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INEQUALITIES FOR QUANTUM RELATIVE ENTROPY

N. BEBIANO, R. LEMOS AND J. DA PROVIDÊNCIA

Abstract: Some logarithmic trace inequalities involving the notions of relative en-
tropy are reobtained from a log-majorization result. The thermodynamic inequality
is generalized and a chain of equivalent statements involving this inequality and the
Peierls-Bogoliubov inequality is obtained.
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1. Entropy
The concept of entropy was introduced in thermodynamics by Clausius in

1865, and some of the main steps towards the consolidation of the concept
were taken by Boltzmann and Gibbs. Many generalizations and reformula-
tions of this notion have been proposed, with motivations and applications
in different subjects, such as statistical mechanics, information theory, dy-
namical systems and ergodic theory, biology, economics, human and social
sciences.

In quantum mechanics, pure states of physical systems are described by
vectors in a Hilbert space, while mixed states are described by positive semi-
definite matrices with trace one. Such matrices are called density matrices.
The eigenvalues of a density matrix are the probabilities that the system under
consideration is in the pure states described by the associated eigenvectors.

In classical commutative systems, physical states can be identified with
diagonal density matrices, which are associated with probability vectors p =
(p1, · · · , pn), that is, pi ≥ 0, i = 1, . . . , n, and

∑n
i=1 pi = 1. In this context,

the Shannon entropy is defined by

S(p) = −
n∑

i=1

pi log pi
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(convention: x log x = 0 if x = 0). Claude Shannon, in his pioneer work
in information theory [17], considered the entropy from an axiomatic point
of view, regarding it as the measure of efficiency of a communication sys-
tem. That terminology was suggested by von Neumann, due to the analogy
between the concepts in physics and in information theory.

In quantum systems, the entropy of a mixed state described by the density
matrix A is defined by

S(A) = −Tr(A log A).

This notion was introduced by von Neumann as the degree of disorder of the
system. The quantum entropy is clearly invariant under unitary similarity
transformations, that is, S(U ∗AU) = S(A), for all unitary matrices U . As-
suming that λi, i = 1, . . . , n, are the eigenvalues of the density matrix A, the
entropy of A is given by

S(A) = −
n∑

i=1

λi log λi.

The minimum entropy S(A) = 0 occurs if and only if one of the eigenvalues
of the density matrix A is one and all the others are zero. The maximum
entropy S(A) = log n occurs if and only if all the eigenvalues of A are equal,
that is, A = In/n.

The relative entropy of two states of a commutative system, described by
probability vectors p and q, is called the Kullback-Leibler relative entropy or
information divergence [13], and is defined by

S(p, q) =
n∑

i=1

pi log
pi

qi

(convention: x log x = 0 if x = 0, and x log y = +∞ if y = 0 and x 6= 0).
Its non-commutative or quantum analogue, for density matrices A and B,

is the Umegaki relative entropy [19], defined by

S(A,B) = Tr(A(log A− log B)).

Since the condition of unital trace is not essential, sometimes we relax it.
Clearly, S(A) = −S(A, In).

In the sequel, the notions of entropy will be considered in the general setup
of n × n positive semi-definite matrices. We write A ≥ 0 if A is a positive
semi-definite matrix. If A ≥ 0 is invertible, we write A > 0.
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The relative operator entropy of A,B > 0 was introduced in noncomutative
information theory by Fujii and Kamei [7], and is defined by

Ŝ(A|B) = A1/2 log(A−1/2BA−1/2)A1/2.

Previously, Nakamura and Umegaki [16] had introduced the operator en-
tropy −A log A and the quantity −TrŜ(A|B) had already been discussed by
Belavkin and Staszewski [6], in the general setup of physical systems de-
scribed by C∗-algebras.

The relative entropy satisfies S(U ∗AU,U ∗BU) = S(A,B), for all unitary
matrices U . If A and B commute, they are simultaneously unitarily diago-
nalizable and so

−Tr Ŝ(A|B) = S(A,B) =
n∑

i=1

λi log
λi

γi
,

where λi and γi, i = 1, . . . , n, are the eigenvalues (with simultaneous eigen-
vectors) of A and B, respectively.

This note is organized as follows. In section 2, a log-majorization result
is presented and some logarithmic trace inequalities involving the notions of
relative entropy are reobtained. In section 3, the Peierls-Bogoliubov inequal-
ity is generalized. In section 4, the thermodynamic inequality is generalized
and a chain of equivalent statements involving this inequality and the Peierls-
Bogoliubov inequality is obtained.

2. Logarithmic Trace Inequalities
For a Hermitian matrix H in Mn, the algebra of n × n complex matrices,

we assume that the eigenvalues λi(H), i = 1, · · · , n, are arranged in non-
increasing order λ1(H) ≥ · · · ≥ λn(H). For Hermitian matrices A,B ≥ 0,
the log-majorization of A by B, denoted by A ≺(log) B, is defined as

k∏
i=1

λi(A) ≤
k∏

i=1

λi(B), k = 1, . . . , n, (1)

and det(A) = det(B). If A ≥ 0, then λ1(A(k)) =
∏k

i=1 λi(A), where A(k)

denotes the kth compound of the matrix A [15]. Thus, (1) can be written as
λ1(A(k)) ≤ λ1(B(k)), k = 1, . . . , n. It is well-known that the log-majorization
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A ≺(log) B implies the weak majorization A ≺w B, that is,

k∑
i=1

λi(A) ≤
k∑

i=1

λi(B), k = 1, . . . , n.

This concept is the basis of a powerful technique for deriving matrix norm in-
equalities ‖A‖ ≤ ‖B‖, for any unitarily invariant norm ‖·‖ and, in particular,
trace inequalities.

For example, Araki [3] obtained, as an extension of the Lieb-Thirring trace
inequality, the following log-majorization

(A1/2BA1/2)s ≺(log) As/2BsAs/2, s ≥ 1.

This is equivalent to

(Aq/2BqAq/2)1/q ≺(log) (Ap/2BpAp/2)1/p, 0 < q ≤ p.

Using techniques of Ando and Hiai [1], a log-majorization of this type is
obtained in Theorem 2.1. A fundamental tool in the proof of Theorem 2.1 is
the Furuta inequality [8], which asserts that if X ≥ Y ≥ 0, then

(Xs/2XrXs/2)α ≥ (Xs/2Y rXs/2)α,

for r, s ≥ 0 and 0 ≤ α ≤ 1 such that (r + s) α ≤ 1 + s.

Theorem 2.1. If A,B ≥ 0, then

A(1+q)/2BqA(1+q)/2 ≺(log) A1/2(Ap/2BpAp/2)q/pA1/2, 0 < q ≤ p. (2)

Proof. We show that

λ1(A
(1+q)/2BqA(1+q)/2) ≤ λ1(A

1/2(Ap/2BpAp/2)q/pA1/2), 0 < q ≤ p. (3)

Suppose that there exists γ > 0 such that

λ1(A
(1+q)/2BqA(1+q)/2) > γ ≥ λ1(A

1/2(Ap/2BpAp/2)q/pA1/2). (4)

Taking C = γ1/(1+q)A, D = γ−2/qB, dividing (4) by γ, and bearing in mind
that

λ1(C
(1+q)/2DqC(1+q)/2) = γ−1 λ1(A

(1+q)/2BqA(1+q)/2),

λ1(C
1/2(Cp/2DpCp/2)q/pC1/2) = γ−1 λ1(A

1/2(Ap/2BpAp/2)q/pA1/2),

we have

λ1(C
(1+q)/2DqC(1+q)/2) > 1 ≥ λ1(C

1/2(Cp/2DpCp/2)q/pC1/2). (5)
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From (5), we get In ≥ C1/2(Cp/2DpCp/2)q/pC1/2, which implies

C−1 ≥ (Cp/2DpCp/2)q/p ≥ 0.

By Furuta’s inequality, with α = q/p, r = p/q and s = p, we have C−1−q ≥
Dq. Hence, In ≥ C(1+q)/2DqC(1+q)/2 and so 1 ≥ λ1(C(1+q)/2DqC(1+q)/2), contra-
dicting (5). Thus, (3) is proved. Now, replacing in (3) A and B by A(k) and
B(k), k = 1, . . . , n, respectively, using the Binet-Cauchy identity A(k)B(k) =
(AB)(k), and observing that the determinants of both sides of (2) are equal,
the result follows. ¥

Using Theorem 2.1, we give a new proof to the following result due to Hiai
and Petz [10], and lately strengthened by Ando and Hiai [1].

Theorem 2.2. If A,B ≥ 0, then

Tr (A(log A + log B)) ≤ 1
p

Tr
(
A log

(
Ap/2BpAp/2

))
, p > 0, (6)

and the right hand side of (6) converges decreasingly to the left hand side as
p ↓ 0.

Proof. We may assume B > 0 (cfr. [10], Theorem 3.5). We consider
A > 0 due to the continuity of Tr(A log(Ap/2BpAp/2)) in A ≥ 0. Since
log-majorization implies weak majorization, from Theorem 2.1, we have

Tr(A1+qBq) ≤ Tr

(
A

(
Ap/2BpAp/2

)q/p
)

, 0 < q ≤ p,

with both sides equal to Tr(A) when q = 0. So

d

dq
Tr(A1+qBq)

∣∣∣∣
q=0

≤ d

dq
Tr

(
A

(
Ap/2BpAp/2

)q/p
)∣∣∣∣

q=0

, p > 0,

and (6) follows from the computation of these derivatives.
By standard arguments, log(Ap/2BpAp/2) extends to an analytic function

in some neighborhood of the origin. Straightforward computations lead to
the following power series expansion (cfr.[11], Theorem 4.1)

log
(
Ap/2BpAp/2

)
= p(log A+log B)+

p3

24
[ [log A, log B], (2 log B+log A)]+· · · ,

which holds for any p ∈ R in a certain neighborhood of 0. (Here, the usual
notation for the commutator of matrices [X, Y ] = XY − Y X is used.) Since



6 N. BEBIANO, R. LEMOS AND J. DA PROVIDÊNCIA

[A, log A] = 0, we may easily conclude that

Tr (A[ [log A, log B], (2 log B+ log A)]) = 4 Tr(A[log A, log B] log B) ≥ 0.

Thus, the right hand side of (6) decreases to the left hand side as p ↓ 0. ¥
Hiai [11] proved that the equality occurs in the logarithmic trace inequality

(6) if and only if AB = BA.
For A,B > 0, (6) can be rewritten in entropy terminology as

S(A, B) ≤ −1
p

Tr(Ŝ (Ap|Bp) A1−p), p > 0. (7)

For p = 1, (7) establishes a relation between the Umegaki relative entropy
and the version due to Belavkin and Staszewski: S(A,B) ≤ −Tr Ŝ(A|B).

For 0 ≤ α ≤ 1, the α-power mean of matrices A > 0, B ≥ 0, is defined by

A#αB = A1/2
(
A−1/2BA−1/2

)α

A1/2.

If A is not strictly positive, then the α-power mean of A,B ≥ 0 is

A#αB = lim
ε↓0

(A + εI)#αB.

In the Kubo-Ando theory of operator means [12], the α-power mean is the one
corresponding to the operator monotone function xα. For 0 ≤ α ≤ 1, we have
A#αB ≥ 0. In particular, A#0B = A, A#1B = B and A#B = A#1/2B is
the geometric mean of A, B (this terminology is due to the fact that if A and
B commute, then A#B = (AB)1/2). The following equality holds

d

dα
A#αB

∣∣∣∣
α=0

= Ŝ(A|B). (8)

Corollary 2.1. If A,B > 0 and 0 ≤ α ≤ 1, then

S(A, (Ar#αBs)t/p) ≤ −1
p

Tr
(
Ŝ

(
Ap| (Ar#αBs)t

)
A1−p

)
,

for r, s ≥ 0, t ≥ 1 and p > 0.

Proof. Replacing B by (Ar#αBs)t/p in (7), the result follows. ¥
Note that (7) is recovered by Corollary 2.1 in the particular case α = 1,

p = st and s 6= 0.
Using Corollary 2.1, the continuous parameter version of Lie-Trotter’s for-

mula
eX+Y = lim

p→0
(epX/2epY epX/2)1/p, X, Y ∈ Mn,
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and its α-power mean variant [10]:

e(1−α)X+αY = lim
p→0

(epX#αepY )1/p, X, Y ∈ Mn, (9)

we give in Corollary 2.2 an alternative proof for the following logarithmic
trace inequality of Ando and Hiai [1].

Corollary 2.2. If A ≥ 0, B > 0, 0 ≤ α ≤ 1 and p > 0, then

1
p

Tr (A log (Ap#αBp)) +
α

p
Tr

(
A log

(
Ap/2B−pAp/2

))
≥ Tr (A log A) ,

and the left hand side converges to Tr (A log A) as p ↓ 0.

Proof. Firstly, let A > 0, and consider Corollary 2.1 in the particular case
t = 1 and p = r = s. Since

S(A, (Ap#αBp)1/p) = Tr(A log A)− 1
p

Tr (A log (Ap#αBp)) ,

Tr(Ŝ (Ap|Ap#αBp) A1−p) = −α Tr
(
A log

(
Ap/2B−pAp/2

))
,

the asserted inequality follows. Now, we study the convergence as p ↓ 0.
Considering (9) for the Hermitian matrices X = log A and Y = log B, and
having in mind that log is a continuous function, we get

lim
p↓0

log (Ap#αBp)1/p = (1− α) log A + α log B. (10)

On the other hand, by the parameter version of Lie-Trotter’s formula applied
to the matrices X = log A and Y = − log B, we obtain:

lim
p↓0

log
(
Ap/2B−pAp/2

)1/p

= log A− log B. (11)

The corollary easily follows from (10) and (11). If A ≥ 0, by a perturbation,
we take A + εIn, ε > 0, and the result follows by a continuity argument. ¥

In relative entropy terminology, Corollary 2.2 establishes that

S(A, (Ap#αBp)1/p) ≤ −α

p
Tr(Ŝ(Ap|Bp)A1−p). (12)

The proof of Corollary 2.2 shows that the right and the left hand side of (12)
converge to α S(A,B) as p ↓ 0.
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3. On the Peierls-Bogoliubov Inequality
It is an important issue in statistical mechanics to calculate the value of

the so-called partition function Tr(eĤ), where the Hermitian matrix Ĥ is the
Hamiltonian of a physical system. Since that computation is often difficult,
it is simpler to compute the related quantity Tr(eH), where H is a convenient
approximation of the Hamiltonian Ĥ. Indeed, let Ĥ = H + K. The Peierls-
Bogoliubov inequality provides useful information on Tr(eH+K) from Tr(eH).
This inequality states that, for two Hermitian operators H and K,

Tr(eH) exp
Tr(eHK)
Tr(eH)

≤ Tr(eH+K).

The equality occurs in the Peierls-Bogoliubov inequality if and only if K is a
scalar matrix. This well-known inequality will be extended in Corollary 3.3
of the following theorem of Ando and Hiai [2].

Theorem 3.1. If A1, B1 ≥ 0 and A2, B2 > 0, then

Tr(A1B1) log
Tr(A1B1)
Tr(A2B2)

≤ Tr
(
A

1/2
1 B1A

1/2
1 log

(
A

1/2
1 B−1

2 A
1/2
1

))

+ Tr
(
B

1/2
1 A1B

1/2
1 log

(
B

1/2
1 A−1

2 B
1/2
1

))
. (13)

Relaxing the condition of unital trace in the definition of relative entropy,
(13) can be written in the condensed form:
1
n

S (Tr(A1B1)In, Tr(A2B2)In) ≤ −Tr(Ŝ(A1|B2)B1)− Tr(Ŝ(B1|A2)A1). (14)

Corollary 3.1. If A1, B1 ≥ 0 and A2, B2 > 0, then
1
n

S (Tr(A1B1) In, Tr ((A1#αA2) (B1#βB2)) In) ≤ −α Tr(Ŝ(A1|A2)B1)

−β Tr(Ŝ(B1|B2)A1),

for every 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Proof. Replacing B2, A2 in (14) by A1#αA2, B1#βB2, respectively, and
observing that

Tr(Ŝ(A1|A1#αA2)B1) = α Tr(Ŝ(A1|A2)B1),

Tr(Ŝ(B1|B1#βB2)A1) = β Tr(Ŝ(B1|B2)A1),

the result follows. ¥
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Corollary 3.2. If A1, B1 ≥ 0 and A2, B2 > 0, then the function

f(α) = log Tr ((A1#α A2)(B1#α B2)) , 0 ≤ α ≤ 1,

is such that f ′(0) ≤ f(1)− f(0).

Proof. Let A1, B1 ≥ 0 and A2, B2 > 0, and interchange in (14) the roles of
the matrices A2 and B2. Dividing the left and the right hand side of the
resulting inequality by −Tr(A1B1), taking the exponential, and multiplying
both sides of the so-obtained inequality by Tr(A1B1), we write (14) in the
form

Tr(A1B1) exp
Tr(Ŝ(A1|A2)B1) + Tr(Ŝ(B1|B2)A1)

Tr(A1B1)
≤ Tr(A2B2). (15)

From the definition of f , it is clear that ef(0) = Tr(A1B1) and ef(1) =
Tr(A2B2). On the other hand, taking the derivative of f with respect to
α at the origin and recalling (8), we obtain

f ′(0) =
Tr(Ŝ(A1|A2)B1 + A1Ŝ(B1|B2))

Tr(A1B1)
.

Thus, we can rewrite (15) in the form ef(0)ef ′(0) ≤ ef(1) and the result easily
follows. ¥
Corollary 3.3. For Hermitian matrices G,H, K and L, we have

Tr(eHeG) exp
Tr(Ŝ(eH | eG+L) eG) + Tr(Ŝ(eG| eH+K) eH)

Tr(eHeG)
≤ Tr(eH+KeG+L).

Proof. Considering A1 = eH , A2 = eG+L, B1 = eG and B2 = eH+K in (15)
the result follows. ¥
Remarks. Theorem 3.1 is recovered by Corollary 3.1 for α = β = 1. Corol-
lary 3.3 is an extension of the Peierls-Bogoliubov inequality, which is recov-
ered in the particular case G = L = 0. This can be easily seen observing
that

TrŜ(eH | In) = −Tr(eHH) and Tr(Ŝ(In| eH+K) eH) = Tr(eH(H + K)).

4. The Thermodynamic Inequality and Equivalent State-
ments

The quantum observables are modeled by Hermitian matrices. For ex-
ample, the energy operator H is a Hermitian operator. For H the energy
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operator, the statistical energy mean value of the state described by the den-
sity matrix A is

E = Tr(AH)
and the free energy of that state is

ψ(A) = Tr(AH)− θ S(A),

where θ = kT , k is the Boltzmann constant and T is the absolute temper-
ature. The evaluation of the extremum of ψ(A) is an important problem in
physics. For convenience, we consider θ = −1.

Theorem 4.1. [5] If H is a Hermitian matrix, then

log Tr(eH) = max {Tr(AH) + S(A) : A ≥ 0, Tr(A) = 1} .

Theorem 4.1 implies the important thermodynamic inequality [4, 14]:

log Tr(eH) ≥ Tr(AH) + S(A), (16)

where the equality occurs if and only if A = eH/ Tr(eH). As observed by the
Referee, the inequality (16) and its equality case are immediate consequences
of the strict positivity of the relative entropy: S(A, eH/Tr(eH)) ≥ 0.

Replacing H by −H/θ in (16) and multiplying both members by −θ, we
conclude that ψ(A) is an approximation (an upper bound) to the Helmholtz
free energy function F = −θ log Tr(e−H/θ).

On the other hand, replacing H in Theorem 4.1 by H + log B, B > 0,
we obtain the following result of Hiai and Petz. Clearly, Theorem 4.1 is a
particular case of Corollary 4.1 when B = In.

Corollary 4.1. [10] If B > 0 and H is a Hermitian matrix, then

log Tr(eH+log B) = max {Tr(AH)− S(A,B) : A ≥ 0, Tr(A) = 1} .

For Hermitian matrices H and K, the famous Golden-Thompson inequality
holds: Tr(eHeK) ≥ Tr(eH+K). This is one of the earlier trace inequalities
[9, 18] in statistical mechanics. Using this inequality, a generalization of the
thermodynamic inequality is obtained in Theorem 4.2.

Theorem 4.2. Let A,B > 0, with Tr(A) = 1 and let H be Hermitian. Then

log Tr(eH (Ap#αBp)1/p) ≥ Tr(AH) +
α

p
Tr(Ŝ (Ap|Bp) A1−p), (17)

for 0 ≤ α ≤ 1 and p > 0. If α = 1 and B = In, (17) reduces to the
thermodynamic inequality.
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Proof. If A, B > 0, then (Ap#αBp)1/p > 0, for 0 ≤ α ≤ 1 and p > 0. By
the Golden-Thompson inequality applied to the Hermitian matrices H and
log (Ap#αBp)1/p, and by the monotonicity of the logarithm, we have

log Tr(eH (Ap#αBp)1/p) ≥ log Tr(eH + log(Ap#αBp)1/p

), 0 ≤ α ≤ 1, p > 0.

Replacing B by (Ap#αBp)1/p in Corollary 4.1, we get

log Tr(eH + log(Ap#αBp)1/p

) ≥ Tr(AH)−S(A, (Ap#αBp)1/p), 0 ≤ α ≤ 1, p > 0.

These inequalities in conjunction with the logarithmic trace inequality (12)
yield (17). To finish the proof, let α = 1. We obtain

log Tr(eHB) ≥ Tr(AH) +
1
p
Tr(Ŝ (Ap|Bp) A1−p), p > 0.

Moreover, if B = In then Tr(Ŝ (Ap|Bp) A1−p) = p S(A), and the thermody-
namic inequality is obtained. ¥

We present now two equivalent statements to Theorem 4.2.

Theorem 4.3. For 0 ≤ α ≤ 1 and p > 0, the following conditions are
equivalent:

(i) Let A,B > 0, with Tr(A) = 1 and H be Hermitian. Then

log Tr(eH (Ap#αBp)1/p) ≥ Tr(AH) +
α

p
Tr(Ŝ(Ap|Bp)A1−p).

(ii) If A1, A2, B2 > 0, then

1
n

S
(

Tr(A1) In, Tr(B2 (Ap
1#αAp

2)
1/p) In

)
≤ −α

p
Tr(Ŝ(Ap

1|Ap
2)A

1−p
1 )

−Tr(Ŝ(In|B2)A1).

(iii) For Hermitian matrices H, K, L, we have

Tr(eH) exp
p Tr(eH(H + K)) + α Tr(Ŝ(epH |epL) e(1−p)H)

p Tr(eH)

≤ Tr
(
eH+K(epH#αepL)1/p

)
.

Proof. (i) ⇒ (ii): Let A1, A2, B2 > 0. Consider A = A1/Tr(A1), B = A2

and H = log B2. These matrices satisfy the conditions in (i) and satisfy the
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following properties:

(Ap#αBp)1/p = (Tr A1)
α−1 (Ap

1#αAp
2)

1/p
, (18)

Tr(AH) =
Tr(Ŝ(In|B2)A1)

Tr(A1)
, (19)

Tr(Ŝ(Ap|Bp) A1−p) =
Tr(Ŝ(Ap

1|Ap
2)A

1−p
1 )

Tr(A1)
+ p log Tr(A1). (20)

Replacing (18), (19) and (20) in the inequality in (i) and multiplying both
members by −Tr(A1), we obtain

−Tr(A1)
(

log(Tr A1)
α−1 + log Tr(B2 (Ap

1#αAp
2)

1/p)
)

≤ −Tr(Ŝ(In|B2)A1)− α

p
Tr(Ŝ(Ap

1|Ap
2)A

1−p
1 )− α Tr(A1) log Tr(A1). (21)

Summing the left hand side of (21) with α Tr(A1) log Tr(A1), we get

1
n

S
(

Tr(A1) In, Tr(B2 (Ap
1#αAp

2)
1/p) In

)

and the implication is proved.
(ii) ⇒ (iii): Let H,K,L be Hermitian matrices, and consider A1 = eH , A2 =
eL and B2 = eH+K . Then

1
n

S
(

Tr(A1)In, Tr(B2(A
p
1#αAp

2)
1
pIn

)
= −Tr(eH)log

Tr
(
eH+K(epH#αepL)

1
p

)

Tr(eH)
, (22)

Tr(Ŝ(In|B2)A1) = Tr(eH(H + K)). (23)

Replacing (22) and (23) in the inequality in (ii) and dividing both members
of the so obtained inequality by −Tr(eH), we obtain

log
Tr

(
eH+K(epH#αepL)1/p

)

Tr(eH)
≥ α Tr(Ŝ(epH |epL) e(1−p)H)

p Tr(eH)
+

Tr(eH(H + K))
Tr(eH)

.

Taking the exponential, we easily find

Tr
(
eH+K(epH#αepL)1/p

)

Tr(eH)
≥ exp

p Tr(eH(H + K)) + αTr(Ŝ(epH |epL) e(1−p)H)
p Tr(eH)

.

(iii) ⇒ (i): If A, B > 0, then there exist Hermitian matrices D and L such
that A = eD and B = eL. Since H is Hermitian and K = H − log A is also
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Hermitian, (iii) implies that

Tr(A) exp
p Tr(AH) + αTr(Ŝ(Ap|Bp) A(1−p))

p Tr(A)
≤ Tr(eH (Ap#αBp)1/p).

Since Tr(A) = 1, the monotonicity of the logarithmic function yields

Tr(AH) +
α

p
Tr(Ŝ(Ap|Bp) A1−p) ≤ log Tr(eH (Ap#αBp)1/p). ¥

Remarks. For α = p = 1, Theorem 4.3 (ii) reduces to the case B1 = In of the
Theorem 3.1 of Ando and Hiai. If α = 1 and L = 0, then (epH#αepL)1/p = In,

Tr(Ŝ(epH |epL) e(1−p)H) = −p Tr(eHH), and so Theorem 4.3 (iii) reduces to the
Peierls-Bogoliubov inequality.

Final Comments. Let H and L be Hermitian matrices, 0 ≤ α ≤ 1 and
p > 0. Considering A = eH and B = eL in (7), we find that

Tr(eH) exp
α Tr(eH(L−H))

Tr(eH)
(24)

is an upper bound to

Tr(eH) exp
α Tr(Ŝ(epH |epL) e(1−p)H)

p Tr(eH)
. (25)

Taking K = −H in Theorem 4.3 (iii), another upper bound to (25) is

Tr(epH#αepL)1/p. (26)

Moreover, as follows from the Peierls-Bogoliubov inequality, (24) is a lower
bound to Tr(e(1−α)H+αL). By the complemented Golden-Thompson inequal-
ity (26) is also a lower bound to Tr(e(1−α)H+αL). So, the comparision of these
two bounds is of interest.

For each 0 < α0 ≤ 1, and H,L Hermitian such that L−H is a non-scalar
matrix, there exists p0 > 0 (depending on H, L, α0) such that the inequality
holds

Tr(eH) exp
α Tr(eH(L−H))

Tr(eH)
< Tr(epH#αepL)1/p, (27)

for 0 < p ≤ p0 and α0 ≤ α ≤ 1. If L−H is a scalar matrix, equality occurs
in (27), for all p > 0.

Indeed, suppose that for any ε > 0 there exists p such that 0 < p ≤ ε and

Tr(eH) exp
α Tr(eH(L−H))

Tr(eH)
≥ Tr(epH#αepL)1/p. (28)
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Let A = {p : (28) holds}. This set has 0 as an accumulation point. Consider
a sequence in A converging to 0. Taking limits as p ↓ 0 in that sequence and
recalling (9), we get

Tr(eH) exp
α Tr(eH(L−H))

Tr(eH)
≥ Tr

(
e(1−α)H+αL

)
. (29)

Since the Peierls-Bogoliubov inequality gives the previous inequality in re-
versed order, only the equality is possible in (29). The characterization of the
equality condition in the Peierls-Bogoliubov inequality implies that L−H is
a scalar matrix, a contradiction. This proves that there exists p0 > 0 such
that (27) is verified. Now, let L − H be a scalar matrix λIn. For p > 0,
both the left and the right hand side of (27) reduce to eαλ Tr(eH), and so the
equality occurs.

In conclusion, for each 0 < α0 ≤ 1, there exists p0 > 0 such that the
following inequalities hold

Tr(eH) exp
α Tr(Ŝ(epH |epL) e(1−p)H)

p Tr(eH)
≤ Tr(eH) exp

α Tr(eH(L−H))
Tr(eH)

≤ Tr(epH#αepL)1/p

≤ Tr(e(1−α)H+αL),

for 0 < p ≤ p0 and α0 ≤ α ≤ 1, occurring equality when L − H is a scalar
matrix.
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