1

√

1 − |z| 2
(g̃1 + zf̃2), g2 =

1
√

1 − |z| 2
(g̃2 + zf̃1). (19)

Taking into account (18) and (19) in B = c f1g1 + d f2g2 + k f1f2 + l g1g2, the
result easily follows.

The pairing operator B in (3) is a selfadjoint operator if and only if c, d ∈ R

and l = k̄.

Proposition 3.3. The pairing operator B = λ0 ι+ c̃ f̃1g̃1 + d̃ f̃2g̃2 + k̃ f̃1f̃2 +
l̃ g̃1g̃2 is a selfadjoint operator if and only if λ0, c̃ and d̃ are real numbers and

l̃ = k̃.

Proof : Trivial.

Throughout this section, let ∆ = (c+ d)2 − 4|k|2, for c, d ∈ R and k ∈ C.

Proposition 3.4. If B = c f1g1 + d f2g2 + k f1f2 + k̄ g1g2, with c, d ∈ R

and k ∈ C, is a selfadjoint pairing operator and ∆ > 0, then B can be

reduced by a Bogoliubov transformation to the form B = λ0 ι+ c̃ f̃1g̃1 + d̃ f̃2g̃2,
where ι denotes the identity map and λ0, c̃, d̃ are given by (12), (13), (14),
respectively. Moreover,

(i) If c+ d > 0, then c̃+ d̃ =
√

∆ and λ0 = −1
2(c+ d) + 1

2

√
∆;

(ii) If c+ d < 0, then c̃+ d̃ = −
√

∆ and λ0 = −1
2(c+ d) − 1

2

√
∆.

Proof : By Proposition 3.2, under a Bogoliubov transformation, we can take
the selfadjoint pairing operator B = c f1g1 + d f2g2 + k f1f2 + k̄ g1g2, where

c, d ∈ R and k ∈ C, into the form B = λ0 ι+ c̃ f̃1g̃1 + d̃ f̃2g̃2 + k̃ f̃1g̃2 + ¯̃k f̃2g̃1,
where λ0, c̃, d̃ and k̃ are given by (12), (13), (14) and (15), respectively. If
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∆ > 0, it is possible to find z ∈ D such that k̃ = 0. In fact, we can choose a
solution z of the quadratic equation

k̄z2 + (c+ d)z + k = 0, (20)

for which k̃ vanishes. The choice can be done as follows. For k = 0 and
c+ d 6= 0, we take z = 0. For k 6= 0, we have

z =
−(c+ d) ±

√

(c+ d)2 − 4|k|2
2k̄

. (21)

The product of the roots of the quadratic equation in (20) is k/k̄, a complex
of modulus 1. Therefore, one of these roots has modulus less than 1 and for
this root k̃ = 0. Thus, we may concentrate on B = λ0 ι + c̃ f̃1g̃1 + d̃ f̃2g̃2.
From (13) and (14), we find

c̃+ d̃ =
(c+ d)

(

1 + |z|2
)

+ 2kz̄ + 2k̄z

1 − |z|2 . (22)

From (21) and (22), we get c̃ + d̃ = ∓
√

∆. From (17), we have c̃ + d̃ =
c + d + 2λ0. Hence, λ0 = − 1

2(c + d) ± 1
2

√
∆. If c + d > 0, we consider the

plus sign for the ± sign in (21), so that z belongs to D. Thus, (i) holds. If
c + d < 0, we take the minus sign for the ± sign in (21), otherwise z does
not belong to D. Hence, (ii) follows.

Remark 3.2. If ∆ = k = 0, then k̃ = 0 for any z ∈ D. If ∆ ≤ 0 and k 6= 0,
it can be easily seen that both roots of the quadratic equation in (20) have
modulus 1 and so we can not choose z ∈ D such that k̃ = 0. As observed in
the proof of Proposition 3.4, if ∆ > 0 one of the roots of (20) has modulus
less than 1, while the other one has modulus greater than 1.

Proposition 3.5. Let B = c f1g1 +d f2g2 +k f1f2 + k̄ g1g2, with c, d ∈ R and

k ∈ C, be a selfadjoint pairing operator defined on the symmetric algebra Γ∗

over C
2. A complex z satisfies [B, g1 − zf2] = 1

2(d − c ±
√

∆)(g1 − zf2) and

[B, g2 − zf1] = 1
2(c− d±

√
∆)(g2 − zf1) if and only if z is a root of (20).

Proof : (⇒) We have

[B, g1 − zf2] = −(c+ k̄z)g1 − (k + dz)f2. (23)

It is not difficult to see that there exists w ∈ C such that

[B, g1 − zf2] = w(g1 − zf2). (24)
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In fact, from (23) and (24), we obtain
[

c k̄
k d

] [

1
z

]

= w

[

−1 0
0 1

] [

1
z

]

. (25)

The solutions w of (25) are such that

det

[

−c− w −k̄
k d− w

]

= 0,

that is, w = 1
2(d− c) ± 1

2

√
∆. From (25), we get z = −(c+ w)/k̄.

(⇐) It is a straightforward computation.

Proposition 3.6. For z ∈ C, there exists a vector u in the Hilbert space Γ∗

such that (g1 − zf2)u = 0 and (g2 − zf1)u = 0 if and only if |z| < 1, and

u =
+∞
∑

n=0

c0
zn

n!
f n

1 f
n
2 (1), c0 ∈ C.

Proof : (⇒) Consider an arbitrary element u =
∑+∞

n,m=0 cnmf
n

1 f
m
2 (1) ∈ Γ∗,

cnm ∈ C. Since we are assuming (g1 − zf2)u = 0, it follows that

+∞
∑

n,m=0

(cn+1m+1(n+ 1) − cnmz) f
n
1 f

m+1
2 (1) = 0.

Hence,
cn+1m+1(n + 1) − cnmz = 0. (26)

By the hypothesis (f2 − zg1)u = 0, and so we also have

cn+1m+1(m+ 1) − cnmz = 0. (27)

From (26) and (27) we get (n −m)cn+1m+1 = 0, that is, cnm = cnδnm. Thus,
u =

∑+∞
n=0 cn f

n
1 f

n
2 (1) ∈ Γ(0). From (27) it follows that cn+1(n+ 1)− cnz = 0,

n ∈ N0. By induction on n, it can easily be proved that cn = c0z
n/n!, c0 ∈ C,

n ∈ N0. The vector u belongs to the Hilbert space Γ∗ if and only if |z| < 1.
(⇐) Clear.

Corollary 3.1. Let g̃1, g̃2 : Γ∗ → Γ∗ be defined by (11), with z ∈ D satisfying

(20). If ∆ > 0 and c0 ∈ C, the vector u =
∑+∞

n=0 c0
zn

n! f
n

1 f
n
2 (1) ∈ Γ(0) satisfies

g̃1u = g̃2u = 0.

Proof : The Corollary is an obvious consequence of Proposition 3.6.
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Proposition 3.7. Let B = c f1g1 +d f2g2 +k f1f2 + k̄ g1g2, with c, d ∈ R and

k ∈ C, be a selfadjoint pairing operator defined on Γ∗. If ∆ < 0, then B does

not have eigenvectors in the Hilbert space Γ∗.

Proof : (By contradiction.) Suppose that there exists in Γ∗ an eigenvector u
of B associated with the eigenvalue λ ∈ R, that is, Bu = λu. By Proposition
3.5, there exists z ∈ C such that [B, g1 − zf2] = 1

2(d− c+ i
√
−∆)(g1 − zf2)

and [B, g2 − zf1] = 1
2(c − d + i

√
−∆)(g2 − zf1) if and only if z is a root of

(20). Easy computations yield

B(g1 − zf2)u = [B, g1 − zf2]u+ (g1 − zf2)Bu

=
(

λ+
1

2
(c− d+ i

√
−∆)

)

(g1 − zf2)u

and

B(g2 − zf1)u =
(

λ+
1

2
(c− d+ i

√
−∆)

)

(g2 − zf1)u.

Then, either (g1−zf2)u vanishes or it is an eigenvector of B corresponding to
the eigenvalue λ+ 1

2(d−c+i
√
−∆). Since a selfadjoint operator does not have

complex eigenvalues, this hypothesis does not hold and so (g1 − zf2)u = 0.
In an analogous way, we conclude that (g2 − zf1)u = 0. By Proposition 3.6,
the conditions (g1 − zf2)u = 0 and (g2 − zf1)u = 0 hold if and only if |z| < 1.
The assumption ∆ < 0 implies that |z| = 1, a contradiction.

Proposition 3.8. The eigenvalues of the operators Ñ1 = f̃1g̃1 and Ñ2 =
f̃2g̃2 defined on Γ∗ are the nonnegative integers and the common eigenvectors

corresponding to the eigenvalues n1 and n2 are of the form c0f̃
n1

1 f̃ n2

2 ezf1f2(1),
where c0 ∈ C and z is the root of (20) in D.

Proof : Since the operators Ñ1 and Ñ2 commute, they have common eigenvec-
tors. Let u be a non-zero vector in Γ∗ such that Ñ1u = λ1u and Ñ2u = λ2u.
Replacing u by g̃1u in Ñ1u and u by g̃2u in Ñ2u, we obtain

Ñ1g̃1u = (λ1 − 1)g̃1u and Ñ2g̃2u = (λ2 − 1)g̃2u. (28)

From the left-hand side equation in (28), we conclude that either g̃1u = 0 or
g̃1u is an eigenvector of Ñ1 associated with (λ1−1). From the right-hand side
equation in (28), we conclude that either g̃2u = 0 or g̃2u is an eigenvector of
Ñ2 associated with (λ2−1). If g̃1u = 0 and g̃2u = 0, by Proposition 3.6, u is of
the asserted form and λ1 = λ2 = 0. In this case, the result follows. If g̃1u 6= 0
or g̃2u 6= 0, we repeat the previous procedure. Indeed, there exist integers
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k1, k2 such that v = g̃ k1

1 g̃ k2

2 u 6= 0 and g̃ k1+1
1 g̃ k2

2 u = g̃ k1

1 g̃ k2+1
2 u = 0. Since Ñ1

and Ñ2 are positive semidefinite operators, the eigenvalues λ1−k1 and λ2−k2

associated with the eigenvector v are nonnegative. The process stops when
λ1 − k1 = λ2 − k2 = 0, and so λ1 and λ2 are nonnegative integers. Since
g̃1v = g̃2v = 0, we find that (g1 − zf2)v = (g2 − zf1)v = 0. By Proposition
3.6, v = c0

∑+∞
n=0

zn

n! f
n
1 f

n
2 (1) ∈ Γ(0), c0 ∈ C. It can be easily verified that

v = g̃ k1

1 g̃ k2

2 u implies k1! k2! u = f̃ k1

1 f̃ k2

2 v and the result follows.

In the following theorem, the eigenvalues and the eigenvectors of the self-
adjoint pairing operator B restricted to the subspace Γ(0) are obtained.

Theorem 3.1. Let the selfadjoint pairing operator B = cf1g1+df2g2+kf1f2+
k̄g1g2, with c, d ∈ R and k ∈ C, be restricted to the subspace Γ(0), and let

∆ > 0. The eigenvalues of B are

λn =

{

−1
2(c+ d) + 2n+1

2

√
∆, if c+ d > 0

−1
2(c+ d) − 2n+1

2

√
∆, if c+ d < 0

, n ∈ N0.

The eigenvectors of B associated with the eigenvalue λn are the vectors vn =
c0 f̃

n
1 f̃

n
2 ezf1f2(1), where c0 is a non-zero complex number and z is the root of

(20) in D.

Proof : Consider the Bogoliubov transformation that maps the annihilation
operators gi and the creation operators fi into their adjoint operators g̃i

and f̃i, i = 1, 2, respectively. By Proposition 3.4, under this Bogoliubov
transformation, B can be taken in the form B = λ0ι + c̃f̃1g̃1 + d̃f̃1g̃1, where
λ0, c̃ and d̃ are given by (12), (13) and (14), respectively.

It can be easily seen that the operators Ñ1−Ñ2 and N1−N2 coincide in Γ∗,
and so the operators Ñ1 and Ñ2 are equal in Γ(0). Therefore, their eigenvalues
are the nonnegative integers. Since B − λ0 ι is a linear combination of the
commuting operators Ñ1 and Ñ2, by Proposition 3.8, the eigenvalues of the
selfadjoint pairing operator B are λn = λ0+(c̃+d̃)n, n ∈ N0. If c+d > 0, then
c̃ + d̃ and λ0 are given by Proposition 3.4 (i). Thus, λn = −c+d

2 + 2n+1
2

√
∆,

n ∈ N0. If c + d < 0, then c̃ + d̃ and λ0 are given by Proposition 3.4 (ii).
Thus, λn = −c+d

2 − 2n+1
2

√
∆, n ∈ N0. The common eigenvectors of Ñ1 and Ñ2

are the eigenvectors of B and, by Proposition 3.8, the theorem follows.

Theorem 3.1 can be easily generalized as follows.
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Theorem 3.2. Let the selfadjoint pairing operator B = cf1g1+df2g2+kf1f2+
k̄g1g2, with c, d ∈ R and k ∈ C, be defined on Γ∗, and let ∆ > 0. The

eigenvalues of B are

λn1n2
=

{

1
2(c− d)(n1 − n2) − 1

2(c+ d) + n1+n2+1
2

√
∆, if c+ d > 0

1
2(c− d)(n1 − n2) − 1

2(c+ d) − n1+n2+1
2

√
∆, if c+ d < 0

,

n1, n2 ∈ N0. The eigenvectors of B associated with the eigenvalue λn1n2
are

vn1n2
= c0 f̃

n1

1 f̃ n2

2 ezf1f2(1), where c0 is a non-zero complex number and z is

the root of (20) in D.

Proof : The selfadjoint pairing operator B can be taken in the form B =
λ0ι + c̃f̃1g̃1 + d̃f̃1g̃1, where c̃ = c + λ0 and d̃ = d + λ0, according to (17) in
Proposition 3.2. By Proposition 3.8, the eigenvalues of the operator B are
λn1n2

= λ0 + c̃ n1 + d̃ n2, n1, n2 ∈ N0. For n1, n2 ∈ N0 and c + d > 0, λ0 is
given by Proposition 3.4 (i), and so

λn1n2
=

1

2
(c− d)(n1 − n2) −

1

2
(c+ d) +

n1 + n2 + 1

2

√
∆.

For n1, n2 ∈ N0 and c+ d < 0, λ0 is given by Proposition 3.4 (ii). Thus,

λn1n2
=

1

2
(c− d)(n1 − n2) −

1

2
(c+ d) − n1 + n2 + 1

2

√
∆.

The common eigenvectors of Ñ1 and Ñ2 corresponding to the eigenvalues n1

and n2 are eigenvectors of B and, by Proposition 3.8, the theorem follows.

4. The Numerical Range of Pairing Operators
The aim of this section is the characterization of the numerical range of

the pairing operator B restricted to Γ(q), q ∈ Z.
An inclusion relation for W (B |Γ(q)) is presented in Lemma 4.1. This lemma

will be used in the proofs of Theorem 4.2, Theorem 4.3 and Theorem 4.6.

Lemma 4.1. Let the pairing operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2,
c, d, k, l ∈ C, be restricted to Γ(q), q ∈ Z, and let

W =

{

(c+ d)|z| 2 + kz + lz

1 − |z| 2
: z ∈ D

}

. (29)

Then (1 + |q|)W + τq ⊆ W (B |Γ(q)), where τq = qd, if q ≥ 0, and τq = −qc,
if q < 0.
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Proof : Let q ≥ 0. For an arbitrary element ψ ∈ Γ(q),

ψ =
+∞
∑

n=0

cn e
n
1 ∗ en+q

2 , cn ∈ C,

the following holds:

(ψ, ψ) =
+∞
∑

n=0

|cn| 2n!(n + q)!,

(f1f2ψ, ψ) =
+∞
∑

n=0

cn c̄n+1 (n+ 1)!(n + q + 1)!,

(g1g2ψ, ψ) =
+∞
∑

n=0

cn+1c̄n (n+ 1)!(n + q + 1)!,

(f1g1ψ, ψ) =

+∞
∑

n=0

n |cn| 2 n!(n + q)!,

(f2g2ψ, ψ) =
+∞
∑

n=0

(n+ q) |cn| 2 n!(n + q)!.

If cn = z n/n!, z ∈ D, the above series converge. We have

(ψ, ψ) =
+∞
∑

n=0

q
∏

j=1

(n+ j) |z| 2n = q!
1

(1 − |z| 2)1+q
,

(f1f2ψ, ψ) = z̄
+∞
∑

n=0

1+q
∏

j=1

(n + j) |z| 2n = (1 + q)!
z̄

(1 − |z| 2)2+q
,

(g1g2ψ, ψ) = z
+∞
∑

n=0

1+q
∏

j=1

(n + j) |z| 2n = (1 + q)!
z

(1 − |z| 2)2+q
,

(f1g1ψ, ψ) =
+∞
∑

n=0

q
∏

j=0

(n+ j) |z| 2n = (1 + q)!
|z| 2

(1 − |z| 2)2+q
,

(f2g2ψ, ψ) =

+∞
∑

n=0

q
∏

j=0

(n+ j) |z| 2n + q

+∞
∑

n=0

q
∏

j=1

(n + j) |z| 2n
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= (1 + q)!
|z| 2

(1 − |z| 2)2+q
+ q q!

1

(1 − |z| 2)1+q
.

Thus, for q ≥ 0, the complex numbers

(Bψ, ψ)

(ψ, ψ)
= (1 + q)

(c + d)|z| 2 + k z̄ + l z

1 − |z| 2
+ qd, z ∈ D,

belong to W (B |Γ(q)).
If q < 0, the proof is analogous.

Given a convex subset K of C, a point µ ∈ K is called a corner of K if K
is contained in an angle with vertex at µ, and magnitude less than π.

The following result on the corners of the numerical range of unbounded
linear operators will be used in the proof of Theorem 4.2. The proof for
bounded operators in [3, Theorem 1.5-5] can be easily adapted to this case.

Theorem 4.1. [3] If µ ∈ W (T ) is a corner of W (T ), then µ is an eigenvalue

of the operator T .

We now characterize the numerical range of the selfadjoint pairing operator
B restricted to Γ(0).

Theorem 4.2. Let the selfadjoint pairing operator B = c f1g1 + d f2g2 +
k f1f2 + k̄ g1g2, with c, d ∈ R and k ∈ C, be restricted to the subspace Γ(0)

and ∆ = (c+ d)2 − 4|k|2. Then W (B |Γ(0)) is:

(i) [−1
2(c+ d) + 1

2

√
∆,+∞), if ∆ > 0 and c+ d > 0;

(ii)
(

−∞,−1
2(c+ d) − 1

2

√
∆

]

, if ∆ > 0 and c+ d < 0;

(iii)
(

−1
2(c+ d),+∞

)

, if ∆ = 0 and c+ d > 0;

(iv)
(

−∞,−1
2(c+ d)

)

, if ∆ = 0 and c+ d < 0;
(v) {0}, if ∆ = c+ d = 0;
(vi) the whole R, if ∆ < 0.

Proof : Since the pairing operator B is selfadjoint, c + d ∈ R and l = k̄.
Obviously, W (B |Γ(0)) is a subset of the real line. Since it is a connected set,
W (B |Γ(0)) is an interval. Now, we characterize the extreme points of this

interval. If an extremum point of the interval is a corner of W (B |Γ(0)), by
Theorem 4.1 it is an eigenvalue of the operator.

(i) If ∆ > 0, then c+d 6= 0. Let c+d > 0. By Theorem 3.1, the minimum
eigenvalue of the selfadjoint pairing operator B |Γ(0) is λ0 = −1

2(c+ d)+ 1
2

√
∆

and there does not exist a maximum eigenvalue. By Theorem 4.1, (i) follows.
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(ii) If ∆ > 0 and c+ d < 0, the proof follows analogously to (i).
(iii) If ∆ = 0 and c + d > 0, then c + d = 2|k| and easy computations

show that B can be reduced to the form

B =
c− d

2
(f1g1 − f2g2) +

c+ d

2
(f2 + g1)

∗(f2 + g1) −
c+ d

2
ι.

When B is restricted to Γ(0), the first summand vanishes. Then B |Γ(0) is a
positive semidefinite selfadjoint operator translated by − 1

2(c + d). We show
that the numerical range of (B + 1

2(c + d)ι) |Γ(0) is (0,+∞), or equivalently,
W (C |Γ(0)) = (0,+∞), where C = (f2 + g1)

∗(f2 + g1). Indeed, let wN =
∑N

n=1
un

n! f
n
1 f

n
2 (1) ∈ Γ(0). Let u0 = uN+1 = 0. We have

(CwN , wN)

(wN , wN)
=

∑N
n=0(n+ 1)|un + un+1|2

∑N
n=1 |un|2

≥ 0

and 0 may be approached as closely as desired. In fact, if un = (−1)n(N−n),
n = 1, . . . , N ,

lim
N→∞

(CwN , wN)

(wNwN)
= lim

N→∞

1 + 2 + · · · + (N + 1)

1 + 4 + · · · + (N − 1)2
= 0.

Suppose that 0 ∈ W (C |Γ(0)). Thus, 0 is a corner of W (C |Γ(0)) and, by Theo-
rem 4.1, it is an eigenvalue of C. Then there exists a non-zero vector u ∈ Γ(0)

such that Cu = 0, and so (Cu, u) = ((f2 + g1)u, (f2 + g1)u) = 0. Therefore,
(f2 +g1)u = 0, which is impossible by Proposition 3.6. Hence, 0 /∈ W (C |Γ(0)).
Thus, W (B |Γ(0)) =

(

−1
2(c+ d),+∞

)

.
(iv) If ∆ = 0 and c+ d < 0, the proof follows analogously to (iii).
(v) If ∆ = c+ d = 0, then k = 0 and B |Γ(0)= 0. Thus, its numerical range

is the singleton {0}.
(vi) Let ∆ < 0. Since B is selfadjoint, by Lemma 4.1 we have

W =

{

(c+ d)|z| 2 + kz + k̄z

1 − |z| 2
: z ∈ D

}

⊆ W (B |Γ(0)) ⊆ R.

Considering r = (1 + |z| 2)/(1 − |z| 2) and φ = arg z − arg k, we easily verify
that

W =

{

c+ d

2
(r − 1) + |k|

√

r2 − 1 cosφ : φ ∈ R, r ≥ 1

}

= R.

Therefore, W (B |Γ(0)) = R.
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Remark 4.1. Theorem 4.2 describes the numerical range of the following
infinite tridiagonal selfadjoint matrix, which is the matrix representation, in
the standard basis, of the selfadjoint pairing operator B = c f1g1 + d f2g2 +
k f1f2 + k̄ g1g2 restricted to the subspace Γ(0),













0 k̄ 0 0 . . .
k c+ d 2k̄ 0 . . .
0 2k 2(c+ d) 3k̄ . . .
0 0 3k 3(c+ d) . . .
...

...
...

...
. . .













, c+ d ∈ R, k ∈ C. (30)

For q ∈ Z, we have the following result.

Theorem 4.3. Let the selfadjoint pairing operator B = c f1g1 + d f2g2 +
k f1f2 + k̄ g1g2, c, d ∈ R and k ∈ C, be restricted to the subspace Γ(q), q ∈ Z.

Let ∆ = (c+ d)2 − 4|k|2 and

ακ =

{

1+q

2 (d− c+ κ
√

∆) − d, if q ≥ 0
1−q

2 (c− d+ κ
√

∆) − c, if q < 0
, κ ∈ {−1, 0, 1}.

Then W (B |Γ(q)) is:

(i) [α1,+∞), if ∆ > 0 and c+ d > 0;
(ii) (−∞, α−1], if ∆ > 0 and c+ d < 0;
(iii) (α0,+∞), if ∆ = 0 and c+ d > 0;
(iv) (−∞, α0), if ∆ = 0 and c+ d < 0;
(v) {α0}, if ∆ = c+ d = 0;
(vi) the whole R, if ∆ < 0.

Proof : The proof follows similar steps to the proof of Theorem 4.2, using
Theorem 3.2 instead of Theorem 3.1.

Remark 4.2. If q ≥ 0, Theorem 4.3 describes the numerical range of the
tridiagonal selfadjoint matrix S q

c,d given by














dq k̄
√

1 + q 0 0 . . .

k
√

1 + q c+ d+ dq k̄
√

2(2 + q) 0 . . .

0 k
√

2(2 + q) 2(c+ d) + dq k̄
√

3(3 + q) . . .

0 0 k
√

3(3 + q) 3(c+ d) + dq . . .
...

...
...

... . . .















, c, d ∈ R, k ∈ C.

If q < 0, Theorem 4.3 characterizes W (S−q
d,c ).
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The Hyperbolical Range Theorem will be used in the proof of Theorem 4.5
and has the following statement:

Theorem 4.4 (Hyperbolical Range Theorem). [11] Let A = (aij) ∈M2 and

J = diag(1,−1). Let α1, α2 be the eigenvalues of JA, and let

M = |λ1|2 + |λ2|2 − Tr(A∗JAJ), N = Tr(A∗JAJ) − 2 Re(α1α2).

Denote by l1 the line perpendicular to the line defined by α1 and α2 and

passing through α = 1
2Tr(JA). Denote by l2 the line defined by a11 and −a22.

a) If M > 0 and N > 0, then V +
J (A) is bounded by a branch of the

hyperbola with α1 and α2 as foci, transverse and non-transverse axis

of length
√
N and

√
M , respectively.

b) If M > 0 and N = 0, then V +
J (A) is

i) the line l1, if |a12| = |a21|;
ii) an open half-plane defined by the line l1, if |a12| 6= |a21|.

c) If M > 0 and N < 0, then V +
J (A) is the whole complex plane.

d) If M = 0 and N > 0, then V +
J (A) is a closed half-line in l2 with

endpoint α1 or α2.

e) If M = N = 0, then V +
J (A) is

i) the singleton {α}, if Tr(A) = 0;
ii) an open half-line in l2 with endpoint α, if Tr(A) 6= 0.

Next, we generalize Theorem 4.2 for non-selfadjoint pairing operators. We
will denote by Re(A) the selfadjoint operator 1

2(A+ A∗).

Theorem 4.5. Let the pairing operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2,
c, d, k, l ∈ C, be restricted to Γ(0). Let ∆ = (c+ d)2 − 4kl, and let

M =
1

2
|∆| + |k|2 + |l|2 − 1

2
|c+ d|2, N =

1

2
|∆| − |k|2 − |l|2 +

1

2
|c+ d|2.

Denote by l1 the line perpendicular to the line defined by α1 = −1
2(c+d)+

1
2

√
∆

and α2 = −1
2(c+ d)− 1

2

√
∆, and passing through −1

2(c+ d). Denote by l2 the

line defined by 0 and c+ d.

a) If M > 0 and N > 0, then W (B |Γ(0)) is bounded by a branch of the

hyperbola with α1 and α2 as foci, transverse and non-transverse axis

of length
√
N and

√
M, respectively.

b) If M > 0 and N = 0, then W (B |Γ(0)) is

i) the line l1, if |k| = |l|;
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ii) an open half-plane defined by the line l1, if |k| 6= |l|.
c) If M > 0 and N < 0, then W (B |Γ(0)) is the whole complex plane.

d) If M = 0 and N > 0, then W (B |Γ(0)) is a closed half-line in l2 with

endpoint α1 or α2.

e) If M = N = 0, then W (B |Γ(0)) is

i) the singleton {0}, if c+ d = 0;
ii) an open half-line in l2 with endpoint −1

2(c+ d), if c+ d 6= 0.

Proof : By Lemma 4.1, W is a subset of W (B |Γ(0)). Let J = diag(1,−1) and

A =

[

0 l
k c+ d

]

.

It can be easily verified that

W =

{

1

1 − |z|2 (1 z̄)A(1 z)T : z ∈ D

}

= V +
J (A),

and so the subset W is described by the Hyperbolical Range Theorem. Let
∆ = (c + d)2 − 4kl and P = 2|k|2 + 2|l|2 − |c + d|2. The eigenvalues α1 and
α2 of the matrix JA are −1

2(c+ d) ± 1
2

√
∆, and we have

M = |α1|2 + |α2|2 − Tr(A∗JAJ) =
1

2
(|∆| + P ),

N = Tr(A∗JAJ) − 2 Re(ᾱ1α2) =
1

2
(|∆| − P ).

It can be easily seen that M ≥ 0 and

|∆|2 = |c+ d|4 + 16|k|2|l|2 − 8|k||l||c+ d|2 cos(2α− 2β), (31)

where 2α = arg(kl) and β = arg(c+d). By the Hyperbolical Range Theorem,
the subset W of W (B |Γ(0)) is bounded by a branch of a possibly degenerate
hyperbola. The following cases may occur:

1.st Case: M > 0 and N > 0. We prove the claim thatW (B |Γ(0)) = W. The
unit eigenvectors associated with an extremum eigenvalue of Re(eiθB), θ ∈
[0, 2π), give rise to boundary points of the numerical range ofB. The real part
of eiθB is Re(eiθB) = cθ f1g1 +dθ f2g2 +kθ f1f2 + k̄θ g1g2, where cθ = Re(eiθc),
dθ = Re(eiθd) and 2kθ = (k + l̄) cos θ + i (k − l̄) sin θ. Moreover, cθ + dθ =
|c+ d| cos(β + θ). Let ∆θ = (cθ + dθ)

2 − 4|kθ|2. After some computations, we
get ∆θ = 1

2|∆| cos(2θ + ψ) − 1
2P, where tanψ = Im∆/Re∆. It follows that

−M ≤ ∆θ ≤ N, for all θ ∈ [0, 2π). Let θ be such that ∆θ > 0. If cθ + dθ > 0,
by Theorem 3.1, the minimum eigenvalue of the selfadjoint pairing operator
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Re(eiθB) is λθ
0 = −1

2(cθ+dθ)+
1
2

√
∆θ. The eigenvectors associated with λθ

0 are

vθ
0 = c0 ezθf1f2(1), where c0 is a non-zero complex number, zθ = 0, if kθ = 0,

and zθ = λθ
0/k̄θ, if kθ 6= 0. Then zθ ∈ D and, as in the proof of Lemma 4.1

(i), for q = 0, we have

(Bvθ
0, v

θ
0)

(vθ
0, v

θ
0)

=
(c+ d)|zθ| 2 + k z̄θ + l zθ

1 − |zθ| 2
.

This point belongs to the boundary of W (B |Γ(0)) and also belongs to W .
As θ varies in [0, 2π), all the boundary points of W (B |Γ(0)) belong to W . If
cθ + dθ < 0, the discussion follows along similar lines. Thus, W (B |Γ(0)) = W
is bounded by a branch of the hyperbola with foci α1 and α2, transverse axis
of length

√
N and non-transverse axis of length

√
M .

2.nd Case: M > 0 and N = 0. Since N = 0, we have M = |∆| = P .
Therefore, ∆θ = 1

2M(cos(2θ + ψ) − 1) and it can be easily seen that there
exists θ′ = −ψ/2 ∈ [0, 2π) such that the real sinusoidal function f(θ) := ∆θ

satisfies f(θ) < 0, for θ 6= θ′ and f(θ′) = 0. In this case, there is a unique
supporting line of W , specifically the line l1 passing through −(c+ d)/2 and
perpendicular to the line defined by α1 and α2. If |k| 6= |l|, then W is an open
half-plane defined by the line l1. By Theorem 4.2 iii) or iv), the boundary of
the half-plane does not belong to W (B |Γ(0)) and so W (B |Γ(0)) coincides with
W . If |k| = |l| 6= 0, then W is the line l1. In this case, ∆θ and cθ + dθ vanish
only in the direction θ = (π/2 − β) mod π. By Theorem 4.2 v), it follows
that W (B |Γ(0)) coincides with W . If k = l = 0, then M = 0, contradicting
the hypothesis.

3.rd Case: M > 0 and N < 0. Since N < 0, there does not exist any
supporting line for the set W, which is the whole complex plane. Hence,
W (B |Γ(0)) = C.

4.th Case: M = 0 and N > 0. Since M = 0, we have N = |∆| = −P > 0.
In this case, there are infinite supporting lines of the set W and the branch of
the hyperbola given by the Hyperbolical Range Theorem degenerates into a
closed half-line in the line defined by 0 and c+d, with endpoint either α1 or α2.
For θ ∈ [0, 2π), ∆θ = 1

2N(cos(2θ + ψ) + 1) ≥ 0. Using analogous arguments

to those in the proof of the 2.nd Case, we conclude that W (B |Γ(0)) = W .
5.th Case: M = 0 and N = 0. It can be easily seen that N = ∆ = 0 and

straightforward computations yield |k| = |l| = 1
2 |c + d|. If k = 0, having in

mind Theorem 4.2 (v), we conclude that W (B) = {0}. If k 6= 0, W is an
open half-line in the line defined by 0 and c+d and with endpoint − 1

2(c+d).
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In this case, ∆θ = 0 for θ ∈ [0, 2π), and cθ + dθ vanishes only in the direction
θ = (π

2 − α) mod π. By similar arguments to those used above, it can be
shown that W (B |Γ(0)) = W .

6.th Case: M = 0 and N < 0. Under these hypothesis, it can easily be
seen that 0 = −M ≤ ∆θ ≤ N < 0, which is impossible.

Using Theorem 3.2, Lemma 4.1 and the ideas in the proof of Theorem 4.5,
we may characterize the numerical range of the pairing operator B, restricted
to the subspace Γ(q), q ∈ Z. We shall prove that these sets are homothetic,
that is, they are bounded by (possibly degenerate) homothetic hyperbolas.

Theorem 4.6. Let the pairing operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2,
c, d, k, l ∈ C, be restricted to Γ(q), q ∈ Z. Let ∆ = (c+ d)2 − 4kl and let

M =
1

2
|∆| + |k|2 + |l|2 − 1

2
|c+ d|2, N =

1

2
|∆| − |k|2 − |l|2 +

1

2
|c+ d|2.

Let κ ∈ {−1, 0, 1} and εε′ ∈ {11, 02, 20}. Denote by l1 the line passing

through α0
11 and perpendicular to the line defined by α1

11 and α−1
11 , and denote

by l2 the line defined by α0
20 and α0

02, where

ακ
εε′ =

{

1+q

2 (εd− ε′c+ κ
√

∆) − d, if q ≥ 0
1−q

2 (εc− ε′d+ κ
√

∆) − c, if q < 0
.

a) If M > 0 and N > 0, then W (B |Γ(q)) is bounded by a branch of the

hyperbola with α1
11 and α−1

11 as foci, transverse and non-transverse axis

of length (1 + |q|)
√
N and (1 + |q|)

√
M, respectively.

b) If M > 0 and N = 0, then W (B |Γ(q)) is

i) the line l1, if |k| = |l|;
ii) an open half-plane defined by the line l1, if |k| 6= |l|.

c) If M > 0 and N < 0, then W (B |Γ(q)) is the whole complex plane.

d) If M = 0 and N > 0, then W (B |Γ(q)) is a closed half-line in l2 with

endpoint α1
11 or α−1

11 .

e) If M = N = 0, then W (B |Γ(q)) is

i) the singleton {α0
11}, if c+ d = 0;

ii) an open half-line in l2 with endpoint α0
11, if c+ d 6= 0.

Proof : We prove that

W (B |Γ(q)) = (1 + |q|)W (B |Γ(0)) + τq, q ∈ Z, (32)
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where τq = qd, if q ≥ 0, and τq = −qc, if q < 0. By Lemma 4.1, W (B |Γ(q))
contains (1 + |q|)W + τq, and by Theorem 4.5, we have that W = W (B |Γ(0)).
Thus, (1+ |q|)W (B |Γ(0))+ τq ⊆ W (B |Γ(q)), q ∈ Z. Let q ≥ 0. As in the proof
of Theorem 4.4, we consider Re(eiθB) = cθ f1g1 + dθ f2g2 + kθ f1f2 + k̄θ g1g2,
with cθ = Re(eiθc), dθ = Re(eiθd) and 2kθ = (k + l̄) cos θ + i (k − l̄) sin θ.

a) Let θ ∈ [0, 2π) be such that ∆θ = (cθ + dθ)
2 − 4|kθ|2 > 0. If cθ + dθ > 0,

by Theorem 3.2, the minimum eigenvalue of the selfadjoint pairing operator
Re(eiθB) restricted to Γ(q), q ≥ 0, is

λθ
0q =

q

2
(dθ − cθ) −

1

2
(cθ + dθ) +

1 + q

2

√

∆θ = (1 + q)λθ
00 + qdθ,

and the eigenvectors of Re(eiθB) associated with the eigenvalue λθ
0q are the

vectors vθ
0q = c0 f̃

q
2 ezθf1f2(1), where c0 is a non-zero complex number, zθ = 0,

if kθ = 0, zθ = λθ
00/k̄θ, if kθ 6= 0, and f̃2 = 1√

1−|zθ| 2
(f2−z̄θg1). Using analogous

arguments to those in the proof of Lemma 4.1, we find

wθ
q =

(Bvθ
0q, v

θ
0q)

(vθ
0q, v

θ
0q)

= (1 + q)
(c+ d)|zθ| 2 + k z̄θ + l zθ

1 − |zθ| 2
+ qd, (33)

which is a boundary point of W (B |Γ(q)), q ≥ 0. If cθ+dθ < 0, the discussion is
similar. From (33), we get the following relation between the boundary points
wθ

q of W (B |Γ(q)), q > 0, and the boundary points wθ
0 of W (B |Γ(0)): wθ

q =

(1+ q)wθ
0 + qd. This means that the boundary generating curve of W (B |Γ(q)),

q > 0, is obtained from the boundary generating curve of W (B |Γ(0)) by
a dilation of ratio 1 + q and a translation associated with qd. Hence, the
equality in (32) holds for q ≥ 0. That is, W (B |Γ(q)), q ≥ 0, is bounded
by a branch of the hyperbola with α1

11 and α−1
11 as foci, and transverse and

non-transverse axis of length (1 + q)
√
N and (1 + q)

√
M, respectively.

b) If |k| 6= |l|, then (1+ q)W + qd is an open half-plane defined by the line
l1. By similar arguments to those in the proof of Theorem 4.3 iii), it can be
shown that the boundary of this half-plane does not belong to W (B |Γ(q)) and
so W (B |Γ(q)) coincides with (1 + q)W + qd, for q ≥ 0. If |k| = |l| 6= 0, then
(1 + q)W + dq is the line l1. In this case, ∆θ = (cθ + dθ)

2 − 4|kθ|2 and cθ + dθ

vanish only in one direction, and so the equality in (32), q ≥ 0, follows.
c) Since W = C, it is clear that W (B |Γ(q)) = C.
d) In this case, the set (1 + q)W + qd degenerates into a closed half-line

in l2 with endpoint α1
11 or α−1

11 . Since ∆θ ≥ 0 for θ ∈ [0, 2π), by analogous
arguments to those used above, the equality in (32), q ≥ 0, is proved to hold.
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e) As in the proof of Theorem 4.5, we have |k| = |l| = 1
2 |c+d|. If k = 0, we

conclude that W (B |Γ(q)) = {qd}. If k 6= 0, (1 + q)W + qd is an open half-line
in l2 with endpoint α0

11 and we may conclude that W (B |Γ(q)) = (1+q)W+qd.
If q < 0, the proof is similar.

Remark 4.3. The pairing operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2 res-
tricted to Γ(q) is represented by the tridiagonal matrix T q

c,d in Remark 3.1.

Thus, W (T q
c,d), q ≥ 0, is characterized by Theorem 4.6. For q < 0, the pairing

operator B = c f1g1 + d f2g2 + k f1f2 + l g1g2 restricted to Γ(q) is represented
by the tridiagonal matrix T−q

d,c , and so W (T q
c,d) is given by the same theorem,

replacing q, c and d by −q, d and c, respectively.
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