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1. Introduction

In recent years, the interest of study of the multiplicities of eigenvalues of
Hermitian matrices whose graph is a given tree has grown substantially and
it has been led by C.R. Johnson, A. Leal Duarte and others (cf. [13, 14,
15, 16, 17, 18]) inspired by the work of J. Genin and J.S. Maybee [6] and
S. Parter [21]. For 01-adjacency matrices several results are known, but for
more general ones few are.

In 1999, Johnson and Leal Duarte [13] studied the maximum multiplicity
of an eigenvalue of matrix whose graph is a given tree. They considered some
inequalities between different parameters associated with the tree and then
they expressed the result in terms of them. Later they obtained an inequality
between the minimum number of distinct eigenvalues of a Hermitian matrix
whose graph is a tree T and the number of vertices in a longest path in T
(cf. [14]).

One of the concepts explored by Johnson, Leal Duarte and Saiago [13, 17]
is the minimum number of vertex disjoint paths, occurring as induced sub-
graphs of a tree T , which cover all the vertices of T . This concept had already
been studied by O. Ore [20], F.T. Boesch, S. Chen and J.A.M. McHugh [1]
and by P.J. Slater [22]. Using essentially some constructions due to Slater, in
the next section we can give a shorter proof of a Johnson and Leal Duarte’s
result.
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In a work elaborated apparently in a distinct context, motivated by prob-
lems in quantum chemistry, O.L. Heilmann and E.H. Lieb [11] established
crucial results which are in the base of some recent developments on the
matchings polynomial (cf. [7, 8, 9, 19]). In fact, there are close relations
between the theory of matchings in graphs and the characteristic polynomial
of adjacency matrix of a graph. Recall that a k-matching in a graph is a
set of k disjoint edges, no two of which have a vertex in common. Denoting
p(G, k) as the number of k-matchings in a graph G, we define

µ(G, x) :=
∑

k

(−1)kp(G, k)xn−2k

the matchings polynomial of G. Though the matchings polynomial of a graph
has many interesting properties, the task of computing this polynomial for a
given graph is complex. In general there is no easy way of computing µ(G, x).
Thus, the matchings polynomial is in this regard a more intractable object
than the characteristic polynomial. Nonetheless, it is known that G is a forest
if and only if both polynomials coincide and there also simple recurrences
that enable us to compute the matchings polynomials of small graphs with
some facility. For example, the matchings polynomials of bipartite graphs are
essentially the same as ”rook polynomials” (cf. [9]). An unexpected property
of the matchings polynomials is that all zeros are real. In the paper [11] we
can find three distinct proofs of this fact. Therefore if G is a tree, then all
the eigenvalues of the (ordinary) adjacency matrix of G are real.

Basing our approach solely on Heilmann and Lieb’s result we explore some
properties of the characteristic polynomials of a general matrix whose graph is
a given tree and which facilitates simpler proofs of the main results of [13, 14].
We also establish some results on the multiplicities of the eigenvalues of a
tree.

2. Path coverings

A graph G is a pair (V,E), with vertex set V = V (G) = {1, . . . , n}, and
where E = E(G), the edge set, is a subset of the direct product V × V . We
say that the vertices i and j are adjacent, and write i ∼ j, if (i, j) is an edge
of G, with i 6= j. The symbol ≃ means adjacent or equal.

If S is a subset of V (G), then G\S is the subgraph of G induced by the
vertices not in S. In particular, if u ∈ V (G), then G\u is the graph obtained
by removing u and all its attendant edges.
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A tree is a connect graph without cycles and a forest is a graph in each
component is a tree. In this paper we consider finite graphs possibly with
loops (i.e., (i, i) may be an edge). If to each edge (i, j) is assigned a complex
number, we have a weighted graph. We shall focus our attention on trees.

Given a tree T , we define the path-covering number, denoted by ζ(T ), as
the smallest number of vertex disjoint paths of T that cover all the vertices
of T .

Historically, O. Ore [20] first introduced the graphical invariant ζ followed
by others (e.g. [1, 22]). Ore defined the vertex disjoint path coverings of
the vertices of a graph in such way the paths contain a maximum number of
edges, which is equivalent tho the definition of ζ. Later, Farrell [4] established
an algorithm for finding the number of ways of doing it. In [22], Slater gave
a procedure for forming the smallest referred collection of disjoint paths.

Let us recall some definitions for a tree T . If v is a vertex of T , a branch
of T at v is the subgraph induced by v and one of the components of T \ v.
If deg(v) ≥ 3, we call branch path at v to a branch of T at v which is a path.
In this conditions the vertex v is the stem of the branch path at v, and the
subgraph of T consisting of v and all its branch paths will be called a leaf
with stem v. Note that distinct leaves of T must be disjoint. An end leaf is
a leaf whose stem has deg(v) or deg(v) − 1 branch paths.

Denote D(T ) as the number of vertices in T of degree at least three.

Lemma 2.1. Suppose that the tree T is not a path. If D(T ) = 1, then there
is exactly one (end) leaf. Otherwise, there are at least two end leaves whose
stems, v1 and v2, have deg(v1)− 1 and deg(v2)− 1 branch paths, respectively.

The next lemma establishes an algorithm for determining ζ(T ).

Lemma 2.2 ([22]). Let T be a tree. If D(T ) = 0, then ζ(T ) = 1. If D = 1,
let v be the vertex of degree at least three, then ζ(T ) = deg(v)−1. Otherwise,
let L be an end leaf with stem v. Then ζ(T ) = ζ(T \ L) + deg(v) − 2.

One of the parameters defined in [13] is

∆(T ) = max{p−q | there exist q vertices of T whose deletions leaves p paths}
(2.1)

Considering the stems of the Lemma 2.2, we may state

Corollary 2.3 ([13]).

ζ(T ) = ∆(T ) .
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According to Lemma 2.2, note that the value of ∆(T ) = ζ(T ) depends
on some of the vertices of T of degree greater or equal to 3. Johnson and
Saiago [17] gave tight bounds for ∆(T ) in terms of all vertex whose degrees
are greater than 2. This result also comes out as a corollary of the Lemma
2.2.

Corollary 2.4 ([17]). Denote by ǫ the number of edges adjacent to two ver-
tices of degree greater than 3, v1, . . . , vk. Then

1 +
k

∑

j=1

(deg(vj) − 2) − ǫ ≤ ∆(T ) ≤ 1 +
k

∑

j=1

(deg(vj) − 2) .

3. The characteristic polynomial of weighted trees

If A = (aij) is a Hermitian matrix, the (weighted) graph of A, G = G(A), is
determined entirely by the off-diagonal entries of A: the vertex set of G(A) is
{1, . . . , n} and i and j are adjacent if and only if aij 6= 0. If A is a 01-matrix,
with main diagonal equal to zero, then A is the adjacency matrix of G(A).
On the other hand, given a graph G, we define

H(G) = {A |A = A∗, G(A) = G} ,

the set of all Hermitian matrices that share a common graph G.
If e = (i, j) is an edge of G, then G\e is obtained by deleting e but not

the vertices i or j. In this case the matrix of G\e is equal to the one of
G, except the (i, j)-entry and, by symmetry, the (j, i)-entry, which are zero.
Finally, ϕ(G,λ), or simply ϕ(G), is the characteristic polynomial of A(G),
i.e., ϕ(G,λ) = det(λI−A(G)), sometimes referred as the characteristic poly-
nomial of G.

Lemma 3.1. Let F be a forest with components T1, . . . , Tℓ, then ϕ(F ) =
ϕ(T1) · · ·ϕ(Tℓ).

Let us define wij(A) = |aij|2 if i 6= j and, otherwise, wii(A) = aii. Some-
times we abbreviate to wij. The next result provides a general recurrence
relation between different characteristic polynomials.

Lemma 3.2. If e = (i, j) is an edge in a (weighted) tree T , then

ϕ(T, λ) = ϕ(T\e, λ) − wijϕ(T\ij, λ) . (3.1)
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Proof : Let Eij be the matrix with ij-entry equal to 1, and all other entries
equal to zero. Denote by E the sum aijEij + āijEji. Notice that

A(T ) = A(T\e) + E .

Since the determinant is a multilinear function on the columns and T is a
tree, we get (3.1).

Theorem 3.3. Let i be a vertex of a weighted tree T . Then

ϕ(T, λ) = (λ − wii)ϕ(T\i, λ) −
∑

k∼i

wkiϕ(T\ki, λ) . (3.2)

Proof : The equality (3.2) can be derived by iterating formula (3.1).

A routine induction argument, based on (3.2), gives us an expression for
the derivative of characteristic polynomial.

Corollary 3.4. If T is a (weighted) tree, then

ϕ′(T, λ) =
∑

i∈V (T )

ϕ(T\i, λ) .

From Theorem 3.3 we can get the expression for the determinant of a tree.

Corollary 3.5. If T is a weighted tree and i ∈ V (T ), then

det(T ) =
∑

j≃i

(−1)δi,jwij det(T\ij) , (3.3)

where δi,j is the Kronecker symbol.

We can also establish an analogous result for the permanent.

Corollary 3.6. If T is a weighted tree and i ∈ V (T ), then

per(T ) =
∑

j≃i

wij det(T\ij) .

We now state a result which we will keep in mind throughout. The general
interlacing theorem between the eigenvalues of a Hermitian matrix and one
principal submatrix is well known in the literature (see e.g. [12]).

Theorem 3.7. Let T be a tree on n vertices and A ∈ H(T ). Then all
eigenvalues of A(T ) are real , say

λ1 ≤ λ2 ≤ · · · ≤ λn .
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Furthermore, if i is a vertex in T and µ1 ≤ µ2 ≤ · · · ≤ µn−1 are the eigen-
values of A(T \ i), then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn ,

i.e., the eigenvalues of A(T ) interlace those of A(T \ i).

This theorem has a well known corollary for tridiagonal matrices already
proved elsewhere.

Corollary 3.8. Let P be a path on n vertices and A ∈ H(P ). Then A(P )
has n distinct real eigenvalues.

4. Christoffel-Darboux identity

As we pointed out before, the work of Heilmann and Lieb [11] has had
some important implications on the theory of matchings polynomials. Here
we derive some important identities for matrices of the set H(T ).

One of the most important tools in the study of orthogonal polynomials
is the Spectral Theorem for orthogonal polynomials, which states that any
(monic) orthogonal polynomial sequence {pn}n≥0 is characterized by a three-
term recurrence relation

pn+1(x) = (x − βn)pn(x) + γnpn−1(x) , n = 0, 1, 2, . . . (4.1)

with initial conditions p−1(x) = 0 and p0(x) = 1, where {βn}n≥0 and {γn}n≥0

are sequences of complex numbers such that γn+1 > 0 for all n = 0, 1, 2, . . .
(for more details see e.g. [2]). We can explore the existing similarities between
the recurrence relations (3.2) and (4.1) and get some Christoffel-Darboux
type formula for special polynomials.

Let Pij denote the (unique) path in a tree joining vertex i to j and. Given
a path P in T with more than one vertex, let us define W (P ) =

∏

(i,j) wij(P ),

where the product is taken over the edges (i, j) of P , with i < j.

Theorem 4.1 (Christoffel-Darboux Identity). Let T be a weighted tree on n
vertices. For every vertex i ∈ V (T ),

ϕ(T, λ)ϕ(T\i, µ)−ϕ(T, µ)ϕ(T\i, λ) = (λ−µ)
n

∑

j=1

W (Pij)ϕ(T\Pij, λ)ϕ(T\Pij, µ) .

(4.2)

Proof : For trees with one or two vertices the result is trivial. From (3.2), we
have the equations
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λϕ(T\i, λ)ϕ(T\i, µ) = ϕ(T, λ)ϕ(T\i, µ) +
∑

k≃i

wkiϕ(T\ki, λ)ϕ(T\i, µ)

and

µϕ(T\i, µ)ϕ(T\i, λ) = ϕ(T, µ)ϕ(T\i, λ) +
∑

k≃i

wkiϕ(T\ki, µ)ϕ(T\i, λ) .

Subtracting the second equation from the first we get

(λ − µ)ϕ(T\i, µ)ϕ(T\i, λ) = ϕ(T, λ)ϕ(T\i, µ) − ϕ(T, µ)ϕ(T\i, λ)

−∑

k∼i wki [ϕ(T\i, λ)ϕ(T\ki, µ) − ϕ(T\i, µ)ϕ(T\ki, λ)] .

Applying the hypothesis on ϕ(T\i, λ)ϕ(T\ki, µ)−ϕ(T\i, µ)ϕ(T\ki, λ), with
the convention ϕ(∅, λ) = 1, we get the result.

Corollary 4.2. Let T be a weighted tree on n vertices. For every vertex
i ∈ V (T ),

ϕ′(T, λ)ϕ(T\i, λ) − ϕ(T, λ)ϕ′(T\i, λ) =
n

∑

j=1

W (Pij)ϕ(T\Pij, λ)2 . (4.3)

Proof : Letting µ → λ in (4.2), we get (4.3) since we may write

ϕ(T, λ)ϕ(T\i, µ) − ϕ(T, µ)ϕ(T\i, λ) =

= [ϕ(T, λ) − ϕ(T, µ)] ϕ(T\i, µ) − [ϕ(T\i, λ) − ϕ(T\i, µ)] ϕ(T, λ).

If we consider the sum over all vertices of T in (4.3), from the Corollary
3.4 we get:

Corollary 4.3.

ϕ′(T, λ)2 − ϕ′′(T, λ)ϕ(T, λ) =
n

∑

i,j=1

W (Pij)ϕ(T\Pij, λ)2 . (4.4)

Theorem 4.4. Let T be a weighted tree on n vertices. For every distinct
vertices i, j ∈ V (T ),

ϕ(T\i, λ)ϕ(T\j, λ) − ϕ(T\ij, λ)ϕ(T, λ) = W (Pij)ϕ(T\Pij, λ)2 . (4.5)
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Proof : Once again the cases n = 1 and n = 2 are trivial. We use induction
on n in an analogous way of the propositions before. For that we only have
to consider (3.2) and

ϕ(T\j, λ) = (λ − wii)ϕ(T\ij, λ) −
∑

k∼i

wkiϕ(T\kij, λ) .

5. Multiplicities of eigenvalues

For any square matrix A, mA(θ) denotes the (algebraic) multiplicity of θ as
an eigenvalue of A; if θ is not an eigenvalue of A, then we will write mA(θ) = 0.
The Theorem 3.7 has a straightforward consequence for A ∈ H(T ), where T
is a tree:

∣

∣mA(T\i)(θ) − mA(T )(θ)
∣

∣ ≤ 1 .

Suppose mA(T )(θ) > 0, a vertex i of T is θ-essential, θ-neutral and θ-
positive if mA(T\i)(θ) = mA(T )(θ)−1, mA(T\i)(θ) = mA(T )(θ) and mA(T\i)(θ) =
mA(T )(θ) + 1, respectively. If θ is understood, we shall omit the mention of
θ.

Note that each A ∈ H(T ) has at least one essential vertex. Indeed, the
multiplicity of θ as zero of ϕ′(T, λ) is mA(T )(θ)− 1. If mA(T\i)(θ) ≥ mA(T )(θ),
for all vertices i in T , then by Corollary 3.4 the multiplicity of θ as zero of
ϕ′(T, λ) is at least mA(T )(θ).

Theorem 5.1. Let P a path in the tree T and A ∈ H(T ). If θ is an eigen-
value of A(T ), then

mA(T\P )(θ) ≥ mA(T )(θ) − 1 . (5.1)

Proof : Suppose that θ is an eigenvalue of A(T ) with mA(θ) > 1. Then θ is
a zero of ϕ′(T, λ)2 − ϕ′′(T, λ)ϕ(T, λ) with multiplicity at least 2mA(θ) − 2.
From (4.4), θ is a zero of nonnegative summation

∑n
i,j=1 W (Pij)ϕ(T\Pij, λ)2,

and therefore θ has multiplicity of each ϕ(T\Pij, λ) at least mA(θ) − 1.

In general, we say that a path P is P -essential if mA(T\P )(θ) = mA(T )(θ)−1.
Given any θ-essential vertex i, with θ 6= aii, there is an adjacent vertex j,
such that the path ij is essential. For, if mA(T\ik)(θ) ≥ mA(T )(θ), for all k ∼ i,
then by (3.2), mA(T\P )(θ) ≥ mA(T )(θ), which is a contradiction.

We also point out that if a path Pij is essential, for some vertex j, then i
is an essential vertex. In fact, suppose that mA(T\i)(θ) ≥ mA(T )(θ). For any
j(6= i), the multiplicity of θ as a zero of ϕ(T\i, λ)ϕ(T\j, λ)−ϕ(T\ij, λ)ϕ(T, λ)
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is at least 2mA(T )(θ) − 1. It is in fact, by (4.5), at least 2mA(T )(θ), and
therefore mA(T\Pij)(θ) ≥ mA(T )(θ).

Given a tree T on n vertices, in [13], Johnson and Leal Duarte consider
the maximum multiplicity of any single eigenvalue among all matrices in
H(T ), M(T ). They established inequalities between the quantities ζ(T ) and
∆(T ) defined in the section 2, M(T ) and n − minA∈H(T ) rankA, and prove
the following:

Corollary 5.2 ([13]). For each (weighted) tree T ,

M(T ) = ζ(T ) .

Proof : Using induction on (5.1), it is immediate that M(T ) ≤ ζ(T ). Suppose
now that P1, . . . , Pζ(T ) a set of path cover of T . Given a real θ as an eigenvalue
of Aℓ ∈ H(Pℓ), for all ℓ, the direct sum A1 ⊕ · · · ⊕ Aζ(T ) has at least ζ(T )
eigenvalues equal to θ. Therefore M(T ) ≥ ζ(T ).

Let q(T ) be the number of distinct eigenvalues of a Hermitian matrix whose
graph is the tree T , and d(T ) the number of vertices in a longest path of T .
Johnson and Leal Duarte [18] consider an analog of the well known result for
matchings polynomial due to Godsil [8].

Corollary 5.3 ([8, 18]).
q(T ) ≥ d(T ) .

Proof : From (5.1), for any path,

2
∑

θ

(

mA(T )(θ) − 1
)

≤ 2
∑

θ

mA(T\P )(θ) ≤ 2 |V (T\P )| ,

where de sums are over all distinct eigenvalues of A(T ). Hence

n − q(T ) ≤ n − V (P ) ,

for any path, i.e., q(T ) ≥ d(T ).

6. The Parter-Wiener Theorem

As we noticed, any weighted tree has at least one essential vertex. In a
very interesting work, Parter [21] proved that if mA(T )(θ) ≥ 2, then there
is a vertex i such that mA(T\i)(θ) ≥ 3. In particular, if mA(T )(θ) = 2, then
i is positive. Later, Wiener [23] proved that if mA(T )(θ) ≥ 2, then there is
a positive vertex in T . If we join these consequences we get the so-called
Parter-Wiener Theorem (cf. [15]).
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Theorem 6.1 (Parter-Wiener Theorem). Let T be a tree and suppose that
A ∈ H(T ) such that mA(T )(θ) ≥ 2. Then, there is a θ-positive vertex i
of T and θ occurs as an eigenvalue in the direct summands of A(T ) which
corresponds to at least three branches of T at i.

Recently, Johnson, Leal Duarte and Saiago considered the following gen-
eralization of the Parter-Wiener Theorem describing also how to choose the
positive vertex.

Theorem 6.2 ([15]). Let T be a tree and A ∈ H(T ). If θ is an eigenvalue
of A(T ) and there is vertex of T , j, such that mA(T\j)(θ) 6= 0, then

(a) there is a θ-positive vertex i of T ;
(b) if mA(T\i)(θ) ≥ 2, then i may be chosen so that deg(i) ≥ 3 and so

that there are at least three components T1, T2 and T3 of T\i such that
mA(Tℓ)(θ) ≥ 1, for ℓ = 1, 2, 3;

(c) if mA(T\i)(θ) = 2, then i may be chosen so that deg(i) ≥ 2 and so that
there are two components T1 and T2 of T\i such that mA(Tℓ)(θ) = 1,
for ℓ = 1, 2.

In this section we consider a different approach to the existence of the
positive vertex in the tree, based on the tool developed before. The proof
shows how to choose in the tree such vertex. But first, we state an important
lemma.

Lemma 6.3. Let T be (weighted) tree and i a non-essential vertex in T .
Then i is positive if and only if there exists j ∼ i essential in T\i.
Proof : Suppose i is θ-positive and mA(T\ij)(θ) > mA(T )(θ), for all j ∼ i. Then
(3.2) leads to a contradiction. Conversely, by a remark of the last section, the
path ij, for any j, is not essential and, consequently, mA(T\ij)(θ) ≥ mA(T )(θ).
Suppose that j ∼ i is essential in T\i. Then mA(T\ij)(θ) = mA(T\i)(θ) − 1.
Hence i is positive.

Theorem 6.4. Let T be a tree and A ∈ H(T ). If there is a vertex of T ,
say j, and a real number θ such that mA(T )(θ) 6= 0 and mA(T\j)(θ) 6= 0, then
there is at least one θ-positive vertex in T .

Proof : From (4.3), θ is a zero of ϕ(T\Pjk, λ), for each k. Let S be the a
subtree of T which is inclusion-minimal subject to the condition mA(S)(θ) >
0, and let i be the vertex of T such that S is a component of T\i. Let k ∼ i
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be a (unique) vertex of S and let e = (i, k). Then T\e has exactly two
components, one of which is S and the other we call R.

For any component S′ of S\k, we know that mA(S′)(θ) = 0, and by Lemma
3.1 we have mA(S\k)(θ) = 0. Thus mA(S)(θ) = 1. On the other hand, we have

mA(T\i)(θ) = 1 + mA(R\i)(θ) and mA(T\ik)(θ) = mA(R\i)(θ) ,

i.e., k is essential in T\i. Hence, by the Lemma 6.3, θ-positive vertex in
T .

Consider the matrix

A =

























3 −2i 0 0 0 0 0 0
2i 3 1 + i 0 0 0 0 0
0 1 − i 40 2 0 2 0 0
0 0 2 1/2 1/2 0 0 0
0 0 0 1/2 1/2 0 0 0

0 0 2 0 0 1
√

2 0

0 0 0 0 0
√

2 −1 1
0 0 0 0 0 0 1 0

























. (6.1)

The graph of A is given by the tree

Fig. 1

Notice that 1 is an eigenvalue of A with multiplicity 2 and the vertex 3 is
1-positive.

We know that a tridiagonal matrix has only simple eigenvalues. The next
result strengthens this statement.
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Corollary 6.5. Let T be a tree and A ∈ H(T ). If there exists a θ-essential
path Pij, for all j in V (T ), then mA(T )(θ) = 1 and mA(T\k)(θ) = 0, for all k
in V (T ).

Proof : Note the hypothesis implies that all vertices in T are essential. There-
fore mA(T\k)(θ) = 0, for all k in V (T ).

7. Other consequences

Finally, using some results on the matchings polynomials, due essentially
to Lovász and Plummer [19] and Godsil [8, 9], we can derive some important
consequences on the multiplicity of an eigenvalue of weighted trees.

Lemma 7.1. Let T be a weighted tree. If i and j are essential vertices in T
and j is not essential in T\i, then Pij is essential.

Proof : If Pij is non-essential, by the Theorem 4.4, the multiplicity of θ as a
zero of

ϕ(T\i, λ)ϕ(T\j, λ) − ϕ(T\ij, λ)ϕ(T, λ)

is at least 2mA(T )(θ). Since

mA(T\ij)(θ) ≥ mA(T\i)(θ) = mA(T )(θ) − 1 ,

the multiplicity of θ as a zero of ϕ(T\ij, λ)ϕ(T, λ) is at least 2mA(T )(θ) − 1,
and, consequently, the same conclusion applies to ϕ(T\i, λ)ϕ(T\j, λ). Thus
i and j can not both be essential.

We may conclude all paths starting in a vertex in T be essential is equivalent
to all vertices in T be essential.

Letting i be a θ-essential vertex in T , consider the non-essential path P
of minimum length starting in i, and let j be the end-vertex. Denote by P ′

the path P\j. Then P ′ is essential in T and by interlacing, mA(T\P ′)(θ) =
mA(T )(θ), and j is positive.

Theorem 7.2. Let T be a tree and A ∈ H(T ). Suppose that θ is an eigen-
value of A and let k be a non-essential vertex in T . Then i is essential in T
if and only if it is essential in T\k.

Proof : First assume i is essential in T . Suppose that k is positive in T . Then
mA(T\ik)(θ) = mA(T )(θ) by interlacing which means that i is essential in T\k.
Suppose now that k is neutral in T . If i is non-essential in T\k, then by
Theorem 4.4, the multiplicity of θ as a zero of ϕ(T\i, λ)ϕ(T\k, λ) is at least
2mA(T )(θ), which is impossible.



MULTIPLICITIES OF EIGENVALUES OF A TREE 13

Similarly, if i is essential in T\k, then i is essential in T .

Notice that by the this theorem and Lemma 6.3 a positive vertex in a tree
has an essential adjacent vertex in the same tree.

If i is a non-essential vertex but it is adjacent to an essential one j, then
j is essential in T\i, by the last theorem. But this implies that i is positive,
by the Lemma 6.3. We may state the following result.

Corollary 7.3. A non-essential vertex adjacent to an essential one is posi-
tive.

Theorem 7.4. Let T be a tree and A ∈ H(T ). Let θ is an eigenvalue of A
and k be a positive vertex in T . Then

(a) if i is positive in T then it is essential or positive in T\k;
(b) if i is neutral in T then it is essential or neutral in T\k.

Proof : Suppose that i is positive in T and it is neutral in T\k. Once again,
by Theorem 4.4, the multiplicity of θ has a zero of

ϕ(T\i, λ)ϕ(T\k, λ) − ϕ(T\ik, λ)ϕ(T, λ)

must be even, in this case at least 2mA(T )(θ)+2. But mA(T\ik)(θ) = mA(T )(θ)+
1, which is a contradiction.

Similarly we prove (b).
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