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Introduction

Protomodular categories have been introduced in [6] as a formal context
in which many properties characteristic of groups remain valid. Among the
protomodular categories, there are in particular the semi-abelian categories,
introduced in [10]. They include of course all abelian categories, but there
are many other examples, such as the category of all groups, of rings with or
without unit, of Ω-groups, of Heyting or Boolean algebras, of presheaves or
sheaves of these, and so on.

The algebraic theories T whose category SetT of models is protomodular
have been characterized in [8]. Using this characterization, in this paper
we study topological T-algebras for such an algebraic theory T, generalizing
results obtained in [4] for the special case of topological semi-abelian algebras.

In the case of topological groups, the addition by an element x is an home-
omorphism, with inverse the multiplication by x−1. When performing the
quotient by a normal subgroup, this homeomorphism transforms the equiv-
alence class of the unit in the equivalence class of x. The protomodular
theories do not give rise to such homeomorphisms and our first task is to
develop some alternative tools which will turn out to play a key role in the
generalization of most of the classical results known for topological groups.

We first present protomodular algebraic theories: their characterization,
some examples and elementary properties. Then we introduce topological
protomodular algebras and the general properties which will be essential for
their subsequent study. We emphasize here the presentation of a topological
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protomodular algebra A as a retract of a power An described in proposition 6
and metatheorem 8, which are effective substitutes of the homeomorphisms
− + x of topological groups.

The main part of the paper studies the topological properties of these
algebras. It is divided in two parts. First we show they are regular spaces
and present characterizations which show that topological properties can be
simply detected locally, at some special points. The second part deals with
the study of quotients based on the study of their respective congruences. It
is shown in particular that Hausdorff, discrete, compact, connected, totally
disconnected protomodular algebras are closed under extensions (theorem 31)
and easy descriptions of the Hausdorff and the totally disconnected reflections
are obtained.

The last section is devoted to the categorical properties of the categories
studied. We show that TopT, as well as its subcategories of Hausdorff, com-
pact, compact Hausdorff, locally compact Hausdorff and totally disconnected
algebras are regular and protomodular.

1. Protomodular algebras

Protomodular categories have been introduced by D. Bourn in [6] as a for-
mal context in which many properties characteristic of groups remain valid.
We will postpone the presentation of the definition of protomodular category
until the last section, since here we are interested only in the algebraic theo-
ries whose category SetT of models is protomodular. These algebraic theories
were characterized by D. Bourn and G. Janelidze [8] as follows.

Theorem 1. An algebraic theory T has a protomodular category SetT of
models precisely when, for some natural number n ∈ N, T contains

(1) constants e1, . . . , en;
(2) binary operations α1(X, Y ), . . . , αn(X, Y ) satisfying αi(X, X) = ei;
(3) a n + 1-ary operation θ(X1, . . . , Xn+1) satisfying

θ(α1(X, Y ), . . . , αn(X, Y ), Y ) = X.

We shall in general refer to such an algebraic theory T as a protomodular
theory. The corresponding T-algebras will be called protomodular algebras.

Example 2. Each algebraic theory T which contains a group operation +
is protomodular. This is in particular the case for groups, abelian groups,
Ω-groups, modules on a ring, rings or algebras with or without unit, Lie
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algebras, Jordan algebras, all these theories with additional sup and/or inf

semi-lattice structure.

Proof : In theorem 1, it suffices to choose n = 1 and

e1 = 0, α1(X, Y ) = X − Y, θ(X, Y ) = X + Y.

Since semi-abelian theories are in particular protomodular theories, all the
examples of semi-abelian theories given in [4] are examples of protomodular
theories.

Example 3. The theory of Heyting algebras and the theory of boolean alge-
bras are protomodular.

Proof : In the case of boolean algebras, choose n = 2, e1 = 0, e2 = 1, and

α1(X, Y ) = X ∧ ¬Y, α2(X, Y ) = X ∨ ¬Y, θ(X, Y, Z) = (X ∨ Z) ∧ Y.

The result for Heyting algebras was obtained by P. Johnstone in [13], where
he proved that the operations of Heyting ∧-semi-lattice suffice already to
exhibit the protomodular character: simply put

e1 = 1 = e2, α1(X, Y ) = X ⇒ Y, α2(X, Y ) = ((X ⇒ Y ) ⇒ Y ) ⇒ X,

θ(X, Y, Z) = (X ⇒ Z) ∧ Y.

In general, T admits other constants and operations rather than simply
ei, αi and θ: for example the theory of rings with unit contains also the
constant 1 and the multiplication ×. We point out also that the choice
in T of constants and operations ei, αi and θ as indicated is not unique.
For example, the operations of Heyting ∧-semi-lattice given in the example
above exhibit a second possible choice of constants and operations αi and θ
for Boolean algebras.

In a protomodular theory T, the formula

p(X, Y, Z) = θ(α1(X, Y ), . . . , αn(X, Y ), Z)

defines a Mal’cev operation (as it is shown in the following lemma); that is,
the operation p is such that

p(X, X, Y ) = Y, p(X, Y, Y ) = X.
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Lemma 4. Let T be a protomodular theory. Given elements a, b, c of a T-
algebra A:

(∀i αi(a, c) = αi(b, c)) ⇒ (a = b),
(∀i αi(a, b) = ei) ⇒ (a = b),

θ(e1, . . . , en, a) = a.

Proof : If αi(a, c) = αi(b, c) for every i, then a = θ(α1(a, c), . . . , αn(a, c), c) =
θ(α1(b, c), . . . , α1(b, c), c) = b. The second case is obtained from the first one
by putting c = b. The third assertion is obtained by writing ei = αi(a, a).

Notice that the implication

(∀i αi(c, a) = αi(c, b)) ⇒ (a = b)

is not valid in general.

2. Topological protomodular algebras

Convention Through this paper, given a protomodular theory T, the notation
ei, αi or θ will always indicate constants and operations as above, with n ∈ N

the corresponding number of operations αi.

Let us now introduce the topic of the present paper:

Definition 5. Given an algebraic theory T, by a topological T-algebra we
mean a topological space A provided with the structure of a T-algebra, in such
a way that every operation τ : T n

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq T of T induces a continuous mapping

τA: An
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ τ(a1, . . . , an).

We write TopT for the category of topological T-algebras and continuous T-
homomorphisms between them.

For example when T is the theory of groups, TopT is the category of topo-
logical groups. The theory of topological groups makes a heavy use of the
property that, for any element g of a topological group G (written additively),
the mapping

− + g: G qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G, x 7→ x + g

is an homeomorphism mapping 0 on g. This “homogeneity property” of the
topology can be partly recaptured in the case of a protomodular theory, as
indicated in the sequel.
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Proposition 6. Let T be a protomodular theory. For every element a of a
topological T-algebra A, the continuous maps

ιa : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq An, x 7→ (α1(x, a), . . . , αn(x, a)), and
θa : An

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A, (a1, . . . , an) 7→ θ(a1, . . . , an, a)

are such that θa · ιa = idA, so that ιa presents A as a topological retract of
An, which maps the element a ∈ A into (e1, . . . , en) ∈ An.

Notice that the inclusion ιa is not a T-homomorphism: it does not even
preserve the constants ei.

Corollary 7. Let T be a protomodular theory. Given an element a of a
topological T-algebra A:

(1) the subsets
n⋂

i=1

αi(−, a)−1(Ui), Ui open neighborhood of ei

constitute a fundamental system of open neighborhoods of a;
(2) the subsets

θa(U1 × . . . × Un), Ui open neighborhood of ei

constitute a fundamental system of neighborhoods of a.

Proof : 1. Neighborhoods of the form U1 × · · · × Un, with Ui ⊆ A open
neighborhood of ei, constitute a fundamental system of open neighborhoods
of (e1, . . . , en). Hence, the sets

ι−1
a (U1 × . . . × Un) =

n⋂

i=1

αi(−, a)−1(Ui)

constitute a fundamental system of open neighborhoods of a.
2. Since

n⋂

i=1

α−1
i (−, a)(Ui) ⊆ θa(U1 × . . . × Un),

the latter is a neighborhood of a, although in general not necessarily open.
This, together with the fact that the sets U1 × . . . × Un form a fundamental
system of neighborhoods of (e1, . . . , en), gives the result.

These descriptions of fundamental systems of neighborhoods lead to a key
result in the topological study of topological protomodular algebras.
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Metatheorem 8. Let T be a protomodular theory and P a topological prop-
erty stable under finite limits, or stable under finite products and images. If
the property P is valid at the neighborhood of each constant ei in a given
algebra A, that property P is valid at the neighborhood of every point of A.

Next we focus on the properties of subalgebras B ⊆ A of a topological
protomodular algebra A. Obviously, every subalgebra B of the topological
algebra A, provided with the induced topology, is a topological algebra on its
own. As usual when we say that the subalgebra B has a topological property
we consider B as a topological subalgebra of A.

Straightforward generalizations of the proofs presented in [4] for the semi-
abelian case give:

Proposition 9. Let T be a protomodular theory. Every open subalgebra
B ⊆ A of a topological algebra A is closed.

Corollary 10. Let T be a protomodular theory, A a topological T-algebra
and B ⊆ A a subalgebra. The following conditions are equivalent:

(1) B is a neighborhood of each ei;
(2) B is an open neighborhood of each ei;
(3) B is a closed neighborhood of each ei.

Proposition 11. Let T be a protomodular theory. The closure B ⊆ A of
every subalgebra B ⊆ A of a topological T-algebra A is still a subalgebra.

3. An overview of topological properties

First, let us immediately observe that

Proposition 12. For a protomodular theory T, every topological T-algebra
is a regular topological space.

Proof : By metatheorem 8, it suffices to prove that every open neighborhood
of each ei contains the closure of a neighborhood of ei. Let V be a neigh-
borhood of e (= ei) in A. Since θ : An+1 → A is continuous, there exist
U1, . . . , Un neighborhoods of e1, . . . , en, respectively, and a neighborhood U
of e such that θ(U1 × . . . × Un × U) ⊆ V .

Next we show that U ⊆ V . For a ∈ U , since
⋂n

i=1 α−1
i (−, a)(Ui) is an

open neighborhood of a, there exists b ∈ U ∩
⋂n

i=1 αi(−, a)−1(Ui). But then
a = θ(α1(a, b), . . . , αn(a, b), b) and αi(a, b) ∈ Ui for all i, hence a ∈ θ(U1 ×
. . . × Un × U) ⊆ V .
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Proposition 13. Let T be a protomodular theory. For a topological T-algebra
A, the following conditions are equivalent:

(1) each point e1, . . . , en is closed (resp. open) in A;
(2) A is a Hausdorff (resp. discrete) space.

Proof : To prove (1) ⇒ (2), we just observe that, for each a ∈ A, {a} is the
inverse image of {(e1, · · · , en)} along ιa. The result is then immediate when
ei is open, while, for ei closed, Hausdorffness follows from the fact that A is
then a T1 regular space.

Proposition 14. Let T be a protomodular theory. For a topological T-algebra
A, the following conditions are equivalent:

(1) for each i, the connected component of ei is reduced to {ei};
(2) A is totally disconnected.

This result is an immediate consequence of the following lemma, where
Γ(x) denotes the connected component of x.

Lemma 15. Let T be a protomodular theory and A a topological T-algebra.
For every point a ∈ A,

Γ(a) = θa(Γ(e1) × . . . × Γ(en)).

Proof : It follows directly from the inequalities

ιa(Γ(a)) ⊆ Γ(e1, . . . , en) = Γ(e1) × . . . × Γ(en)

and

θa(Γ(e1) × . . . × Γ(en)) ⊆ Γ(a).

Proposition 16. Let T be a protomodular theory. For a topological T-algebra
A, the following conditions are equivalent:

(1) each point e1, . . . , en has a compact neighborhood;
(2) each ei has a fundamental system of compact neighborhoods;
(3) A is locally compact.

Proof : Using metatheorem 8, we only have to verify that (1) ⇒ (2), and this
follows easily from regularity of A.

Proposition 17. Let T be a protomodular theory and A a Hausdorff T-
algebra. Every locally compact subalgebra B of A is closed.
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Proof : Given a ∈ B, we must prove that a ∈ B. For this we choose, for
each index i, a compact neighborhood Ki of ei in B, which has thus the form
Ki = Ui ∩ B for some neighborhood Ui of ei in A. The continuous image
of the compact Ui ∩ B ⊆ B in A is compact, thus closed. In other words,
Ki = Ui∩B is closed in A. We choose further an open neighborhood Vi ⊆ Ui

of ei in A. We consider then the open subset

V =
n⋂

i=1

αi(a,−)−1(Vi)

which is a neighborhood of a ∈ B, thus meets B:

∃b ∈ B ∀i αi(a, b) ∈ Vi.

Let us prove now that αi(a, b) ∈ B for each index i. For this it suffices to
prove that

αi(a, b) ∈ Vi ∩ B ⊆ Vi ∩ B ⊆ Ui ∩ B = Ui ∩ B ⊆ B,

where the first inclusion holds because Vi is open. By choice of b, αi(a, b) ∈ Vi.
Since a, b ∈ B, αi(a, b) ∈ B by proposition 11.

One concludes now that

a = θ(α1(a, b), . . . , αn(a, b), b) ∈ B

since b and all the αi(a, b) are in the subalgebra B.

4. Quotients of topological protomodular algebras

We first prove an important property of congruences on algebras equipped
with a Mal’cev operation (see for instance [18]).

Proposition 18. If T is an algebraic theory containing a Mal’cev operation p
and A is a T-algebra, every T-subalgebra R of A×A containing the diagonal
∆A is a congruence.

Proof : We have to check that R is an equivalence relation. To check its
symmetry, let (x, y) ∈ R. Then, since (x, x), (x, y), (y, y) ∈ R,

(p(x, x, y), p(x, y, y)) = (y, x) ∈ R.

Finally to check its transitivity, we pick (x, y) and (y, z) in R. Then, since
(x, y), (y, y) and (y, z) belong to R, also (p(x, y, y), p(y, y, z)) = (x, z) ∈ R.

Now, let us observe that in opposition to the case of topological spaces:
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Proposition 19. Let T be a protomodular theory. In TopT, the closure of a
congruence R ⊆ A × A is another congruence on A.

Proof : Every protomodular theory is a Mal’cev theory. The topological clo-
sure R ⊆ A × A is a T-subalgebra (see proposition 11) which contains the
diagonal of A, since it contains R. It is thus a congruence, by proposition
18.

Let us also describe more precisely the quotient by a congruence. We do
not include the proof since it is analogous to the proof of proposition 57 of
[4].

Proposition 20. Let T be a protomodular theory and R ⊆ A×A a congru-
ence on A. Given an arbitrary subset X ⊆ A, the saturation X̃ of X for the
corresponding quotient q: A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R is given by

X̃ = q−1(q(X)) = {a ∈ A|∃x ∈ X ∀i αi(a, x) ∈ [ei]}
= {a ∈ A|∃b1 ∈ [e1], . . . , bn ∈ [en] θ(b1, . . . , bn, a) ∈ X}
= {θ(b1, . . . , bn, x)|b1 ∈ [e1], . . . , bn ∈ [en], x ∈ X}
= {a ∈ A|∃(u, v) ∈ R θ(α1(u, v), . . . , αn(u, v), a) ∈ X}
= {θ(α1(u, v), . . . , αn(u, v), x)|(u, v) ∈ R, x ∈ X}.

Hence

X̃ = θ([e1] × . . . × [en] × X) =
⋃

x∈X

ι−1
x ([e1] × . . . × [en]).

In particular, for every x ∈ A,

[x] = θx([e1] × · · · × [en]) = ι−1
x ([e1] × . . . × [en]).

As already observed in 1954 by Mal’cev, when a theory T contains a Mal’cev
operation, then every quotient map q: A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Q in TopT is open (see [15, 12, 4]).

Proposition 21. For every protomodular theory T, the regular epimorphisms
in TopT are precisely the surjective open maps.

From now on, for a topological property P , we will say that a congruence R
satisfies essentially P if every equivalence class of R, as a subspace of A×A,
satisfies P .

Proposition 22. Let T be a protomodular theory and A a topological T-
algebra. For a congruence R ⊆ A×A, the following conditions are equivalent:

(1) R is essentially closed (resp. open);
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(2) the equivalence classes [e1], . . . , [en] are closed (resp. open) in A;
(3) R is closed (resp. open) in A × A;
(4) the quotient topological T-algebra A/R is Hausdorff (resp. discrete).

Proof : (4) ⇒ (3) is well-known: the diagonal of A/R is closed (resp. open)
by Hausdorffness (resp. discreteness). Writing q: A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R for the quotient
map, R is the inverse image of this diagonal along q × q.

(3) ⇒ (2) is also classical since the equivalence class of ei ∈ A is the inverse
image of R along the continuous mapping

(ei, idA): A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A × A, x 7→ (ei, x).

(2) ⇒ (1) follows from the equality [a] = ι−1
a ([e1] × . . . × [en]).

Finally if [a] is closed (resp. open) in A, its image [a] ∈ A/R is a closed
(resp. open) point because [a] is saturated and the quotient map q is open.
Therefore (1) ⇒ (4).

Although in Top the construction of the Hausdorff reflection needs a transfi-
nite argument, in the case of protomodular topological algebras this reflection
is easily described. This generalizes again the well-known construction for
topological groups.

Corollary 23. Let T be a protomodular theory. For any topological T-algebra
A, the quotient q : A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/∆A is the Hausdorff reflection of A.

Proof : By lemma 19, ∆A is a congruence on A; the algebra A/∆A is Hausdorff
by proposition 22. To check that q : A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/∆A is the reflection is pure
routine.

Proposition 24. Let T be a protomodular theory and A a topological T-
algebra. For a congruence R ⊆ A×A, the following conditions are equivalent:

(1) R is essentially compact (resp. connected);
(2) the equivalence classes [e1], . . . , [en] are compact (resp. connected) in

A.

Proof : Since [a] = θa([e1] × . . . × [en]), the non trivial implication follows
from finite productivity and closure under images of compact and connected
spaces, according to metatheorem 8.

Proposition 25. Let T be a protomodular theory and A a topological T-
algebra. For a congruence R ⊆ A×A, the following conditions are equivalent:

(1) R is essentially totally disconnected;
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(2) the equivalence classes [e1], . . . , [en] are totally disconnected in A.

Proof : Since totally disconnected spaces are finitely productive and closed
under subspaces, the identity [a] = ι−1

a ([e1] × . . . × [en]) guarantees that
(2) ⇒ (1).

As in the case of topological groups, the reflection of a topological proto-
modular algebra into the subcategory of totally disconnected spaces is easily
described.

Lemma 26. Let T be a semi-abelian theory and A a topological T-algebra.
The set R = {(a, b) ∈ A × B |Γ(a) = Γ(b)} is a congruence on A.

Proof : Since the continuous image of a connected subset is connected, R is
a T-subalgebra, which, moreover, contains the diagonal. Therefore, it is a
congruence, by proposition 18.

Proposition 27. Let T be a protomodular theory and A a topological T-
algebra. The quotient q : A qq

qq
qqq
qq
qq
qq
qq
qq
q

qqqqqqqqqqqqqqqqqq

qq
qq
qqq
qq
qq
qq
qq
qq
q

qqqqqqqqqqqqqqqqqq A/R of A by the congruence R = {(a, b) |Γ(a) =
Γ(b)} is the reflection of A into the subcategory of totally disconnected T-
algebras.

Proof : For each index i, in the following pullback diagram,

C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

p
Γ([ei])

s
qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

t

A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqqq A/R

by proposition 21 p is an open surjection, hence a topological quotient, with
connected codomain. Since the fibres of p are connected, we conclude that
C is connected as well, by q-reversibility of connected spaces (see [1]). Hence
C = Γ(ei) and then Γ([ei]) = [ei]. One concludes that A/R is totally discon-
nected by proposition 14. To check that q is the reflection is now straight-
forward.

Here are now some interesting properties of quotients.

Proposition 28. Let T be a protomodular theory and A a topological T-al-
gebra. When R ⊆ A × A is an essentially compact congruence on A, the
quotient q: A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R is a closed map.
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Proof : For a closed subset C ⊆ A, its saturation C̃ = q−1(q(C)) can be
described as

C̃ = {a ∈ A|∃b1 ∈ [e1], . . . , bn ∈ [en] θ(b1, . . . , bn, a) ∈ C},

by proposition 20. Considering the continuous mappings

A pA
qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq [e1] × · · · × [en] × A ι

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq
An+1 θ

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq
A

where ι is the canonical inclusion, we have thus

C̃ = pA(ι−1(θ−1(C))).

Since C is closed, ι−1(θ−1(C)) is closed as well. Since [e1] × . . . × [en] is

compact, the projection pA is a closed map (see [5]) and therefore C̃ is closed.

Lemma 29. Let T be a protomodular theory and A a topological T-algebra.
If R ⊆ A×A is an essentially connected congruence on A, then every clopen
U ⊆ A is R-saturated.

Proof : Similar to the proof of lemma 42 of [4].
We are in conditions now to discuss closure under extensions of several

topological properties, as defined next.

Definition 30. Let P be a given property. We say that P is closed under
extensions if, given a short exact sequence

R
u

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

v A q
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R,

that is, q is the coequalizer of its kernel pair (u, v), if A/R and each R-
equivalence class have the property P then A has the property P.

Theorem 31. For a protomodular theory T, Hausdorff, discrete, compact,
connected, totally disconnected T-algebras are closed under extensions.

Proof : The Hausdorff and the discrete case have a similar proof. Since

a qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq [a] qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A

and, by hypothesis, a is closed (resp. open) in [a], which is closed (resp.
open) in A, the result follows from proposition 13.

To check this property for compactness, we use proposition 28. The quo-
tient q: A qq

qq
qq
qq
qq
qqq
qq
qq
q

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qqq
qq
qq
q

qqqqqqqqqqqqqqqqqq A/R is a closed continuous map with compact fibres [a]; thus
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q is a proper map and therefore, reflects compact subspaces (see [5]). In
particular, A = q−1(A/R) is compact.

To conclude that A is connected whenever R is essentially connected and
A/R is connected, let U be a clopen subset of A. By lemma 29, U is saturated,
thus q(U) is a clopen subset of A/R. This forces q(U) = ∅ or q(U) = A/R,
that is, U = ∅ or U = A.

Finally we want to check closure under extensions for totally disconnected
algebras. Since q(Γ(ei)) is connected and contains [ei], it is reduced to that
element, because A/R is totally disconnected. This implies Γ(ei) ⊆ [ei],
which is totally disconnected. Hence Γ(ei) = {ei} and the conclusion follows
from proposition 25.

Using an argument analogous to the argument used in the above proof for
compactness, one can prove that:

Proposition 32. Let T be a protomodular theory, A a topological T-algebra
and R ⊆ A × A a congruence on A. If R is essentially compact and A/R is
locally compact, A is locally compact.

To finalize the topological study of quotients of topological protomodular
algebras, we list some observations concerning the topological properties of
congruences.

It was shown in proposition 22 that, if R is a congruence on A, then R
is essentially closed (resp. open) if and only if it is closed (resp. open) in
A × A.

This is not the case for the other properties studied; that is, R essentially
Hausdorff is not equivalent to R being Hausdorff, and the same holds for
compact, discrete, connected, totally disconnected. Indeed, for any topolog-
ical algebra A, if R = ∆A then R is essentially P while R has property P if
and only if A has it.

However, one can deduce from our results that:

Proposition 33. If R has essentially P and A/R has property P , then R
itself has property P , for P Hausdorff, discrete, compact, connected or totally
disconnected.

Proof : For Hausdorff, discrete and totally disconnected, this statement is
immediate, since:

− from R essentially Hausdorff (resp. discrete) and A/R Hausdorff (resp.
discrete) it follows that A is Hausdorff (resp. discrete) by theorem 31,
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and A is Hausdorff (resp. discrete) if and only if R is Hausdorff (resp.
discrete);

− analogously, if R is essentially totally disconnected and A/R is totally
disconnected, then A is totally disconnected by theorem 31, and then
R is totally disconnected.

For compactness, if we assume that R is essentially compact and A/R
is compact, then we conclude that A is compact and that q : A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R
is proper; hence also q × q : A × A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R × A/R is proper, and then
R = (q × q)−1(∆A/R), as the inverse image of a compact subset along a
proper map, is compact.

For connectedness, let R be essentially connected and A/R connected.
Then p : R qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A/R, as a pullback of the quotient q × q, is a quotient, with
connected codomain. Moreover, for each [a] ∈ A/R, p−1([a]) = [a] × [a] is a
connected subset of R, hence R is connected by q-reversibility of connected
spaces.

5. Regularity and protomodularity

First, let us recall the notion of a regular category. We consider a category
V with finite limits. The kernel pair u, v: R qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A of a morphism f : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B
is the pullback of f with itself, which in the case of T-algebras is simply the
congruence determined by f :

R = {(a, a′) ∈ A × A|f(a) = f(a′)}.

An epimorphism f : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B is regular when it is the quotient of A by its
kernel pair. A category V with finite limits is regular when

• the quotient by a kernel pair exists always;
• regular epimorphisms are stable under pulling back along an arbitrary

arrow.

One essential property of a regular category is the existence of images: every
arrow factors uniquely (up to an isomorphism) as a regular epimorphism
followed by a monomorphism. Among the examples of regular categories, we
find all the the categories of models of an algebraic theory T, without any
assumption on T. The most celebrated counter-example is the category Top

of topological spaces: indeed, topological quotient maps are not stable under
pulling back.

Next, we recall the notion of a protomodular category. Let V be a category
with finite limits. Given an object X ∈ V, the category SplitX(V) of split
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epimorphisms over X has for objects the triples (A, p, s) in V

p: A qq
qq
qq
qq
qq
qq
qqq
qq
q

qqqqqqqqqqqqqqqqqq X, s: X qq
qq
qq
qq
qq
qq
qqq
qq
q

qqqqqqqqqqqqqqqqqq A, p ◦ s = idX .

A morphism f : (A, p, s) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (B, q, t) is a morphism of V such that

f : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B, q ◦ f = p, f ◦ s = t.

Every arrow v: Y qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X in V induces by pullback an inverse image functor

v∗: SplitX(V) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq SplitY (V).

The category V is protomodular (see [6]) when all these inverse image functors
v∗ reflect isomorphisms.

To grasp the intuition behind that definition, consider the case where V
has a zero object 0 and write αX: 0 qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X for the unique arrow. Given an
arrow v: Y qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X, the equality v ◦ αY = αX implies α∗
Y ◦ v∗ = α∗

X. Since
each functor (and in particular α∗

Y ) preserves isomorphisms, the category V
is protomodular if and only if each functor α∗

X reflects isomorphisms. But
pulling back an arrow p: A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X along αX is just taking its kernel. Thus the
protomodularity reduces to the following condition: given a commutative
diagram

0 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Ker p qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

s

p
X qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 0

g

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

f

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

0 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Ker p′ qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k′
A′

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

s′

p′
X qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 0

where p◦s = idX = p′ ◦s′, k = Ker p, k′ = Ker p′, if g is an isomorphism, then
f is an isomorphism as well. This is a special “split” case of the classical
“short five lemma”. The protomodularity axiom is thus a generalization of
this “split short five lemma” to the context of a category without a zero
object. Let us finally mention that in a regular category with a zero object,
the split short five lemma implies the general form of the short five lemma
(see [6]).

Let us now conclude this paper observing that:

Theorem 34. Let T be a protomodular theory. The categories of topological,
Hausdorff, compact Hausdorff, locally compact Hausdorff or totally discon-
nected T-algebras are all regular and protomodular.
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Proof : All the categories of the statement are closed under finite products
in the category of topological T-algebras. To get all finite limits, it remains
to prove that they are closed as well for the equalizer of two parallel arrows
f, g: A qq

qq
qq
qq
q
qq
qq
qq
qq
q

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B, which is

Ker (g, h) = {a ∈ A|f(a) = g(a)}.

This is clear in the Hausdorff and totally disconnected cases. For the compact
Hausdorff and locally compact Hausdorff cases, observe further that Ker (f, g)
is closed as the inverse image of the diagonal of B × B along the mapping
(g, h): A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B × B.
It is well-known that TopT is complete and cocomplete, without any as-

sumption on the algebraic theory T. Since every continuous open surjection
is necessarily a topological quotient, regular epimorphisms in TopT coincide
with open continuous surjections (see proposition 9) and these are stable
under pulling back along an arbitrary arrow. Thus the category TopT is
regular.

Observe now that the kernel pair of a map f : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B is the inverse image
of the diagonal of B × B along f × f : thus it is closed in A × A as soon as
B is Hausdorff. By proposition 11, this proves that in the Hausdorff case,
the quotient of A by the kernel pair of f is computed as in TopT. Therefore
the category of Hausdorff T-algebras is regular as well. When moreover the
algebra A is compact, the quotient also is compact and again this forces the
regularity of the category of compact T-algebras.

In the case of totally disconnected T-algebras, the quotient of A by the
kernel pair of f is first computed in TopT, let us say q: B qq

qq
qq
qq
qq
qq
qqq
qq
q

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qqq
qq
q

qqqqqqqqqqqqqqqqqq Q, and next it
is composed with the quotient of Q described in proposition 27. Thus the
regular epimorphisms of totally disconnected T-algebras are again continuous
open surjections, as composites of two such maps, proving the regularity of
the corresponding category.

To prove the protomodularity, consider an arbitrary category C with finite
limits. Being a T-model in C is a finite limit statement. Being protomodular
is a finite limit statement as well. Since the Yoneda embedding

YC: C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq [Cop, Set], C 7→ C(−, C)

preserves and reflects limits, and limits are computed pointwise in the cat-
egory of functors [Cop, Set], a finite limit statement holds in C as soon as it
holds in Set. In particular, the category of T-models in C is protomodular



TOPOLOGICAL PROTOMODULAR ALGEBRAS 17

as soon as the category of T-models in Set is protomodular. Applying this
observation to the categories of topological, Hausdorff, compact Hausdorff,
locally compact Hausdorff or totally disconnected spaces, we obtain that the
various categories of the statement are protomodular. (In fact, the category
of compact Hausdorff T-algebras is not only regular, but exact, without any
assumption on the theory T; see [16].)
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[1] A. Arhangels’skĭı and R. Wiegandt, Connectedness and disconnectedness in Topoloy,

Gen. Topology and Appl. 5, 9–33, 1975
[2] M. Barr, Exact categories, Springer Lect. Notes in Math. 236, 1–120, 1971
[3] F. Borceux, Handbook of Categorical Algebra, vol. 1–3, Cambridge Univ. Press, 1994
[4] F. Borceux and M.M. Clementino, Topological semi-abelian algebras, submitted for pub-

lication
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