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MOORE CATEGORIES

DIANA RODELO

Abstract: In 1970, M. Gerstenhaber introduced a list of axioms defining Moore
categories in order to develop the Baer Extension Theory. In this paper, we study
the independence of the axioms and compare them with more recent notions, show-
ing that a Moore category is exactly a pointed, strongly protomodular and Barr-
exact category with cokernels.

Introduction
For several years many category theorists were focused on defining an ax-

iomatic context that would reflect the properties of groups and rings as the
abelian categories do for abelian groups and modules. The difficulty found
in weakening the axioms of abelian categories contributed for the arising
of many different approaches, from the 1950’s through the 1970’s. Some
were designed to represent a good context for non-abelian homology, such
as Moore categories, while others were developed to capture more or less
algebraic properties, such as Barr-exact Maltsev categories. So, unlike the
abelian case, there was no outstanding theory that could be considered as a
“good” generalization of groups.

In [3], D. Bourn introduced the notion of a protomodular category, whose
outstanding example is the category of groups. Later in [5], he defined the
notion of strong protomodular categories which capture some more group-
like properties. Also based on protomodular categories, the new concept of
semi-abelian categories appeared in [10], by G. Janelidze, L. Márki and W.
Tholen. At this time the “old” complicated axioms from the earlier years
were compared with more recent notions, establishing the existence of many
disguised similarities.

Since recent notions had already appeared much earlier, although in dis-
guised forms, we are interested in analyzing Moore categories. This notion
was introduced in [9] by M. Gerstenhaber as a category suitable for develop-
ing the Baer Extension Theory. Having in mind the next higher cohomology
group, containing the obstructions to extensions problems, he was concerned
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in giving a good context for the cohomology of groups. For these reasons,
the categorical setting given is based on the categories of groups and rings.
Like most of the theories of this time, the definition of a Moore category is
also given by long list of entangled axioms. But, after the successful com-
parison of the “old” and “new” theories done for the semi-abelian categories,
we expect to achieve some simplifications by translating the old axioms into
more recent notions and discarding the needless axioms by studying their
dependencies. As shown in the sequel, a Moore category turns out to be
a pointed, strongly protomodular and Barr-exact category with cokernels.
We conclude by presenting other examples of Moore categories besides the
categories of groups and rings.

1. Moore Categories
We denote kernels by � ,2 // and cokernels by � ,2 . The notion of a normal

monomorphism will be used in the sense of protomodularity, i.e. with respect
to an equivalence relation (Section 3). We write k a R when a monomor-
phism k is normal to an equivalence relation R. The kernel equivalence
relation of a morphism f is represented by R[f ]. A short exact sequence

A � ,2 k //B
p � ,2Q will also be called an extension (of Q by A). Moreover, if

p · s = 1Q, then we call the diagram A � ,2 k //B
p � ,2Qoo
s

oo a split extension.

The notion of a Moore category introduced in [9] is the following:

Definition 1.1. A category C with zero object, kernels and cokernels is called
a Moore category if the following axioms hold:

axiom 1.1 3 × 3 lemma;
axiom 1.2 In the commutative diagram

A
� ,2 k //

_��
α

��

B
p � ,2

β
��

Q

∼=γ
��

A′ � ,2
k′

// B′
p′

� ,2 Q′

where both rows are extensions, the composition
k′ · α is a kernel;

axiom 2.1 C has pullbacks;
axiom 2.2 Cokernels are preserved by pullbacks;
axiom 2.3 The intersection of kernels is a kernel;
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axiom 3 Given a split extension A � ,2 k //B
p � ,2Qoo
s

oo , the pair

of morphisms (k, s) is jointly epic;
axiom 4.1 There is a representative set under the equiva-

lence relation for the extensions of Q by A;
axiom 4.2 Sub(A) is a set.

We first note that a Moore category has finite limits, since it is pointed
and has pullbacks. So it is unnecessary to refer the kernels in the beginning
of the definition.

In the next sections we are focused on proving that a Moore category is
a pointed, strongly protomodular and Barr-exact category with cokernels.
During this process we shall see that axioms 2.3 and 3 are redundant.

2. Protomodularity
We will start by analyzing the properties obtained from the 3 × 3 lemma.

Definition 2.1. A category C with pullbacks is called protomodular if the
change of base functors, with respect to the fibration

π : PtC −→ C,

B
p

// // Qoo
s

oo 7−→ Q where p · s = 1Q

are conservative.

There are several alternative definitions for protomodularity. We will use
the following three:

Proposition 2.2. (Proposition 7 of [3].) A category with pullbacks is

protomodular if and only if the pullback cancellation property holds:

for every commutative diagram with p · s = 1Q

A //

��
1

B //

p
����

2

C

��

P // Q

OO s

OO

// R,

if 1 and 1 2 are pullbacks, then 2 is a pullback.

When C is pointed and has pullbacks, protomodularity can also be char-
acterized by the split short five lemma: given a commutative diagram



4 DIANA RODELO

where the rows are split extensions,

A
� ,2 k //

_��
∼=α
��

B
p � ,2

β
��

Qoo
s

oo

∼=γ
��

A′ � ,2
k′

// B′
p′

� ,2 Q′,oo
t

oo

(1)

if α and γ are isomorphisms, then β is an isomorphism (Theorem 2.3 (h) of
[4].).

A pair of morphisms (x : X //A, y : Y //A) is jointly strongly epimor-

phic whenever a monomorphism j : J // //A is an isomorphism provided that
its pullbacks along x and y are isomorphisms. In the presence of equalizers,
this notion implies that (x, y) is jointly epimorphic.

Lemma 2.3. (see [7], p. 781.) A category with pullbacks of split epi-

morphisms is protomodular if and on only if for every pullback diagram with

p · s = 1Q

A
a //

��

B

p
����

P // Q,

OO s

OO

the pair (a, s) is jointly strongly epimorphic.

Proposition 2.4. A pointed category satisfying axioms 2.1 and 1.1 is pro-

tomodular.

Proof: Consider the diagram (1) and apply the 3 × 3 lemma to the com-
mutative diagram

0
_��

0A

��

0
_��

0B

��

0
_��

0Q

��

A
� ,2 k //

_��
∼=α
��

B
p � ,2

β
��

Q

∼=γ
��

A′ � ,2
k′

// B′
p′

� ,2 Q′

to conclude that the second column is an extension, thus β is an isomorphism.
2

At this point we may identify regular epis with cokernels, one of the well
known properties of pointed protomodular categories (Corollary 14 of [3].).
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Remark 2.5. A pointed category satisfying axioms 2.1 and 1.1 also satisfies
axiom 3, by Lemma 2.3 for P = 0.

3. Barr-exactness
We will use some of the properties of normal monos in pointed protomod-

ular categories to prove the Barr-exactness of a Moore category.
We say that a morphism f : X //A is normal to an equivalence relation

(r1 r2) : R // //A × A if X is an equivalence class of R, i.e. if there exists

a morphism f̃ such that the first diagram commutes and the second is a
pullback:

X × X
f̃

// R
��

��

X × X
f×f

// A × A

X × X
f̃

//

π
��

R
r1

��

X
f

// A.

A normal morphism is always a monomorphism (Lemma 1 of [6].) and it
is a kernel if and only if R = R[g], for some morphism g (Proposition 4 of
[6].).

Theorem 3.1. (Theorem 11 of [6].) In a pointed protomodular category,

if (X // x //A) a R and (Y //
y

//A) a S such that X ∧ Y = 0, then there is a

unique morphism γ : X × Y //A with γ · (1 0) = x and γ · (0 1) = y.
Moreover, for the double relation R2S we have an equivalence relation

R2S −→ A × A
x R y

S S 7−→ (x, w)
z R w

such that RS = SR = R ∨ S = R2S and γ a (R2S).

Lemma 3.2. In a pointed category satisfying axioms 2.1 and 1.1, given a

commutative diagram

0 � ,2 //
_��

��

Y
_��

y
��

1

Y

y
��

X
� ,2 x // A

r � ,2

s
_��

B

s
_��

2

X
x

// C
r

� ,2 D
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where the first and second lines are extensions, 1 is a pullback and 2
is a pushout, then all lines are extensions. Moreover, there exists a unique

morphism γ : X × Y //A such that γ · (1 0) = x, γ · (0 1) = y and

X × Y � ,2
γ

//A
r·s � ,2D is an extension.

Proof: We have x a R[r], y a R[s] such that X ∧ Y = 0. Applying
Theorem 3.1, there exists γ : X × Y // //A such that γ·(1 0) = x, γ·(0 1) =

y and γ a (R[r] ∨ R[s]). Since 2 is a pushout, we have R[r] ∨ R[s] = R[t],
for the cokernel t = r · s, thus γ = ker(t). Applying the 3 × 3 lemma to the
commutative diagram

Y
� ,2

(0 1)
// X × Y

π � ,2
_��

γ
��

X

x
��

Y
� ,2

y
//

��

A
s � ,2

t
_��

C

r
��

0 // D D

where all rows, the first and second columns are extensions and the third

column is a zero sequence, we prove that X � ,2 x //C
s � ,2D is an extension.

Finally, we conclude that Y � ,2
y

//B
s � ,2D is an extension by applying the

3 × 3 lemma to the original diagram. 2

Lemma 3.3. In a pointed category with cokernels satisfying axioms 2.1 and

1.1, any monomorphism y that factorizes as y = r · y, with r a cokernel and

y a kernel, is also a kernel.

Proof: Consider x = ker(r), s = coker(y) and s = coker(y). From s ·r ·y =
0, we get a unique morphism r such that r · s = s · r. We have the diagram
of Lemma 3.2 with 1 a pullback, since y is a monomorphism, and 2 a
pushout, since s = coker(y). 2

Proposition 3.4. In a pointed category with cokernels satisfying axioms 2.1

and 1.1, reflexive relations are effective equivalence relations.

Proof: Suppose (r1 r2) : R // //A × A is a reflexive relation, i.e. there
exists a monomorphism e : A // //R such that r1 · e = r2 · e = 1A. For
k = ker(r1), the pair (k, e) is jointly epic.
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The composition r2 · k is a monomorphism, since r2 · k ·x = r2 · k · y implies
(r1 r2) · k · x = (r1 r2) · k · y, allowing us to conclude that x = y. This
monomorphism r2 · k factors by a cokernel and a kernel, thus by Lemma 3.3
is also a kernel. Consider q = coker(r2 · k). We have q · r1 = q · r2 by the fact
that (k, e) is jointly epic and

q · r1 · k = 0 = q · r2 · k
q · r1 · e = q = q · r2 · e.

Applying the pullback cancellation property of protomodular categories to
the commutative diagram

K
� ,2 k //

��

R
r2 � ,2

r1
����

A
q

_��
2

0 //

1

A q
� ,2

OO
e

OO

Q

we conclude that 2 is a pullback. 2

As a consequence, we may identify kernels with normal monomorphisms.

Remark 3.5. A pointed category with cokernels satisfying axioms 2.1 and
1.1 also satisfies axiom 2.3, since the stability for intersections holds for
normal monomorphisms (f a R and g a S, imply that (f ∧ g) a (R ∧ S)).

To prove that a Moore category is regular, we will use the pullback stability
of axiom 2.2.

Proposition 3.6. A pointed category with cokernels satisfying axioms 2.1

and 1.1 is protomodular and regular.

Proof: Based on Proposition 3.2 of [10], if C is a pointed category with
kernels, cokernels of kernels, pullback-stable cokernels and such that ker(f) =
0 iff f is a monomorphism, then C has a pullback-stable (cokernel, mono)-
factorization system. 2

Conversely, a pointed protomodular and regular category satisfies the 3×3
lemma (Theorem 12 of [7]) and the pullback-stability holds for cokernels,
since they coincide with the regular epimorphisms.

Proposition 3.7. A pointed category with cokernels satisfying axioms 2.1

and 1.1 is protomodular and Barr-exact.

Proof: By Propositions 3.6 and 3.4. 2
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4. Strong Protomodularity
Axiom 1.2 is finally used in order to establish strong protomodularity.

Definition 4.1. A category C with finite limits is called strongly protomodu-

lar if the change of base functors, with respect to the fibration π : PtC //C ,
are left exact, conservative and reflect normal monomorphisms.

We have seen that normal monomorphisms in C are kernels. Normal
monomorphisms in the category of pointed objects have the following char-
acterization:

Proposition 4.2. (Proposition 2.1 of [5].) When a category C is quasi-

pointed and protomodular, a map

X
j

//

f ��@
@@

@@
@@

@
Y

g����
��

��
�

Q

is a normal monomorphism in C/Q if and only if j · ker(f) is a normal

monomorphism in C. The same result holds in PtC[Q].

So, j is a normal monomorphism in C/Q (or PtC[Q]) if and only if j ·ker(f)
is a kernel in C.

Proposition 4.3. A pointed category with cokernels satisfying axioms 2.1,

1.1 and 1.2 is strongly protomodular.

Proof: Since the category is pointed and protomodular, it suffices to prove
that the change of base functors

(0Q)∗ : PtC[Q] −→ C

B
p

// //

β
��

Qoo
s

oo

B′
p′

// // Qoo
s′

oo

7−→ A = ker(p)
_��

α
��

A′ = ker(p′)

reflect normal monomorphisms. This is given by axiom 1.2. 2

Conversely, we have:

Proposition 4.4. A pointed, strongly protomodular and Barr-exact category

with cokernels satisfies axiom 1.2.
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Proof: The diagram of axiom 1.2 induces the commutative diagram

A
� ,2

(0 k)
Q

//
_��

α

��

R[p]
p1 // //

1A×Qβ
��

Boo
(1B 1B)

Q

oo

A′ � ,2
(0 k′)

Q

// B ×Q B′
πB // //

B.oo
(1B β)

Q

oo

Since the category is strongly protomodular and α is a kernel, the composite
(0 k′)

Q
· α = 1A ×Q β · (0 k)

Q
is a kernel. By Lemma 3.3 applied to the

monomorphism k′ · α = πB′ · ((0 k′)
Q
· α) is a kernel. 2

Our results can be gathered into the following characterization:

Theorem 4.5. A Moore category is a pointed, strongly protomodular and

Barr-exact category with cokernels.

5. Mo(o)re Examples
(1) Grp, Rng.
(2) Abelian categories. They are pointed and have cokernels by definition.

They are also essentially affine, since they are additive and have finite
limits (Corollary 5 of [3]), thus strongly protomodular ([5]). Finally,
they are Barr-exact by the Tierney equation.

(3) Heyting semilattices. It is well known that the category H of Heyting
semilattices (meet-semilattices with implication) is semi-abelian.

Before proving the strong protomodularity of H, we first note that
a morphism α : A //A′ is a normal monomorphism in H if and only
if α(A) is a filter in A′. In fact, if α a R, then (α(a1), α(a2)) ∈ R,
for every pair of elements (a1, a2) of A, and (α(a), a′) ∈ R implies
a′ ∈ α(A). Consequently, (1A′, a′) ∈ R if and only if a′ ∈ α(A). Now
1A′ = α(1A), α is closed for meets and for a ∈ A, a′ ∈ A′ such that
α(a) ≤ a′, we have

(α(a), 1A′), (a′, a′) ∈ R ⇒ (α(a) → a′, 1A′ → a′) ∈ R
⇒ (1A′, a′) ∈ R
⇒ a′ ∈ α(A),

proving that α(A) is a filter in A′. Conversely, if α(A) is a filter in
A′, then S = {(a′

1, a
′
2) ∈ A′ × A′ : a′1 → a′2, a

′
2 → a′1 ∈ α(A)} is

an equivalence relation on A′. Moreover, (1A′, a′) ∈ S if and only if
a′ ∈ α(A) and (α(a1), α(a2)) ∈ S, for every pair (a1, a2) of elements of
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A, since α preserves the implication. Hence, there exists a morphism
α̃ : A × A //S , with α̃(a1, a2) = (α(a1), α(a2)), such that α a S.

For any Heyting semilattice Q, we must prove that the change of
base functor of Proposition 4.3 reflects normal monomorphisms. Note
that A = {b ∈ B : p(b) = 1Q}, k : A ↪→ B is an inclusion and
α(a) = β(a), for every element a of A. Suppose α(A) = β(A) is a
filter in A′. We want to prove that β · k(A) = β(A) is a filter in B ′.
Consider a ∈ A, b′ ∈ B′ such that β(a) ≤ b′. Then

β(a) ≤ b′ ⇒ β(a) → b′ = 1B′

⇒ p′(β(a) → b′) = 1Q

⇒ 1Q → p′(b′) = 1Q

⇒ p′(b′) = 1Q

⇒ b′ ∈ A′.

Since β(A) is a filter in A′ and β(a) ≤ b′, with b′ ∈ A′, then b′ ∈ β(A).
(4) Grp(C), Rng(C), for an elementary topos C with a natural number

object. They are obviously pointed and the existence of cokernels is
guaranteed by the natural number object. When C is finitely complete,
the categories of internal groups and rings are strongly protomodular.
They are Barr-exact because C is also Barr-exact.

(5) PtC[Q], for C strongly protomodular, Barr-exact with coequalizers.
They are obviously pointed and coequalizers in C give cokernels in the
category of pointed objects. Finally, since C is strongly protomodular
and Barr-exact, the same holds for PtC[Q].
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