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ABSTRACT: We first recall some basic definitions and facts about Jacobi manifolds,
generalized Lie bialgebroids, generalized Courant algebroids and Dirac structures.
Then, we investigate some relations between Dirac subbundles L for the double
(A @ A*, ¢ + W) of a generalized Lie bialgebroid ((4,¢),(A*,W)) over M and
the associated Dirac subbundles L for the double A @& A* of the corresponding Lie
bialgebroid (A, A*) over M x IR. We establish an one-one correspondence between
reducible Dirac structures for the generalized Lie bialgebroid of a Jacobi manifold
(M, A, E) and Jacobi quotient manifolds of M. We study Jacobi reductions from
the point of view of Dirac structures theory and we present some examples and
applications.
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1. Introduction

The concept of a Dirac structure on a differentiable manifold M was intro-
duced by T. Courant and A. Weinstein in [2] and developed by T. Courant in
[3]. Its principal aim is to present a unified framework for the study of pre-
symplectic forms, Poisson structures and foliations. More specifically, a Dirac
structure on M is a subbundle L C T'M & T* M that is maximally isotropic
with respect to the canonical symmetric bilinear form on T'"M &T* M and sat-
isfies a certain integrability condition. In order to formulate this integrability
condition, T. Courant defines a bilinear, skew-symmetric, bracket operation
on the space I'(T'M & T*M) of smooth sections of TM @& T*M which does
not satisfy the Jacobi identity. The nature of this bracket was clarified by
Z.-J. Liu, A. Weinstein and P. Xu in [21] by introducing the structure of a
Courant algebroid on a vector bundle £ — M over M and by extending the
notion of a Dirac structure to the subbundles L. C E. The most important
example of Courant algebroid is the direct sum A @ A* of a Lie bialgebroid

([25])-
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Alan Weinstein and its collaborators have studied several problems of Pois-
son geometry via Dirac structures theory. In [22], Z.-J. Liu et al. establish an
one-one correspondence between Dirac structures on the double T'M & T M
of the triangular Lie bialgebroid (7'M, T* M, A) defined on a Poisson manifold
(M, A) and Poisson structures on quotient manifolds of M. Using this corre-
spondence and the results concerning the pull-backs Dirac structures under
Lie algebroid morphisms, Z.-J. Liu constructs in [23] the Poisson reduction
in terms of Dirac structures.

On the other hand, it is well known that the notion of Jacobi manifold,
i.e. a differentiable manifold M endowed with a bivector field A and a vector
field F satisfying an integrability condition, introduced by A. Lichnerowicz
in [20], is a rich geometrical notion that generalizes the Poisson, symplec-
tic, contact and co-symplectic manifolds. Thus, it is natural to research a
simple interpretation of Jacobi manifolds by means of Dirac structures. A
first approach of this problem is presented in [35] by A. Wade. Taking into
account that to any Jacobi structure (A, F') on M is canonically associated
a generalized Lie bialgebroid structure on (T'M x R, T*M x R) ([12]), she
considers the Whitney sum (M) = (TM x R) @ (T*M x R), introduces
the notion of E(M)-Dirac structures by extending the Courant’s bracket to
the space ['(E1(M)) of smooth sections of £1(M) and shows that the graph
of the vector bundle morphism (A, E)* : T*M x R — TM x R is a Dirac
subbundle of £1(M). But the extended bracket does not endow £'(M) with
a Courant algebroid structure. A second approach of the problem is the one
proposed by the second author and J. Clemente-Gallardo in the recent paper
[33]. They introduce the notions of generalized Courant algebroid (which is
equivalent to the notion of Courant-Jacobt algebroid independently defined
by J. Grabowski and G. Marmo in [10]) and of Dirac structure for a general-
ized Courant algebroid and give several connections between Dirac structure
for generalized Courant algebroids and Jacobi manifolds. We note that the
construction of [33] includes as particular case the one of Wade and that the
main example of generalized Courant algebroid over M is the direct sum of
a generalized Lie bialgebroid over M.

In the present work, by using the results mentioned above, we establish
a reduction theorem of Jacobi manifolds (Theorem 6.2). It is well known
that there are already several geometric and algebraic treatments of the Ja-
cobi reduction problem (see, for instance, [30], [31], [29], [11]). But, it is
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an original goal of the Dirac structures theory to describe Jacobi reduc-
tion and to construct a more general framework for the study of the related
problems concerning the projection of Jacobi structures and the existence of
Jacobi structures on certain submanifolds of Jacobi manifolds. Precisely, on
the way to our principal result, we construct an one to one correspondence
between Dirac subbundles, satisfying a certain regularity condition, of the
double (TM xR) @ (T*M x IR), where M is a Jacobi manifold, and quotient
Jacobi manifolds of M (Theorem 5.12). Also, the Reduction Theorem 6.2
allows us to state new sufficient conditions under which a submanifold N
of (M, A, E) inherits a Jacobi structure, that include as particular cases the
results presented in [14], [4].

The paper is organized as follows. In sections 2 and 3 we recall some basic
definitions and results concerning, respectively, Jacobi structures, generalized
Lie bialgebroids and Dirac structures for generalized Courant algebroids. In
section 4 we investigate relations between Dirac structures for a generalized
Lie bialgebroid ((A4,¢), (A*,W)) and the associated structures of the Lie
bialgebroid (A, A*), with A = A x R and A* = A* x R, which are useful
throughout the paper. In section 5 we establish a correspondence between
Dirac structures and quotient Jacobi manifolds (Theorem 5.12). Using this
correspondence and the results for the pull-backs Dirac structures by Lie
algebroid morphisms, we prove, in section 6, a Jacobi reduction theorem
(Theorem 6.2) which differs at same points from that proved in [30] and
independently in [29] and give us a less strict reduction condition. Finally,
in section 7 we present some applications and examples.

Notation : In this paper, M is a C*°-differentiable manifold of finite dimen-
sion. We denote by T'M and T™* M, respectively, the tangent and cotangent
bundles over M, C*°(M,R) the space of all real C'*-differentiable functions
on M, QF(M) the space of all differentiable k-forms on M and X (M) the
space of all differentiable vector fields on M. Also, we denote by ¢ the
usual differential operator on the graded space Q(M) = @z (M). For
the Schouten bracket and the interior product of a form with a multi-vector
field, we use the convention of sign indicated by Koszul [19], (see also [27]).

2. Jacobi structures and Generalized Lie bialgebroids

A Jacobi manifold is a differentiable manifold M equipped with a bivector
field A and a vector field E such that the Schouten brackets of A with itself
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and of E with A are, respectively,
[A,A]=—-2EAA and [F,A]=0,

([20]). In this case, the pair (A, E) defines on C*°(M,IR) the internal com-
position law :

{f, 9} = AOf.09) + (fog —gof. E), f,geC*(MR), (1)

which endows C*(M,R) with a local Lie algebra structure [17], [20], (or
with a Jacobi algebra structure in the terminology of J. Grabowski et al.,
8], [10]). Also, if ¢p € C*°(M,R) is a function that never vanishes on M
and {, }¥ : C®°(M,R) x C*(M,R) — C*(M,IR) the new bilinear and
skew-symmetric internal composition law on C*°(M,R) given, for each pair
(f,9) € C*(M,R) x C*(M,IR), by

(g}’ = %{wf, badom,

then {, }¥ endows C*(M,R) with a new Jacobi bracket that defines a new
Jacobi structure (AY, E¥) on M, which is said to be w-conformal to the
initially given one. The structures (A, ) and (AY, E¥) are said to be con-
formally equivalent and we have :

AY = A and EY = A#(6¢) +E.

The equivalence class of the Jacobi structures on M that are conformally
equivalent to a given Jacobi structure is called a conformal Jacobi structure
on M.

Let (My, Ay, Ey) and (Ms, Ay, E5) be two Jacobi manifolds and W : M; —
M, a differentiable map. If A; and E; are projectable by W on M, and their
projections are, respectively, Ay and Fy, i.e V,A; = Ay and V., F; = E»,
then ¥ : My — M, is said to be a Jacobi morphism or a a Jacobi map.
When ¥ : My — M, is a diffeomorphism, the Jacobi structures (Ay, Fy) and
(Ag, Es) are said to be equivalent. If there exists v € C*°(Mj,IR) that never
vanishes on M; such that W : (Ml,Alf, Eib) — (My, Ay, Es) is a Jacobi map,
then U : (M, Ay, Ey) — (M, Ao, ) is called a y-conformal Jacobi map.

A Lie algebroid over a smooth manifold M is a vector bundle A — M with
a Lie algebra structure [, ] on the space ['(A) of the global cross sections of
A — M and a bundle map a : A — T'M, called the anchor map, such that
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(1) the homomorphism a : (I'(A),[, ]) — (X(M),],]), induced by the
anchor map, is a Lie algebra homomorphism ;
(2) for all f € C*(M,R) and for all X, Y € I'(A),

(X, fY] = fIX. Y]+ (a(X) f)Y.
We denote a Lie algebroid over M by the triple (A, [, |, a). For more details
see, for example, [24], [1] and [27].

A trivial example of a Lie algebroid over a differentiable manifold M is
(TM,[,],1d), i.e. the tangent bundle TM of M equipped with the usual
Lie bracket of vector fields on M and the identity map Id : TM — TM as
anchor map. Another example of Lie algebroid over M is (T'M x R, [, ], ),
where, for all (X, f),(Y,g) e T(TM x R) =2 X(M) x C*(M,R),
and 7 : T'M x IR — T'M is the projection on the first factor.

The Lie algebroid of a Jacobi manifold is defined in [16] as follows. We
consider :

i) on the space I'(T*M x R) = QY M) x C=(M,R), the Lie algebra
bracket [, |(a,p) given, for all (o, f), (8,9) € I(T"M x R), by

[(a, £), (B, D]ag) = (7. h), (3)

where
v = Ly B — Larpya — 6(A(a, B)) + fLeB — gLpa —ig(a A B),

and
ii) the vector bundle morphism (A, E)# : T*M x IR — TM x R defined,
for any (a, f) € I'(T"M x R), by
(A E) (e, f)) = (A" (o) + [E, —(a, E)).
Then the triple (T*M X R, [, |a.p), 7o (A, E)¥) is a Lie algebroid over M.
For a Lie algebroid (A, [, ],a) over M, we denote by A* its dual vector
bundle over M and by A A* = @, 7 A" A* the graded exterior algebra of

A*. Sections of A\ A* are called A-differential forms (or A-forms) on M.
There exists a graded endomorphism of degree 1 of the exterior algebra of
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A-forms, d : T'(/\ A*) — I'()\ A%), called the exterior derivative, taking an
A-k-form 7 to an A-(k + 1)-form dn such that, for all X,..., X1 € T'(A4),

dn(le S 7Xk‘—|—1> -
= S (=D a(X) (X, X X)) +

~

+ 21§i<j§k+1(—1)i+j77([Xi, Xj], Xl, N ,Xi, N ,Xj, ceey Xk+1).

The Lie algebroid axioms of A imply that d is C*°(M, IR)-multilinear and a
superderivation of degree 1 and d* = 0. Also, we denote by A A = &, A A
the graded exterior algebra of A whose sections are called A-multivector
fields. The Lie bracket on I'(A) can be extended to the exterior algebra of
A-multivector fields and the result is a graded Lie bracket [, ], called the

Schouten bracket of the Lie algebroid A. Details may be found, for instance,
in [24], [18] and [1].

Let (A, [, ],a) be a Lie algebroid over M and ¢ € I'(A*) be an 1-cocycle
in the Lie algebroid cohomology complex with trivial coefficients ([24], [12]),
i.e. for any X,Y € I'(A),

(0,[X.Y]) = a(X)({9,Y)) — a(Y)({¢, X)). (4)

We modify the usual representation of the Lie algebra (I'(A),[, ]) on the

space C°°(M,R) by defining a new representation a® : I'(4) x C*°(M,R) —
C*(M,R) as

(X, f) = a(X)f + {6, X) . (5)

where (X, f) € I'(A) x C*°(M,IR). The resulting cohomology operator

d? : T(\A*) — T'(/ A*) of the new cohomology complex is called the ¢-
differential of A and its expression in terms of d is

d’n = dn+ 6 A, (6)
for n € T'( /\k A*). The new cohomology operator d? allows us to define, in a
natural way, the ¢-Lie derivative by X € T(A), LS : T(A\" A*) — T(A" 4%),

as the commutator of d® and of the contraction by X, i.e. L‘}’S( =d%0ix—+ixo
d?. Its expression in terms of the usual Lie derivative Lx = doix +ix od

is, for n € T(\" A*),

L1 = Lxn+ (6, X)n. (7)
Using ¢ we can also modify the Schouten bracket [, | on I'(A A) to the ¢-
Schouten bracket [, ]? on T'(\ A). It is defined, for all P € T'(A” A) and
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Q € T(A\"A), by
[P.QI° =[P.Q]+ (p— DP A (isQ) + (—1)’(¢ = 1)(isP) AQ,  (8)

where 74() can be interpreted as the usual contraction of a multivector field
with an 1-form. We remark that, when p = ¢ = 1, [P, Q]¢ = [P, Q), i.e. the
brackets [, ] and [, | coincide on I'(A).

For a representation of the differential calculus using the ¢-modified deriv-
ative, Lie derivative and Schouten bracket, see [12] and [9].

The notion of generalized Lie bialgebroid has been introduced by D. Iglesias
and J.C. Marrero in [12] in such a way that a Jacobi manifold has a general-
ized Lie bialgebroid canonically associated and conversely. We consider a Lie
algebroid (A, [, ],a) over M and an 1-cocycle ¢ € T'(A*) and we assume that
the dual vector bundle A* — M admits a Lie algebroid structure ([, ., as)
and that W € I'(A) is an 1-cocycle in the Lie algebroid cohomology complex
with trivial coefficients of (A*, [, ]+, as). Then, we say that :

Definition 2.1. The pair ((A, ¢), (A", W)) is a generalized Lie bialgebroid
over M if, for all X,Y € T'(A) and P € T(A\" A), the following conditions
hold :

(X, Y] = [dV X, Y]’ + [X,dV V)", (9)

LY P+ Ly,P =0, (10)

where dVV and LYV are, respectively, the W -differential and the W -Lie deriv-
ative of A*.

An equivalent definition of this notion was presented in [9] by J. Grabowski
and G. Marmo under the name of Jacob: bialgebroid. Precisely, they define
that :

Definition 2.2. The pair ((A, ¢), (A*,W)) is a Jacobi bialgebroid if for all
PeT(AN'A) and Q e T(\? A),

4 [P,Q)” = [d P,Q]* + (—1)""'[P,dY Q]°.

In the particular case where ¢ = 0 and W = 0, we recover by the above
two definitions, respectively, the notion of Lie bialgebroid introduced by
K. Mackenzie and P. Xu in [25] and its equivalent definition given by Yv.
Kosmann-Schwarzbach in [18].
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Remark 2.3. The property of duality of a Lie bialgebroid is also verified in
the case of a generalized Lie bialgebroid : i.e. if ((A,¢), (A", W)) is a gen-
eralized Lie bialgebroid, so is ((A*, W), (A4, ¢)) (see [12], [9]). Consequently,
conditions (9)-(10) of Definition 2.1 as well as of Definition 2.2 can be re-
placed by their dual versions.

The fundamental results of [12], which will be used in the sequel, are the
following theorems.

Theorem 2.4. Let (M, A, E) be a Jacobi manifold. Then the pair
((TM X Ra [7 ]771_7 (07 1))7 (T*M X R? [7 ](A,E)a mo (A7 E)#a (_E7 0))) s a gen-
eralized Lie bialgebroid.

Theorem 2.5. Let ((A, ¢), (A*,W)) be a generalized Lie bialgebroid over a
differentiable manifold M. Then the bracket of functions {, }; : C*°(M, IR) X
C>®(M, R) — C>*(M, IR) given, for all f,g € C>*(M, IR), by
{f.g}s=(d"f.d g), (11)

defines a Jacobi structure on M.
Corollary 2.6. If (4,6), (A°,W)) = (TM x R,[, ], (0,1)), (T°M x
R.[, gy 7o (A, E)#, (—E,0))) is the generalized Lie bialgebroid associated
to a Jacobi manifold (M, A\, E), then

{f,9ys =19} np), Vf,geC*(M,IR). (12)

Proof : Effectively, for all f,g € C*(M,R),

{f.9ys = (dOVf,d"0g) =
= ((6f, f), (=A% (6g) — gE, (39, E))) =
= A(0f,69) +(fog—gdf, E) =

(1)
= {f.9}trp)®

An important class of generalized Lie bialgebroids is the one of triangular
generalized Lie bialgebroids defined, also in [12] and [13], as follows :

Definition 2.7. A generalized Lie bialgebroid ((A, @), (A*, W)) is said to be
a triangular generalized Lie bialgebroid if there exists P € F(/\2 A) such that
[P, P]® = 0, the Lie bracket [, ]. on T'(A*) is the bracket

[, Blp = Lo )8 = Lpppe = d*(P(e, ), Va, fET(AY),  (13)
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a. =ao P* and W = —P7%(¢).

A characteristic example of triangular generalized Lie bialgebroid is the

generalized Lie bialgebroid of a Jacobi manifold of Theorem 2.4, where
(A, B), (A, B)]©Y = 0 holds.

Let us now recall how, given a Lie algebroid (A,[,],a) over M, we can
construct Lie algebroid structures on the vector bundle A = A x R over
M xR . The sections of A — M xR can be identified with the set of the time-
dependent sections of A — M, i.e. for any X € I'(A) and (z,t) € M x R,
t being the canonical coordinate on R, X (z,t) = X,(z), where X, € T'(A).
This identification induces, in a natural manner, a Lie bracket [, | on I'(A) :

(X, Y](z,t) = [X,,Y](z), X,Y eT(A), (z,t)e M xR,

and a bundle map @ : A — T(M x R), a(X)(z,t) = a(X,)(z), which endow
A with a Lie algebroid structure over M x R. On the other hand, taking
an 1-cocycle of A, ¢ € I'(A*), we deform ([, |,a) in two different ways and
we obtain two new Lie algebroid structures on A, [12]. Precisely, for X,V €

['(A), we set

X VT = XV 440, %0 0 — (0.0
#(X) = a(X)+ (6. %) (14)
X VPP = e (X, 7] + 46, %05~ V) — (0,05 — X)),

) (15)
We have :

Theorem 2.8 ([12]). Let (A, [, |, a) be a Lie algebroid over M and ¢ € T'(A*)
be an 1-cocycle. Suppose that ([, ], a.) is a Lie algebroid structure on A* and
W e T(A) is an 1-cocycle. Consider on A = Ax IR and A* = A* x IR the Lie
algebroid structures ([, ?,a?) and ([, )V, alV), respectively. Then (A, A*) is
a Lie bialgebroid over M x IR if and only if ((A, ¢), (A*,W)) is a generalized
Lie bialgebroid over M. The induced Poisson structure on M X IR is the

Poissonization of the induced Jacobi structure on M.
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Moreover, it is well known that the image Ima of the anchor map a of
a Lie algebroid (A, [, |,a) over M is an integrable distribution on M, (see
[6] and [7]). Thus, Ima defines a singular foliation F4 of M, called the Lie
algebroid foliation of M associated with A ([15]) or the orbit foliation of the
Lie algebroid A ([7]).

The relation between the leaves of the Lie algebroid foliation Fj; of M x
R associated with (A,[,]%,a®) (given by (14)) and the leaves of the Lie
algebroid foliation F4 of M associated with A was studied in [15] by D.
Iglesias and J.C. Marrero. They have proved :

Theorem 2.9 ([15]). Under the above considerations, suppose that (xg,ty) €
M x IR and that F' and F are the leaves of the Lie algebroid foliations Fi and
Fa passing through (xo,ty) € M X IR and o € M, respectively, and denote
by A, the fiber of A over xo. Then

(1) if ker(ala,,) is not contained in (¢(xo))°, we have that F=FxIR;
(2) of ker(ala,,) is contained in ($(x0))° and m : M X IR — M is the

canonical projection onto the first factor, we have that m (F) = F and
that the map |z : F — F is a covering map.

3. Generalized Courant algebroids and Dirac structures

The notion of generalized Courant algebroid has been introduced by the
second author and J. Clemente-Gallardo in [33] and independently, under
the name of Courant-Jacobi algebroid, by J. Grabowski and G. Marmo in
[10]. In this section, we recall some basic facts concerning this notion and its
relation with Dirac and Jacobi structures.

Definition 3.1 ([33]). A generalized Courant algebroid over a differentiable
manifold M is : i) a vector bundle E — M equipped with a nondegenerate

symmetric bilinear form (, ) on the bundle, a skew-symmetric bracket |, |
on I'(E) and a bundle map p : E — TM and ii) an E-1-form 6 such that,

for any e1,e2 € I(E), (0,[e1, e2]) = p(e1){0, e2) — p(e2){0. e1), verifying the
following relations :

(1) for any e1,e2,e3 € I'(E),
Hela 62]7 63] +cp. = DQT(eb €2, 63);
(2) for any e, e2 € I'(E),

p(le1, e2]) = [p(er), ple2)]; (16)
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(3) for any e1,eq € T'(E) and f € C*(M, R),

le1, fea] = [fler, ea] + (p(er) f)ea — (e1,e2)Df; (17)
(4) for any f,g € C*(M, IR),
(D°f, D) = 0;

(5) fOT any e, ey, €z € F(E)7
pe)(er, ez) + (0, e)(er,e2) = ([e,e1] + DV (e, 1), e2) + (en, [e, ea] + D' (e, 2)).
T is the function on the base M defined, for any ey, ez, e3 € I'(E), by
1

T(e1,e9,63) = g([el, €2, €3) + c.p.
and D, D : C®(M,R) — T(E) are given, for any f € C*(M,IR) and
e € I'(E), respectively, by

1 1

(Df,e) = 5ple)f and (D'f,e) = 5(p(e)f +(0,e)f).

The above definition is based on the original definition of Courant algebroid
presented in [21] by Z.-J. Liu and al. while its equivalent definition proposed
in [10] is based on the alternative definition of Courant algebroid given by
D. Roytenberg in [34]. Their equivalence is established in [33].

By defining, for any e € I'(E), the first order differential operator p’(e) by

p’(e) = ple) + (0.¢), (18)
we have that Property (16) of Definition 3.1 is equivalent ([33]) to
P (ler ea]) = [" (1), o (e2)], (19)

where the bracket on the right-hand side is the Lie bracket (2).

Definition 3.2. A Dirac structure for a generalized Courant algebroid (E, )
over M is a subbundle L C E that is mazimal isotropic under (, ) and
integrable, i.e. T'(L) is closed under |, |.

[t is immediate from the above definition that a Dirac subbundle L of (F, 6)
is a Lie algebroid under the restrictions of the bracket [, | and of the anchor
p to I'(L) and that the restriction of (6, -) to I'(L) is an 1-cocycle for the Lie
algebroid cohomology with trivial coefficients of (L, [, ||, p|L)-

We consider now a generalized Lie bialgebroid ((A, ¢), (A*, W)) over M
and we denote by FE its vector bundle direct sum, i.e. £ = A® A*. On
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E there exist two natural nondegenerate bilinear forms, one symmetric and
another skew-symmetric : for any e; = X1 +aj,e0 = Xo+as € E = A® A*,

@h@k:L&+ahXﬁ%mi:%WmXQiumXﬁ) (20)

On I'(F), which is identified with I'(A) & I'(A*), we introduce the bracket
[, ] defined, for all e; = X7 + ay,e9 = Xy + a0 € T'(E), by

[[61, 62]] = [[Xl + aq, XQ -+ Oég]] =
= ([XI,XQ](b + EW X9 — EW Xq — d*W(el, Gz)f) +

*Qr *Qg

+ ([, ]V + Ef(locg — E?(Qoq + d?(eq, e3)_). (21)

Finally, let p : E'— T'M be the bundle map given by p = a + a., i.e., for any
X+aek,

p(X + a) = a(X) + a.(a). (22)

The following result, which is proved in [33], shows that the notion of gen-
eralized Courant algebroid permits us to generalize the double construction

for Lie bialgebras (the Drinfeld double, [5]) and Lie bialgebroids ([21]) to
generalized Lie bialgebroids.

Theorem 3.3 ([33]). If (A, ¢), (A*,W)) is a generalized Lie bialgebroid over
M, then E = A@ A" endowed with ([, ],(, )+,p) and 0 = ¢ + W € T'(E")
is a generalized Courant algebroid over M. The operators D and DY are,
respectively, D = (d + d.)|cw,my and D’ = (d° + dYY)| o, m)-

There are two important classes of Dirac structures for the generalized
Courant algebroid (F,0) = (A @ A*, ¢ + W) studied in [33].

The Dirac structure of the graph of an A-bivector field : Let 2 be
an A-bivector field and Q7 : A* — A the associated vector bundle map. The
graph of Q% is the maximal isotropic vector subbundle

L={0%a+a/ac A"}

of (A A*,(, )+). L is a Dirac structure for (A ® A*, ¢ + W) if and only if
() satisfies the Maurer-Cartan type equation :

d?ﬂ+gQQW:0



REDUCTION OF JACOBI MANIFOLDS VIA DIRAC STRUCTURES THEORY 13

Null Dirac structures : Let D C A be a vector subbundle of A and
D+ C A* its conormal bundle, i.e.

DY ={ac A /{a,X) =0, VX € A}. (23)

Then, L = D & D+ is a Dirac structure for (A & A*, ¢ + W) if and only if
D and D+ are Lie subalgebroids ([24]) of A and A*, respectively. It is clear
that in this context, as in the context of a Lie bialgebroid, L = D @ D% if
and only if the skew-symmetric bilinear form (, )_, defined on £ = A @ A*
by (20), vanishes on L. For this reason, L is said to be a null Dirac structure.

A third important category of Dirac structures for (E,0) = (A@A*, ¢+ W),
also studied in [33], which generalizes both the above presented categories,
1S :

Dirac structures defined by a characteristic pair : We consider a pair

(D, Q) of a smooth subbundle D C A and of an A-bivector field 2. We
construct, following [23], a subbunlde L C A @ A* by setting :

L={X+Q%+a/X €D and a € D'} = D& graph(Q7|p.). (24)

L is maximal isotropic with respect to (, ). The pair (D, ) is called the
characteristic pair of L while the subbundle D = LN (A& {0}), also denoted
by D = L N A, is called the characteristic subbundle of L.

For simplicity, we will assume in the sequel that D = L N A is of constant
rank.

Moreover, since D+ may be considered as the dual bundle (A/D)* of the
quotient bundle A/D, the restricted vector bundle map Q%|p. can be seen
as the bundle map associated to an A/D-bivector field. Hence, two pairs
(D1,$1) and (Dy,$25) of a smooth subbundle and of an A-bivector field de-
termine the same subbundle L C A @ A* (given by (24)) if and only if

Dy =Dy =:D and QF(a)—Qf(a) € D, Va e D (25)

Let pr: (A A) — T'(A\(A/D)) be the map on the spaces of sections, induced
by the natural projection A — A/D. In order to express that the projection
under pr of an A-multivector field Q € T'(/\ A) vanishes in ['(A(A/D)), we
write @ = 0(mod D). Thus, the second condition of (25) can be written as
Ql — QQ = O(TTLOd D)

The conditions under which L = D @ graph(Q#|p.) is a Dirac subbundle
of (A® A*, ¢ + W) are given by :
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Theorem 3.4 ([33]). Let L = D & graph(Q¥|p.) be a mazimal isotropic
subbundle of A@A*. Then, L is a Dirac structure for the generalized Courant
algebroid (A @ A*, ¢ + W) if and only if
i) D is a Lie subalgebroid of A ;
i) d¥Q + 19, Q) = 0(mod D) ;
iii) Dt is integrable for the sum bracket [, . + [, |, i.e., for all a, 3 €
(DY), o, Bl +|a, Bla € T(DL), where [, g is the bracket determined
on I'(A*) by (13).

In the particular case where ((A4, @), (A*,W)) is a triangular generalized
Lie bialgebroid, (see, Definition 2.7), Theorem 3.4 takes the following form :

Corollary 3.5 ([33]). Let (A, ¢), (A", W), P) be a triangular generalized Lie
bialgebroid and L C A ® A*, L = D @ graph(Q¥|p.), a maximal isotropic
subbundle of A @ A* with a fized characteristic pair (D,$). Then L is a
Dirac structure for the generalized Courant algebroid (A@ A*, ¢ + W) if and
only if
i) D is a Lie subalgebroid of A ;
i) [P+ Q, P+ Q] = 0(mod D) ;
iii) for any X € T(D), L5 (P + Q) = 0(mod D).

4. Relations between Dirac structures of ((A, ¢), (A%, W))
and associated structures of (A, A¥)

We consider a generalized Lie bialgebroid ((A, [, |, a, ¢), (A%, [, |« ax, W))
over a differentiable manifold M and we construct the associated generalized
Courant algebroid (A @& A% [, ],(, )+,p,0) over M, ie. [, ] is determined
by (21), p = a + a, and 0 = ¢ + W. We introduce the notion of a reducible
Dirac structure for (A@® A*, [, ], (, )+, p,0) and of an admissible function of
a Dirac structure for (A® A*, [, ],(, )+, p,0) in an analog manner as in the
case of a Dirac structure for a Lie bialgebroid ([22]).

Definition 4.1. We say that a Dirac subbundle L for (A®A* [, ],(, )+,p,0)
is reducible if the image a(D) of its characteristic subbundle D = L N A by
the anchor map a defines a simple foliation F of M. By the term "simple
foliation”, we mean that F is a reqular foliation such that the space M/F is
a nice manifold and the canonical projection M — M /F is a submersion.

Definition 4.2. Let L be a Dirac subbundle for (A® A [, ],(, )+, p,0). We
say that a function f € C*(M, R) is L-admissible if there exists Y; € I'(A)
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such that Yy + d°f € T(L). We denote by CX(M,IR) the set of all L-
admissible functions of C*°(M, IR).

In the sequel, we consider the Lie bialgebroid (A, [,]?,a%), (A%, [, 1V, a")
over M = M x IR defined by the given generalized Lie bialgebroid

(A [ ], 0), (A% [ |, 0, W)

over M as in Theorem 2.8. Then, A @ A* is a Courant algebroid over M
([21]) when it is endowed with :

(1) the two natural nondegenerate bilinear forms on A @ A* determined,
for all X1 —I—Oél,XQ—l—OéQ € A@A* as :

- 1 .
(X1 +a, Xo+ ag)s = §(<041,X2> + (&, X1));

(2) the bracket [, ] on I'(A @ A*) determined, for all X| + a1, Xo + s €
['(A® AY), as
[X1+ a1, Xo + Go] =
(X1, Xo]? + LU Xy — LT X1 — dY (X1 + én, Xo + d) ) +
+([ar, 6] )Y + £¢ (g — [,?(2041 +d°(X1 + an, Xo+d2)-)),  (26)
of

where, for any f € C>(M,R), d°f = df + aﬁb and dV f =

(df + 99), (see 12
(3) the bundle map p: A @ A* — TM defined by p = a? + a'
Let E: T(A®A*) — T'(A® A*) be the embedding of T'(A® A*) into T'(A® A*)
defined, for all X + o € ['(A & A*), by
E(X +a)=X +¢a,

where X and o are regarded as time-independent sections of A and A*,
respectively. We make the following convention. If L C A® A* is a subbundle
of A@® A*, we write L = E(L) in order to denote the vector subbundle L of
A @ A* whose space of global cross sections is the image by E of the space
of global cross sections of L, i.e. T'(L) = BE(I'(L)).

Proposition 4.3. Let L C A @ A* be a vector subbundle of A ® A* and L
its embedding by E into A® A*, i.e. L=E(L)={X+cacAp A /X +
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« € L}. Then, L is a Dirac structure for the generalized Courant algebroid
(Ao AL 1, (, )+, p,0) if and only if L is a Dirac structure for the Courant
algebroid (A® A*, [, ], (, )+, p).

Proof : For all X; + aq, X9 + as € L, we have
1

(X1 +e'a, Xo+eag), = §(<€t041,X2> + (€', X1)) =
ot
- §(<&17X2> + <042,X1>) -

= (X1 4+ a1, Xo+ )y,

which means that L is a maximally isotropic subbundle of (A @ A*, (, ),) if
and only if L is a maximally isotropic subbundle of (A® A*, (, );). Moreover,
by a straightforward calculation we get that, for any X;+aq, Xo+as € I'(L),

[E(X1 + a1), E(Xs + a2)] = E([X1 + a1, X5 + a3]),
which means that T'(L) is closed under [, | if and only if T'(L) is closed under
[, ]. Thus, L is a Dirac structure for (A® A*, [, ], (, )+, p,0) if and only if
L is a Dirac structure for (A ® A* [, ],(, )+, p). ®

Proposition 4.4. Let L be a Dirac structure for (A @ A* [, ],(, )+, p,0)
and L = B(L) the associated Dirac structure of (A®A*,[,],(, )+, p). Then
f e C°(M,R) is an L-admissible function if and only if f = €e'f and
f e C®(M, R) is an L-admissible function.

Proof : Let f € C;O(M ,IR) be an L-admissible function, i.e. there exists

a time-independent section Y of A4, so Y may be considered as a section of
A, such that Y + d°f € I'(L). But, Y + d°f € I'(L) implies that there
exists £ € I'(A*) such that Y + ¢ € I'(L) and Y + d?f = E(Y + £), thus
d?f = et€. From Theorem of normal forms for Lie algebroids ([6], [7]), if the
rank of a(D), D = LN A, at a point ¢ € M is k, we can construct on a
neighborhood U of ¢ in M a system of local coordinates (z1,..., Tk, ..., Ty,)
(n = dim M) and a basis of sections (X7,..., X, ... X,) of I'(A) (r denotes
the dimension of the fibres of A — M), with (X3,..., X}) basis of I'(D),
such that a(X;) = i, for every i =1,..., k. Let (aq,...,Qp,...,a;) be the

6$i
basis of I'(A*), dual of (X1,..., Xk,...X,). Since ¢, & € ['(A*), there exists

¢i, & € C°(U,R), i =1,...,r, such that ¢ = >\ ¢;; and £ = > _; L.
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We have

of 5 7 f

P == (07 + 00, X) = (6, X) & (0, X) + o= e, (1)

ot
foranyi=1,...,r. But, fori=1,... k,
<z : : -0, Oof
(0. %) = (0F.a(X) = (0F.a(X0) = (6F. 5 ) = 51
Hence, the last equation of (27) can be written, for any i = 1,... k, as
of of
8:@ + E@ =€ gz- (28>
Sz; ot  of

By resolving the characteristic system = of (28), we obtain

1 ¢ g
that f must be, at least locally, of the form f = e f, where f € C(U,R).
Taking into account Definition 4.2 and that L = E(L), we get

f=efeCr(M,R) & JY €T(A):Y +d°(e'f) eT(L) &
& IY eT(A): Y +ed°f el(L)
& AV eT(A): Y +d°f (L) &
& felCP(M,R). e

For the proof of Proposition 4.6, we need the result of the following lemma.

Lemma 4.5. Let (B, B*) be a Lie bialgebroid over a differentiable manifold
N, with anchors b and b, respectively, A a Dirac subbundle of B® B* and B
the (singular) foliation of N defined by the (singular) distribution b(A N B)
on N. Then, f € C*°(N, R) is an A-admissible function if and only if f is
constant along the leaves of B.

Proof : Let f € C*(N,R) be an A-admissible function, i.e. there exists
Y; € I'(B) such that Y; +dpf € I'(A), and X € I'(b(A N B)) a section
of the distribution (A N B). X € I'(b(A N B)) means that there exists
Y € '(ANB) such that X =b(Y) and Y € I'(A N B) means that Y +0 €
['(A). Since A is a Dirac subbundle of B @ B*, it is maximally isotropic,
thus (Yy +dpf,Y +0); = 0. But,

(Vi +dsf,Y +0), =0 & S((dsf,¥)+(0,77))

=0
& (0f,b6(Y)) =0 (0f, X)

0. (29
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By the last equation of (29), which holds for any X € I'(b(A N B)), we get
that f is constant along the leaves of B.

Conversely, let f € C*°(N,IR) be a function on N constant along the leaves
of B, i.e, for any X € I'(b(ANB)), (6f,X) =0. But, X € ['(b(ANB)) means
that there exists Y € I'(A N B) such that X = b(Y) and (0f, X) = 0 &
(0f,0(Y)) =0« (dgf,Y)=0. If fis not an A-admissible function, we will
have that, for any Z € I'(B), Z + dpf is not a section of A. Hence, for any
Zel(B), (Z+dpf,Z+dgf)s #0< (dpf,Z) # 0; result contradictory to
the fact that, for Z =Y, (dpf,Y) = 0. Thus, f is an A-admissible function.

Proposition 4.6. Let L be a Dirac subbundle for (A®A*, [, |, (, )+, p,0) and
L = E(L) the associated Dirac subbundle of (A® A*,[,1,(, )+,p). Then, L

is reducible if and only if L is reducible.

Proof : We denote by D = LN A and D = L N A the characteristic
subbundles of L and L, respectively, and by F and F the foliations of M
and M, respectively, deﬁned by a(D) and a®(D), respectively. Obviously,
D = D and a*(D) = {a*(X) /X € D} = {a(X) + (¢, X)0/0t /| X € D}.
Hence, if (z9, () is a point of M = M x R, F and F are the leaves of F and
F passing through (xg,ty) € M and zy € M, respectively, and D,, is the
fibre of D over xy, we have :

i) if ker(a|p,, ) is not contained in (¢(z))°, then F =FxR,sodimF =
dim F' 4+ 1 and the vector field 0/0t is tangent to F ;

i) if ker(alp,,) is contained in (¢(r))® and 7 : M X R — M is the
canonical projection, then m(F) = F and 7|z : F' — F is a covering
map, thus dim /' = dim F’ and the vector field 9/t is not tangent to
L

(see also Theorem 2.9). Since every L-admissible function f is of type f =
e'f, f e Cr°(M,R), (see Proposition 4.4) and also it is constant along the
leaves of F (see Lemma 4.5), it is not possible the leaves F of F to be of type
F=FxR (because, in this case, 0/0t is tangent to F and f = ¢e'f is not
constant along d/0t). Thus, for any leaf F' of F and for the corresponding
leaf F' of F, we have that m(F) = F and 1|z : F — F is a covering map,
whence we get :
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(1) every leaf F of F is of the same dimension as the corresponding leaf
I of F, so F is a regular foliation of M if and only if Fisa regular
foliation of M :
(2) F = F, soM/f (M xR)/F=(M/F) xR ; thus, M/F is a nice
manifold if and only if M /F is a nice manifold and the projection
M — M/F is a submersion if and only if the projection M x R =
M — M/F = (M/F) x R is a submersion.
Consequently, L is a reducible Dirac structure for A @ A* if and only if
L = E(L) is a reducible Dirac structure for A @ A*.

5. Jacobi structures and Dirac reducible subbundles

We consider a generalized Lie bialgebroid ((A,[, |, a, ¢), (A%, [, |« ax, W))
over a differentiable manifold M and we construct the associated generalized
Courant algebroid (A @& A*, [, ], (, )+,p,0) over M, ie. [, ] is determined
by (21), p=a+a, and 6 = ¢+ W. Let L. C A @ A* be a reducible Dirac
structure for (A @ A", [, ],(, )+, p,0), (see Definitions 3.2 and 4.1).

On CP (M, R) we define the bracket {, } by setting, for all f,g € C*(M,R),

{f,9}1 = 0"(es)g, (30)
where e; = Y + d?f. An equivalent expression of (30) is

where {, }; is the bracket (11) of the Jacobi structure on M defined by the
generalized Lie bialgebroid structure ((A, ¢), (A*, W)) over M. Effectively,

{f.a}r = Ples)g
= ((a®+a)(Yy+d°f))g
= a®(Yy)g+al (d°f)g
= (Y}, d%) + (d°f,d) g)
= (Y, d%) +{f, 9}

Theorem 5.1. The space C3°(M, IR) endowed with the bracket {, }1, given
by (30), is a Jacobi algebra.

Proof : We must prove that C°(M,R) is closed under {, }; and that
{, }1 is a bilinear, skew-symmetric first order differential operator on each
of its arguments which satisfies the Jacobi identity.
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Closeness of {, }r in C°(M, R) : Let f,g € C*(M,R) be two L-admissible
functions. Then, there exist Y;,Y, € I'(A) such that e; = Y; + d’f,e, =
Y, + d%g € T(L). We consider the bracket [ey,e,] ; according to (21), its
component in I'(A*) is :

(@2 f,d°g) + L3, d°g — L5 d°f + d”(ef, eq)
We have (see [12])

and, on the other hand,
L d°g — L3.d°f + d’(ef, e,)- =

—d’(ef,e5)- = —d’(ef, e5)- + d¢(€f;€g)+ = d*(Y}, d’).
Thus,
[d?f,d°g)" + L% g — Jad AOf e e = d{f.g}s+d(Yy,d%)
(31)
= d°{f,q}1,

which means that { f, g} is an L-admissible function, i.e. {f, ¢} € C°(M,R),
and that we can take [ef, e,] = effq), -

Bilinearity and skew-symmetry of {, }r : It is obvious that {, }, is bilinear.
Also, for any f € CX(M,R), we have (ef,es) = 0 < (Y;,d°f) = 0, so
{f, f}L = (Yf, d?f)+1{f, f+; = 0+0 = 0, which implies the skew-symmetry
Of{ }L

{, }1 is a first order differential operator on each of its arguments. In fact,
for any f,g,h € C(M, R),

(foohye 2 (v, d2(gh) + {1, gh}s

= (Y}, 9dh + hdg + gho) + g{f, h}s +h{f,g}s — gh{f 1},
= g((Yy,d°h) + {f,h}s) + h((Y}.d%9) + {f, 9} )

—gh((Yy, ¢) +1{f,1},)
= g{f,h}r +0{f, 9} —gh{f. 1}1

and by the skew-symmetry of {, }; we obtain the desired result.
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Jacobt identity : By a straightforward, but long, calculation we get that, for
any f,g,h € C°(M,R), the Jacobi identity holds :

{f7 {ga h}L}L + {gv {h7 f}L}L + {h, {f, g}L}L = 0.
Hence, (C*(M,R),{, }1) is a Jacobi algebra. e

The above result generalizes the one of A. Wade ([35]) for the £1(M)-Dirac
structures.

In the sequel, we will prove that the Jacobi algebra structure of C?°(M,R)
is conformally equivalent to a Jacobi algebra on the space of the functions
defined on a quotient manifold of M. The proof is based on the related
results concerning the admissible functions of a reducible Dirac structure for
the double of a Lie bialgebroid (see, [22]).

We consider the reducible Dirac subbundle L = E(L) of the Courant alge-
broid (Aa® A% [, 1,(, )+, p) over M = M x R and the simple foliation F of
M defined by a¢(D) D = LN A. By the results of [22] and of Lemma 4.5
and by the proof of Proposition 4.6, we have :

(1) A function f e C>®(M,R) is L-admissible if and only if f is constant
along F, i.e. ) o
CF(M,R)=C*(M/F,R).
(2) The bracket {, };, given, for any f,g € C>*(M,R), by
{f.9}1 = (7). (32)
where €; = Y; + d?f, defines a Poisson algebra on C(M /F,IR).
(3) The vector field 0/0t is not tangent to F.

By identifying locally, on a neighborhood U of a point (x0,10) € M, the
manifold M with the product (M /F) x F, where F is the leaf of F through
(x0,tp), we have that 0/0t can be written, locally, as

o . -
— =T+ X
5 =T+X. (33)

where T is a vector field tangent to M/.7: T(z,t) # 0 at every point (z,t) €
U, and X is a vector field tangent to F.

Proposition 5.2. The Poisson structure defined on M/F by (32) is an
homogeneous Poisson structure, in the sense of [4], with respect to T
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Proof : We remark that the functions of COO(M /F, IR) are homogeneous of
degree 1 with respect to T. Effectively, let f € C®°(M/F,R) = COO(M R)

be an L-admissible function, then there exists an L-admissible function f
such that f = €' f (See Proposition 4.4) and f is constant along F. Thus,

ETf = Ea/at_j(f = Ea/c’)t(etf) - 'Cf(f = etf —-0=f. (34)
Moreover, for every pair (f,§) of functions on M/F, f = e'f and § = elyg
with f,g € C2°(M, R),
{fag}f, {etfvetg}i
p(Y; +d°(e'f))(e'g)
(@’ (Yy) +alt (e'd’ f))(e'g)

(@(Y7) + {6, ¥7)2)(g) + ¢ () + (dF, W) S (e'g)

¢(a(Yy)g + (6, Yy)g) + €(a.(d”f) + (d°f,W)g)

= e(a®(Yy) +al (d°f))g

_ t 9( )

= Mfgh (35)
From the last equation we have that the Poisson bracket of any pair of func-
tions of COO(M /F, R) is also an homogeneous function of degree 1 with
respect to 7. Thus, if A is the Poisson bivector field defined on M/F by the
Poisson bracket (32), i.e., for all f,§ € C®(M/F, R), A, 0g) = {(f,3};,
by a straightforward calculatlon we can prove that [T, A] = —A, i.e. A is an
homogeneous Poisson structure with respect to 7', in the sense of [4]. e

(32)
(14),(15)

At this point, we need the next two well known propositions of Dazord-
Lichnerowicz-Marle :

Proposition 5.3 ([4]). Let (P,Ap, Z) be an homogeneous Poisson manifold
and N a submanifold of P of codimension 1 transverse to the homothety
vector field Z. Then, N has an induced Jacobi structure characterized by one
of the next properties :

(1) For any pair (Hy, Hy) of homogeneous functions of degree 1 with re-
spect to Z, defined on an open subset O of P, the Jacobi bracket of
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Hy and Hs, restricted to N N O, 1s the restriction to N N O of the
Poisson bracket of Hy and Hs.

(2) Let w : U — N be the projection on N of a tubular neighborhood of
N in P such that, for any x € N, w (z) is a connected arc of the
integral curve of Z through x. Let \ be a nowhere zero function on
U, equal to 1 on N and homogeneous of degree 1 with respect to Z.
Then, the projection w 1s a \-conformal Jacobt map.

Remark 5.4. Under some regularity conditions on Z, N can be locally
considered as the manifold of the integral curves of Z. In this case, by
identifying U with the product N x I of the submanifold N and an open
interval I of R containing 0 and writing Z = 9/0z, where z is the canonical
coordinate on I, we have that A(z,z) = e* and for every pair (hq, he) of
functions on N,

1
w*{hl,hQ}N = g{ezw*hl,ezw*hg}p. (36)

Proposition 5.5 ([4]). Let (P,Ap, Z) be an homogeneous Poisson manifold
and N and N' two submanifolds of P of codimension 1 transverse to the
homothety vector field Z. We assume that there exists an integral curve of
Z intersecting N at a point xo and N’ at a point xj. We provide N and
N with the Jacobi structures induced by the homogeneous Poisson structure
of P, in the sense of Theorem 5.3. Then, there exists a conformal Jacobi
diffeomorphism of a neighborhood of xy in N onto a neighborhood of x| in
N, mapping xq to xj,.

_Therefore, since the integral curves of T define a simple foliation 7 of
M, /}:, by applying Proposition 5.3 to the homogeneous Poisson manifold
(M/F,{, };,T) and taking into account Remark 5.4, we obtain that the

homogeneous Poisson structure of M /F induces a Jacobi structure on
(M/F)JT 2 M/(FxT)=(MxR)/(FxR)2M/F.
Precisely, for any pair (f,g) of functions on M/F,
*[ £ = 1 T _%xf T __%—
w {fag}M/]: - 6_7:{6 w fve w g}f,? (37)

where w : M[]}f (M/]:")/’ZN: >~ M /F is the canonical projection and 7 is a
function on M /F such that T'= 0/07.
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Lemma 5.6. 1. The function 7 € C®°(M/F, R) is of the form :

P, t) = ﬁ +r(x) (38)

with 7 and X defined below.

2. The hypersurface S of M/]:" defined by the equation t = 0 is transverse to
T.

.9 - 3
Proof : 1. By equation (33), we have that T = Fri X with X a section

of d¢(l~)). The last fact implies that there exists X € I'(D) such that X =
0 N 0 -
a(X)+ (o, X>§ So, T'= (1— (¢, X>)§_G(X) and we note that 7' is locally

non zero. Hence, by straightening out 7' we can find a function 7 such that

- 0 - ~ ot

T =2 ie (07.T) = 1. Bug, (67, T) = 1 & (1 - <¢,X>)a—z — (6%, a(X)) =
T

1. The solutions of this equation are the functions 7 given by (38) with 7 an

appropriate ”arbitrary” function on M /F independent of ¢.

2. By (38), we have that the hypersurface S of M /F defined by the equation
t = 0 is the hypersurface determined by the equation 7 — 7 = 0. Since,
- 0 0 ~
(0(T—71),T) = (o7, §> — (o, 5 X)=1-0=1%#0, we conclude that S
o7

is transverse to 1. e

Now, by Proposition 5.3 and the above result, we get that the homoge-
neous Poisson structure ({, };,7") of M /F induces a Jacobi structure on
S. Obviously, the Jacobi bracket of this structure coincide with the Jacobi
bracket {, }1 (see equation (35)). Finally, by applying Proposition 5.5 to
the homogeneous Poisson manifold (M /F,{, };,T) and the induced Jacobi
brackets {, }yyr and {, }; on C*(M/F,R) and C*(S,R) = C*(M,IR),
respectively, we get that these are conformally equivalent. In other words,
we have that, there exists, locally, a diffeomorphism ¥ : M/F — S and a
nowhere zero function ¥ on M/F such that, for any pair (f, g) of functions
on S,

U{f, g} = %{W*f, ST g} ar 5. (39)

In conclusion :
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Theorem 5.7. Let L be a reducible Dirac subbundle for

(A@A*v[[7 ]]7(7 )+,p,9)-

Then L induces a Jacobi bracket {, }arr on M/F (given by (87)) confor-
mally equivalent to the Jacobi bracket {, }1 defined by (30) or (31).

Hence, by applying the above theorem to the case of the generalized Lie
bialgebroid defined by a Jacobi structure (A, E) on M (see Theorem 2.4) we
deduce :

Corollary 5.8. Let (M, A, E) be a Jacobi manifold,
((TM x IR, [7 ]7 T, (Oa 1))? (T*M x IR, [7 ](A,E)a o (A7 E)#a (_E7 O)))

the associated generalized Lie bialgebroid and L a reducible Dirac structure
for the generalized Courant algebroid (TM x R)® (T*M x R), [, ],(, )+, 7+
mo (A, E)* (0,1) + (—=E,0)). Then L induces a Jacobi bracket {, }nr/x on
M/F, where F is the foliation of M defined by the distribution =(D), D =
LN (TM x IR), which is conformally equivalent to the Jacobi bracket {, }p
defined by (30) or (31).

Taking into account Corollary 2.6, Definition 4.2 and (31), we can easily
establish :

Proposition 5.9. Under the assumptions of Corollary 5.8,
(1) if L = graph(A', E"# is the graph of a (T M x IR)-bivector field (A', E")
on M, then C*(M, IR) = C*(M, IR) and, for all f,g € C3°(M, IR),
{fvg}L - {f)g}(A’,E’) +{fag}(A7E)a (40)
(2) if L = D @ D* is a null Dirac structure, then C*(M,R) = {f €
C*(M,R)/(6f, f) € T(DY)} and, for all f,g € C(M, IR),
{f7 g}L = {f’ g}(A,E) ) (41)
(3) if L = D @ graph(N', E")#|p. is defined by a characteristic pair
(D, (N, E)), then CF(M.IR) = {f € C*(M,R)/(0f, f) € T(D")}
and, for all f,g € C(M, IR),
{f7 g}L - {f)g}(A’,E’) + {f:g}(&E‘) (42)

In what follows, we will prove that in the context of "generalized Lie bial-
gebroids - Jacobi structures”, as in the context of ”"Lie bialgebroids - Poisson
structures” ([22]), the converse result of Corollary 5.8 also holds.
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Theorem 5.10. Let (M, A, E) be a Jacobi manifold, F a simple foliation of
M defined by a Lie subalgebroid D C TM x IR that has no sections of type
(0, f) with f # 0, and (Arr/ 7, Eryr) a Jacobi structure on the quotient man-
ifold M/F. Then (M/F,Ayr, Eryr) defines a reducible Dirac structure L
m (TM x IR) @ (T*M x IR) such that LN (TM x IR) = D and the induced
Jacobi structure by L on M /F, in the sense of Corollary 5.8, is the initially

given (Any 7, Eniyr)-
Proof : We make the proof in several steps.

First step : Let D C TM x R be a Lie subalgebroid of (TM x R, [, ], 7),
which has no sections of type (0, f) with f # 0, such that 7(D) defines a
simple foliation F of M and let D+ be its conormal bundle, i.e.

D* ={(a,9) e T"M xR /{(e,9), (X, f)) = (@, X) + fg =0, V(X, f) € D}.

We suppose that the quotient manifold M /F is endowed with a Jacobi struc-
ture (A 7, Eyyr) and we denote by p : M — M /F the canonical projection.

Second step : We consider : i) the Poissonization (M,A), M = M x R and
A=e(A —i— E), of (M,A, E), t being the canonical coordinate on R ;
ii) the Lie subalgebroid D of TM =2 TM x TR of time-independent vector
fields on M defined by :

D:{X+erTM/(X,f)eD}.

Since, by hypothesis, D has no sections of type (0, f) with f # 0, D defines
a simple foliation F of M of the same dimension as F. Let p: M — M/F
be the canonical projection and T = p.(0/0t) the projection of 9/0t on
M/F (D)0t is a projectable vector field). The integral curves of T constitute
a simple foliation 7 of M/F. Since (M/]:)/T M/(FxT) = (M x
R)/(F x R) = M/F, by straightening out T, we can consider that M /F =
(M/F) x R. We denote by 7 the canonical coordinate on the factor IR,
so T = 9/07, and we endow M/F = (M/F) x R with the Poissonization
Ay =€ " (Ayyr + 0/07 A EM/f’) of the Jacobi structure (Ay; /7, Epr/r) of
M /F. Therefore, (M/F, Ay T) is an homogeneous Poisson manifold.
Now we consider the hypersurface S of (M /F, Ay I T) defined by the
equation ¢ = 0. Since T = 9/0t — (X + f0/0t) = (1 — f)0/dt — X, where
X+ f0/0t € T(D), we have that (dt,T) =1—f #0(if1—f=0,T=—X,
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ie. T is tangent to F, impgssible}) which means that S is transverse to
the homothety vector field T" of (M /F, Ay /f,T). Thus, the homogeneous

Poisson structure (A, z, T) of M/F induces a Jacobi structure on S (see,
Proposition 5.3). We denote by {, }¢ the associated Jacobi bracket of the
induced structure on S. By Proposition 5.5 we deduce that the Jacobi man-
ifolds (M/F,{, }myr) and (S,{, }s) are conformally equivalent. Namely,
there exists, locally, a diffeomorphism ¥ : M/F — S and a nowhere zero
function v on M /F such that, for all f, g € C*(S,R),

T/, g)s = %{W*ﬁw*g}mﬁ (43)

Third step : We keep under control the fact that Wop : M — S is not a Jacobi
map by defining a ”difference” bracket {, }; : C*(S,R) x C*(S,R) —
C>®(M,R) as follows :

{f,gh=(op){f,gts —{(Wop) [, (¥op)gtnp, VfgeCT(SR)

(44)
Obviously, {, }1 is a bilinear, skew-symmetric, first order differential operator
on each of its arguments. Thus, {, }; induces a skew-symmetric bilinear form

(A1, Eq) on T*S x IR so that, for all f,g € C*(S,R),

In turn, (A, Fy) induces a vector bundle map (A, By)¥ : T*SxR — TSxR.

But, 7S x R =2 D+ and T'S x R = (T'M x R)/D. In fact, we have that
T*(M/F) = D*, where

(DY) = {a+gdteT(T*M)/aisat— dependent section of T*M and
§geC®M,R): (&+§dt,X—|—f )—O VX—i—f— e T'(D)}.

Thus T;(M/ﬁ) = (DJ‘)|S = {Oﬁ‘t 0+ g|t odt/Oé + gdt € DJ‘} = {CM +
gdt / (o, g) € DY} = D+ Also, T*S = i*(T¢(M/F)), where i : S — M/F
is the canonical injection, and T4(M/F) = {a + gdt/(a,g) € D'} =
{("a,i*g) / (o, g) € Dt} = T*S x R. So, T*S x R = D*. Moreover,
(M/f) ~ TM/D = (TM x R x R)/D = ((TM x R)/D) x R and
T(M/F) =2 T(M/F) xR) = T(M/F) x R xR. So, T(M/F) x R =
(M xR)/D. Since TS = T'(M/F), we obtain that TS xR = (TM xR)/D.
Consequently, we can consider that (Ay, E1)# : D+ — (TM x R)/D.
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Fourth step : We denote by pr : TM x IR — (T'M x IR)/D the natural
projection and we define a subbundle L C (TM x R) & (T*M x R) by

L={(X,f)+(a,9) € (TM xR)® D" /pr(X, f) = (A1, E1)" (a, 9)}. (45)

By construction, L is maximally isotropic and C(M,R) = C*(S,R).
Effectively, by a straightforward calculation we show that, for any e; =
(X1, f1) + (1, 91),e2 = (Xo, fo) + (a2,92) € L, (e1,e2)4+ = 0 and f €
CX(M,R) & dOVf = (5f, f) € (DY) 2 I'(T*S x R) & f € C®(S,R).
Also, by Definition 4.2, f € C;°(M, R) if and only if there exists (Y, ¢y) €
I'(TM x R) such that ey = (Y, @) + (6f, f) € ['(L). Hence, we have that
I'(L) is spanned by all the sections of the type hey, where h € C*°(M, R) and
f € C(M,R). To verify the integrability of L, it suffices to verify the close-
ness of the bracket [, ] for the sections of L of the form ef = (Y, 05)+ (0 f, f)
with f € C°(M, R), since, according to (17) and because L is isotropic,
les. heg] = hlef,eq] + (p(ep)h)ey — (ef, e4)+ Dh =
= h[[efv 69]] + (p(ef)h)ega

for all ef, e, € I'(L), with f,g € C;°(M,R), and h € C*(M, R).

Let f,g € C?°(M,IR) be two L-admissible functions. Being C°(M,R) =
C*(S,R), {f,g}s € C°(M,R), i.e. thereis (Yisg14, (r01s) € T(TM x R)

such that e{f7g}5 - (Y{f,g}s790{f,g}s) + (6{fvg}57 {f7 g}S) S F(L) We show
that

{f.9}s = "(ep)a B {f.9}r. (46)
Effectively,
{f.9tr="0"(ep)g = [+ (w0 (N, EYO)EN((Yy, 00) + (5, F))g =
= (Yi+@r+ A (0f) + FE— (0f,E))g =
= (pr(Yy,¢r) + the component of (Y, ¢y) on D)g
[ 9 e =
= ((6g,9), (A1, E))*(3f, £)) + {/f, gtap =
= {figh+{f,9tnp =

(44)

- {f7 g}S
On the other hand, since {, }g¢ is a Jacobi bracket, thus it verifies the Jacobi
identity, we have that, for any f,g,h € C°(M,R) = C*(S,R),

Pler,eg] — e = p(ler edDh = p (e gp)h =
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(19)
=" ["(es), p’(eg)lh — p (e 1)1 =

= p"(er)(p"(eg)h) — p"(eg) (" (eg)h) — p’(e(s g1 ) =

2 (A9 hsks = {g. L. hYsks — {{/,ghs s =

— 0. (47)
From the proof of Theorem 5.1, we have that the component of [ef,e,] in
D(T*M x R) is d%V{f, g}s, therefore [ey, e,] — err s € D(TM x R). So,
(47) means that p([ef,e,] — e y) € T(D). But p([ef, e5] — egr15) =
7O ([es, e,] — e(rars) = lef.eq] — e(p g5 and I'(D) C I'(L). Consequently,
lef,eql—€f.g1s € T'(L) which implies [ef, e,] € (L), whence the integrability
of L.

For the constructed L we have LN (TM x R) = {(X, f) +(0,0) € (T M x
R)&{(0,0)} /pr(X, f) = (A1, E1)7(0,0)} = {(X, f) € TM xR / pr(X, f) =
(0,0)} = D. Taking into account (46) and (43), we conclude that the induced
Jacobi structure on M/F, in the sense of Corollary 5.8, is the initially given
(AM/]:, EM/]:) L]

Remark 5.11. The condition D has no sections of type (0, f) with f # 0
is indispensable. In the opposite case, D = m(D) X R and D= {X+
f0/0t (X, f) € D} defines a simple foliation F of M whose leaves F are of
the type F=Fx IR, where F'is the leaf of F corresponding to F and the

vector field 0/t is tangent to F. We suppose that we can construct, by using
D and (Ayg/r, Eyyr), a reducible Dirac structure L for ((TM x R) ® (T* M x
R), [, 1 ( ) m+mo (A, E)#,(0,1) + (—=E,0)) such that LN(TM xR) =
D. Then, L = E(L) is a reducible Dirac subbundle of TM @& T*M (see,
Proposition 4.6) such that LNTM = D. By Lemma 4.5 and Proposition
4.4 we have that CEO(M, R) 2= C®(M/F,R) and f € C’EO(M, IR) if and only
if f=ef, fe C®M,R). But, 9/0t is tangent to F and, for any f €
CEO(M,IR) =~ C(M/F,R), 8/0t(f) = 0/dt(e' f) = e'f # 0 ; contradiction.
Thus, when D has sections of type (0, f) with f # 0, it is not possible to
construct a reducible Dirac subbundle L C (TM x R) @& (T*M x IR) such
that LN (TM x R) = D.

In conclusion, we have proved :

Theorem 5.12. Let (M, A, E) be a Jacobi manifold. There is a one-one cor-
respondence between reducible Dirac subbundles for the generalized Courant
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algebroid (TM x R)&(T*Mx R), [, 1,(, )1, 7+ mo(A, Y%, (0,1)+(—E, 0))
and quotient Jacobi manifolds M /F of M, where F is a simple foliation of
M defined by a Lie subalgebroid D C TM x IR that has no sections of type

(0, f) with f # 0.
Remark 5.13. If, in the proof of Theorem 5.10,
p: (MaAa E) - (M/anM/faEM/}")

is a 1/p*y-conformal Jacobi map, then Wop: M — S is a Jacobi map and
(A1, E1) = (0,0). Hence, in this case, L = D & D+ is a null Dirac structure.
Thus, we can deduce :

Corollary 5.14. A Lie subalgebroid D C T'M x IR, which has no sections
of type (0, f) with f # 0, defines a simple foliation F of (M, A, E) such that
p: (M,ANE) — (M/F, Az, Exyr) is a 1/p*p-conformal Jacobi map if
and only if L =D & D+,

Remark 5.15. In the case where D = {(0,0)}, a Jacobi structure on M /F =
M is a new Jacobi structure (A, E') on M and the constructed L is the
graph of (A’ — A, E' — E). Since, by construction, L is a Dirac subbundle of
(TM xR)® (T"M x R), (A=A, E' — FE) is a Jacobi structure on M ([33]),
fact which implies that (A, E') and (A’, E’) are compatible Jacobi structures
in the sense of [32].

A geometric interpretation of Corollary 3.5 : In the context of this
paragraph, Corollary 3.5 can be formulated as : Let (M, A, E) be a Jacobi
manifold, (TM x IR, (0,1)),(T*M x R, (—F,0)), (A, E)) the associated tri-
angular generalized Lie bialgebroid over M and (N, E') a (T M x IR)-bivector
field such that L = D ® graph((A', E")#|p1) is a mazimal isotropic subbundle
of (TM x IR)® (T*M x IR) with fixed characteristic pair (D, (A, E')). Then
L is a Dirac structure for (T'M x IR) ® (T*M x IR),(0,1) 4+ (—FE,0)) if and
only if

(i) D is a Lie subalgebroid of TM x IR ;

(i) [A+ AN, E+E),(A+ N, E+ EN)O) =0(modD) ;

(iii) for any (X, f) € I'(D), EE%?})(A + AN, E+ FE') =0(modD).

If L = D@®graph((A, E")#|p1) is a reducible Dirac structure, after the proofs

of Theorems 5.7 and 5.10, we get that condition (iii) is equivalent to that
(A+ A, E+ FE’) can be reduced to a (TM xR)/D = (TS x IR)-bivector field
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on S and the condition (ii) is equivalent to the fact that the reduced bivector
field is a Jacobi structure on S. Furthermore, by Proposition 5.9 (case 3) we
get that the induced Jacobi structure on S is exactly the one defined by the
bracket of L-admissible functions. Consequently, it is conformally equivalent
to the Jacobi structure induced on M/F by L in the sense of Corollary 5.8.

6. Dirac structures and Jacobi reduction

In this paragraph, we will establish a Jacobi reduction theorem in terms of
Dirac structures. For its proof, we need to adapt the results concerning the
pull-back Dirac structures of a Lie bialgebroid ([23]) to the pull-back Dirac
structures for a generalized Lie bialgebroid.

Proposition 6.1. Let (Ay, ¢1) be a Lie algebroid over a differentiable man-
ifold My with an 1-cocycle, ((As, ¢2), (A3, Ws), Ps) a triangular generalized
Lie bialgebroid over a differentiable manifold My and ® : Ay — As a Lie
algebrotd morphism of constant rank, which covers a surjective map between
the bases, such that ®*(¢2) = ¢1. Then the following two statements are
equivalent.

(1) There exists a Dirac structure for the triangular generalized Lie bialge-
broid ((A1, ¢1), (A7,0),0) whose characteristic pair is (ker ®, Py) and
O(P) = Ps.

(2) ImP}" C Im®.

We note that, since ® : Ay — Ay is a Lie algebroid morphism such that
() = 1 then, for any P € DN A1) and Q € T(A' Ay), B([P.QI*) =
[@(P), ®(Q)]%.

Proof : According to Corollary 3.5, it suffices to show that the following
two statements are equivalent.

(1) There exists P, € I(A* A;) such that ®(P,) = P, and
(a) ker @ is a Lie subalgebroid of A; ;
(b) [0+ Py,0 + P]% = 0(modker ®) < [Py, P]”* = 0(mod ker ®) ;
(c) for any X € T(ker @), L2(0 + P) = 0(modker ®) & LY(P)) =
0(mod ker ).
(2) ImP}* C Im®.
Obviously, ker @ is a Lie subalgebroid of A; since, for all X, Y € I'(ker ®
O([X,Y]) = [®(X),P(Y)] = [0,0] = 0, which means that [X,Y] € I'(ker ®
On the other hand, we have that the subbundle ker ®+ = {a € A} / (o, X) =

),
).
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0, VX € ker @} of A} can be identified with the dual bundle (A;/ker ®)* of
Ai/ker @. Also, ker @+ = Im®*, where ®* : A5 — Af is the dual map of .
Effectively, it is clear that, Im®* C ker ®* and, since ® is of constant rank,
dim Im®* = dim ker ®*, thus Im®* = ker &+ = (A;/ker ®)*. Hence, ®* :
A3 — (A;/ker ®)* is a surjective map, i.e., for any ay, 41 € I'((A;/ ker ®)*),
there exist ay, By € I'(A%) such that a; = ®*(ap) and f; = ®*(3:). If there is
some P € T(A\*(A1/ ker ®)) which is ®-related to Py, i.e. ®(P;) = Py, then
it should be defined, for all &y, 3, € I'((A4;/ ker ®)*), by

Pi(ay, 1) = Py(ag, (o).

It is clear that P; is well-defined if and only if ker ®* C ker Pz# , or equivalently,
if and only if ImPQ# C Im®. Let P; be an arbitrary representative of P; in
T(A® Ay). Since @ : A] — Ay is a Lie algebroid morphism such that ®*(¢,) =
o1 and ((Az, ¢a), (A5, W), P») is a triangular generalized Lie bialgebroid, we
have that

O([P, P|*) = [®(P)), ®(P)]” = [Py, P]” =0 < [P, P]”* = 0(mod ker ).
Moreover, for any X € I'(ker @),

O(LYPr) = O([X, P]™) = [@(X), &(P)]” = [0,8(P)]” =0 &

& LYP = 0(modker ).

Consequently, there exists P; € ['(A” 4;) such that ®(P,) = P, and (ker ®, P;)
defines a Dirac structure for the triangular generalized Lie bialgebroid

((Ah Cbl)v (Aik? 0)7 0)

if and only if ImPQ# CImd. e

Reduction of Jacobi manifolds: Let (M, A, F) be a Jacobi manifold,
N C M a submanifold of M and ¢ : N < M the canonical inclusion,
D C TM x R a Lie subalgebroid of (T'M x R, [, |, 7) that has no sections
of type (0, f) with f # 0 and Dy = DN (TN x R). We suppose that D and
Dy define, respectively, a simple foliation F of M and a simple foliation F
of N and we denote by p : M — M/F and py : N — N/F; the canonical
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projections. Thus, we have the following commutative diagram :

1

N — M

po | lp (48)

N/Fy & MJF

Since any leaf of Fy is a connected component of the intersection between N
and some leaf of F, we can always suppose, under some clean intersection
condition, that ¢ : N/Fy — M/F is an immersion, locally injective.

We consider L = D @ D+ and we suppose that L is a null Dirac struc-
ture for the triangular generalized Lie bialgebroid ((T'M x R, (0, 1)), (T*M x
R, (—FE,0)), (A, E)). By the hypothesis on D, we have that L is also re-
ducible. Then, by Corollary 5.8 and the proofs of Theorems 5.7 and 5.10,
we get that L induces a Jacobi structure (Ay/z, Ea/r) on M/F conformally
equivalent to the Jacobi structure (Ag, Fg) on S defined by the bracket (30)
of L-admissible functions. As we have seen, S has the property T'S x R =
(TM X R)/D and T*S xR = D+, If U (M/f, AM/}-, EM/]:) — (S, As, Eg)
is the 1-conformal Jacobi diffeomorphism which, locally, maps M/F to S,
i.e. \I/*(A}/\)J/f) = Ag and \If*(E;\Z/]_.) = FEg, by Corollary 5.14 and Remark
5.13, we obtain that p : (M, A, ) — (M/F, Avyr, Evyr) is 1/p*ip-conformal
Jacobi map and that Wop: (M,A, E) — (5, Ag, Eg) is a Jacobi map. We
have :

7

N — M

pol Lp NP

N/Fy & M/F 2 S

We consider the triangular generalized Lie bialgebroids
((TS X ]R,, (07 1))? (T*S X ]R7 (_E57 O>)7 (A57 ES))

over S and

((TN x IR, (0,1)),(T*N x R, (0,0)),(0,0))
over N. We note that any function f € C*(N,R) can be seen as the image
by (W opoi)* of a function f € C*(S,R), i.e f = (VYopoi) f. Since F is a
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regular foliation, p has constant rank, thus the map Wopoi: N — S has also
constant rank. Hence, the application ® : TN xR — T'SxIR = (TM xR)/D

defined, for any (X, f) € ['(T'N x R), by
(X, f) = ((Popoi).X, f) (49)

can be considered as a Lie algebroid morphism of constant rank such that
®*(0,1) = (0,1) and ker ® = DN (TN x R) = Dy. Therefore, by Proposition
6.1, there exists a pull-back Dirac structure L, for the triangular general-
ized Lie bialgebroid ((T'N x IR, (0,1)),(T*N x IR, (0,0)),(0,0)) with char-
acteristic pair (Dy, (Ay, En)) verifying ®(Ay, Ex) = (Ag, Eg) if and only if
Im(Ag, Eg)* C Im® holds on T'S x IR, i.e.

L((As, Es)* (D) S {((Wopoi).X,f) /X € I(TN)and f € C*(5,R)}.
(50)
But, Vop: (M,A, E) — (S,Ags, Eg) being a Jacobi map, (Ag, Fg) =
(¥ o p)u(A, E). Thus, on the submanifold N C M, by identifying i,(TN)
with T'N, condition (50) is equivalent to

(A, EY* (DY) CTN xR+ D. (51)

Also, since Ly = Dy ® graph(Ay, Ex)?| p¢ 1s a reducible Dirac structure
of (TN xR) & (T*"N x R),(0,1) 4+ (0,0)), it induces a Jacobi structure
(An/7s Enyr,) on N/Fy (see, Corollary 5.8). Now, we consider : i) the
manifold N = N xR, N C M = M x R, endowed with the null Pois-
son structure, which can be viewed as the Poissonization of the null Jacobi
structure on N ; ii) the reducible Dirac structure Ly = E(Ly) for the tri-
angular Lie bialgebroid (TN, T*N,0) (of course, Ly N TN = Dy = Dy) ;
iii) the simple foliation Fo defined by Dy whose leaves are of the same di-
mension as the leaves of F, ; iv) the manifold N/F, which is immersed in
M /F ; v) the submanifold Sy of N/F, defined by the equation ¢ = 0 which
is an immersed submanifold of S and has the property that T'Sy x R =
(TN x R)/Dy and T*Sy x R = Dg (see, proofs of Theorems 5.7 and
5.10). By Corollary 3.5 and its geometric interpretation and by the fact
that Lo = Dy @ graph((Ay, EN)#|DOL) is a reducible Dirac structure, we get
that (Ax, Ex) induces a Jacobi structure (Ag,, Es,) on Sy which is the Ja-
cobi structure defined by the Jacobi bracket of Lj-admissible functions on N
and which is conformally equivalent to (Ay/z,, En/z,). Precisely, there exist,
locally, a nowhere zero function vy € C*(N/Fy,R) and a diffeomorphism
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Uy : N/Fy — Sy such that \Ifo*(Azj/’Vo/fo) = Ag, and \IIO*(E%O/R) = Eg,. Also,

(Wo 0 po)s(An, Ex) = (Ag,, Es,) and po.(An, Ex) = (A@@O/fo, E}%). Hence,

7

N — M

Yoo /o | Lp N\ (52)

s &g oNE S MF YL S S s,

where 7o : Sy — S is the immersion of Sy in S and 7y 0 ¥y = W o . By the
above results and by the commutativity of the diagram (52), we obtain :
(A57 ES) = CI)(ANa EN) —
= ((Popoi)Ay,(Vopoi)Ly)=
= ((\II o 90)* OpO*AN7 (\I/ O 90)* opO*EN) =
= (Vo) Ay, (Top). By ) =

= (Vo) (AY 5, By)r) = (00 Wo)u(AY) 2. Ex)s)  (53)

which means that W o ¢ = 43 0 Uy is a 1y-conformal Jacobi map. Taking
into account that W : M/F — S is a t-conformal Jacobi map and that
Uy : N/Fy — Sy is a yg-conformal Jacobi map, (53) implies that ¢ : N/Fy —
M/F is a (¢y/¢*1p)-conformal Jacobi map and that iy : Sy — S is a Jacobi
map.

The above study led us to the following theorem :

Theorem 6.2 (Reduction Theorem of Jacobi manifolds). Let (M, A, E)
be a Jacobi manifold, N C M a submanifold of M, D C TM X IR a Lie
subalgebroid of (TM x IR,[,],m) that has no sections of type (0, f) with
f # 0 and Dy = DN (TN x IR). We suppose that D and Dy define, re-
spectively, a simple foliation F of M and a simple foliation Fo of N and
that L = D @® D~ is a reducible Dirac structure for the triangular generalized
Lie bialgebroid ((TM x IR,(0,1)), (T*M x R,(—FE,0)),(A,E)). Then, the
following two statements are equivalent.

(1) There exists a Jacobi structure (An)x,, En/x,) on N/Fo and a function

Yy € C®°(N/Fy, IR) (in the above notation, 1y = 1/ 0*) such that

P(AB) = 0 (A BN )
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(2) (A, E)# (DY) CTN x IR+ D holds on N.

Remarks 6.3.

1. We remark that, in the context of the Reduction Theorem 6.2, the
initial Jacobi manifold (M, A, F) and the reduced Jacobi manifold

(N/Fo, An/7), Enyry)

are connected by means of the Jacobi manifold (M /F, Ay z, Eyyr) with two
conformal Jacobi maps.

2. Reduction Theorem 6.2 holds for any reducible Dirac structure L C
(TM x R) @ (T*M x R) having a characteristic pair (D, (A, E")), i.e. L =
D @ graph((N', E")#|p.). Effectively, by Corollary 5.8 we get that L in-
duces a Jacobi structure (Ayr, Eprr) on M/F. Also, by the geometric
interpretation of Corollary 3.5 we conclude that (A + A, E'+ E') is reduced
to a Jacobi structure (Ag, Es) on S, which is exactly the Jacobi structure
defined by the Jacobi bracket of L-admissible functions on M and which is
y-conformally equivalent to (Ayr 7, Ear). If (As, Eg) verifies (50) or, equiv-
alently, (A+ A, E 4+ E') verifies (51), then, by Proposition 6.1, there exists a
pull-back Dirac structure Ly for ((TN x IR, (0,1)), (T*N x R, (0,0)),(0,0))
with characteristic pair (Do, (Ay, Fy)) such that ®(Ayx, Ex) = (Ag, Es).
The reducible Dirac subbundle Ly C (TN x R) & (T*N x R) induces a
Jacobi structure (Ay,x,, En/z) on N/Fy and

Pox (ANa EN) = (Aé@/}“oa E%O/fo)a

where 1y is an appropriate nowhere zero function on N/Fy. Applying the
calculus of (53) to the relation (Ag, Es) = ®(Ay, Ex), we conclude that
¢ : N/Fy — M/F is always a conformal Jacobi map. But, the projection
p: M — M/F is a conformal Jacobi map if and only if L is a null Dirac
structure, fact which is equivalent to (A, E') = 0(modD).

3. We note that the Reduction Theorem of Jacobi manifolds 6.2 differs at
same points from that proved in [30] by the second author and independently
by K. Mikami in [29], which generalizes the Reduction Theorem of Poisson
manifolds of Marsden and Ratiu [28]. Precisely, in Theorem 6.2 we suppose
that we have two simple foliations, a foliation F of the initial phase space M
determined by 7(D) and a foliation Fy of the considered submanifold N of
M determined by 7(Dy) = w(D) N TN, while in the theorem of [30] we only
suppose that we have a subbundle A of Ty M such that A NTN defines a
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simple foliation of N. In the particular case where D = A x {0}, A being
an integrable subbundle of T'M, the reducibility condition

(A, EY¥(DYYC TN xR+ D

of Theorem 6.2 reduced to the one of the Reduction Theorem of [30] given
by
A#(AY)Y CTN + A and E|y € T(TN + A)

which is a stricter condition.

7. Applications and Examples

1. Jacobi submanifolds : From Theorem 6.2 we obtain sufficient con-
ditions under which a Jacobi structure (A, E') on a differentiable manifold
M induces a Jacobi structure on a submanifold N of M. Effectively, un-
der the assumptions of the above mentioned theorem, if Dy = D N (T'N x
R) = {(0,0)} and (A, E)*(D+) € TN x R + D holds on N, then there
exists a (T'N x RR)-bivector field (Ay, Ey) on N such that Ly = Dy &
graph(Ay, EN)#lDd_ = graph(Ay, Ey)7 is a reducible Dirac structure for the
triangular generalized Lie bialgebroid ((T'N x R, (0, 1)), (T*N x IR, (0,0)), 0)
and ®(Ay, Ey) = (Ag, Eg). But, the fact "Ly = graph(Ay, Ex)* is Dirac
for (TNxIR,(0,1)),(T*N xR, (0,0)),0)”is equivalent to the fact "(Ay, Ey)
is a Jacobi structure on N7 (see Proposition 5.2 in [33]) and

(A57 ES) - (I)(AN7 EN) g (\Il Op)*(A, E) — (‘Ij opo Z)*(AN7 EN)

A p*(A7 E) - (p © Z)*(ANa EN)

< p((A E) —i(An, En)) = (0,0).
By the last equality we conclude either that (A, E) —i.(Ay, Ex) = (0,0) <
(A, E) = i.(An, EN), 1e. i: (N,Ay, Exy) — (M, A, E) is a Jacobi map, or
that A = i, Ay + 3% X; AYj and E = i.Ey + X, where X;, X € I'(n(D)),
Y, e I'(TM), j = 1,...,k, are convenable vector fields such that [A, A] =
—2E A A and [E,A] = 0.
Particular cases

a) When D = {(0,0)}, then D+ = T*M x IR, and they verify the as-
sumptions of Theorem 6.2. Condition Dy = DN (TN x R) = {(0,0)}
is automatically satisfied and (51) is equivalent to

A*(T*M) CTN on N and E|y € T(TN),
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which are exactly the conditions given in [4] and [26] for the subman-
ifolds N of (M, A, E) of the first kind.

b) When D = (A, E)#*((TN x R)*), we have Dy = DN (TN x R) =
{(0,0)} if and only if

TNNA*(TNY) ={0} on N and E|y € I'(TN). (54)

Effectively, (TN xR)t = TN+ x {0} and D = (A, E)*(TN+x {0}) =
{(A* (), —{a, E)) / (o,0) € TN+ x {0}}. Hence, Dy = DN (TN x
IR) = {(0,0)} if and only if

(i) for all « € I(T'N*), (o, E) = 0, i.e. E|y € T(T'N), and

(i) A#(a), o € T(TN?), is a section of TN only in the case where

A#(a) = 0.
Obviously, (ii) is equivalent to TN N A#(TN+) = {0}. Thus, if (54)
holds,

D = A*(TN*) x {0} and D* = (A*(TN)* x R.

Taking into account (54), by a simple calculation we show that D =
A#(TN*) x {0} is a Lie subalgebroid of (TM x R, [, ], ) if and only
if A belongs to the ideal generated by the space of smooth sections
of TN. Also, since A#((A#*(TN+))Y) C TN and E|x € T'(TN), it is
easy to prove that Dt = (A#(TN1))* x R is a Lie subalgebroid of
(T*M X IR, [, ](A,E),Tf o (A, E)#)

Consequently, under the assumptions that (54) holds and that
A belongs to the ideal generated by the space of smooth sections of
TN, we have that the requirements of Theorem 6.2 as the reducibility
condition (51) are verified, therefore (A, E') induces a Jacobi structure
on N. We note that conditions (54) are exactly the ones given in [14].

2. Reduction of Jacobi manifolds with symmetry : Let (M, A, E)
be a Jacobi manifold, G a connected Lie group acting on M by a Jacobi
action, G the Lie algebra of G, G* the dual space of G and J : M — G*
an Ad*-equivariant moment map for the considering action. Let D be the
vector subbundle of TM x R formed by the pairs (X,;,0), where Xy is
the fundamental vector field on M associated to an element X € G, and
D* its conormal bundle which is D+ = {X); € TM /X € G} x R. Tt is
easy to check that D and D+ are Lie subalgebroids of (TM x R, [, ],7) and
(T*M xR, [, Ja.p), To (A, E)¥), respectively. (For D+, we take into account
that the action of G on M is a Jacobi action, thus, for any fundamental vector
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field Xp; on M, Lx,, A =0 and Lx,,E =0.) Consequently, L = D® Dt is a
Dirac subbundle of ((TM x R) ® (T*M x R), (0,1) + (—E,0)). We suppose
that 0 is a weakly regular value of the moment map J. Hence, N = J~1(0) is
a submanifold of M and Dy = DN (TN x R) = {(X,0) / X € Gy}, where
Gy is the Lie algebra of the isotropy subgroup Gy of 0. Also, we suppose that
(D) and 7(Dy) define, respectively, a simple foliation F of M and a simple
foliation Fy of N. Since, (A, E)#(D+) C TN x R + D holds on N, from
the Reduction Theorem 6.2 we get that (A, E) induces a Jacobi structure on
N/Fy. For more details, see [31], [29] and [11].

3. An example : Let M be a five-dimensional C'*°-differentiable manifold
equipped with a transitive Jacobi structure (A, FE) and (xg, 21, T2, T3, 4) a
system of local coordinates of M in which

0 0 0 0 0 0 0 0
A= - E=—.
(93'}1 A 6332 * 83]3 A (91’4 (5131 8951 + 3 8953) A 8:1:0 and (91’0 <55)

We consider the open submanifold M’ = M \ {(zg, x1, 22, x3,24) € M [/ 1y =
ro = x4 = 0} of M equipped with (A, E’), the Jacobi structure induced
by (A, E), that is also given by (55). Let D be the subbundle of TM’ x R
generated by

0 0 0 0 0
—1), (ax1 0)’(8—353’0»’ where ZZCL‘oax0 +$26 +x45)x4

D ={((Z,
Then, D+ = ((0xzg, z0), (022, 22), (624, 14)) and, by a simple calculation, we
confirm that D and D+ are Lie subalgebroids of (TM’ x R,[,],n) and
(T*M' x R, [, Jarp), ™o (N, E')#), respectively. Hence, L = D @ D+ is
a reducible Dirac structure of ((TM' x R) @ (T*M' x R), (0,1) + (—F’,0)),
i.e. m(D) = (Z, 0/0x1, 0/0x3) defines a simple foliation F of M’. Let N be
the submanifold of M’ defined by the equation xy = ¢, where ¢ is a nonzero
constant. We have Dy = DN (TN x R) = ((0/021,0), (0/0x3,0)), which
defines a simple foliation Fj of N. Since,

0 0
- (N. EN# = (17— —1) =
(N, EN# 5z, x0) (xlaxl + x?’@x?, + IO&CO, )
0 0 0 0
= (1 — a2 — 2 0) 4 (Z,—1) € I(TN x R+ D),

8 I (95133 (91’2 8%4
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0 0
- (N, EN* = (——— — =
(A, E) (595272%2) ( By +5E28x070)
0 x5 0  xexy O x9, T
= (————= — — —(Z,—1 I'(T'N D
( 0r1 1901y T 8$4’x0)+x0< 1) € I xR+ D)
and
- (A/ El)#(51'4 l’4) = (—i +$4i 0) =
) ) 83;'23 ax()?
0 Loy 0 Ty 0 Ty T4
= (— — - — —(Z,—1 I'(T'N D
( 8$3 X0 63:2 $08$4’ZEO)+$0( ’ )E ( XR+ )7

we obtain that (A, E')#(D+) C TN xR+ D holds on N (where x5 = ¢ # 0).
Therefore, by Reduction Theorem 6.2, we conclude that there exists a Jacobi
structure (Ay/z,, En/z,) on N/F such that

p*(A/, El) - @*(A%)/]:Oa E%O/fo)a

where p, ¢ and 1)y as in Theorem 6.2. Because p,A’ = 0, Anyz, = 0, thus the
induced Jacobi structure on N/Fj is the trivial one defined by a differentiable
non null vector field. To verify the last statement, it is sufficient to remark
that, in this example,

(1) dim Sy = dim N/Fy = dim M/F = dim S = 2 and,

(2) for the L-admissible functions zo—x¢, x4—x¢ € CP(M',R) = C>(S, R),

46 41
{@2—z0, T4—70} 5 (:) {m2—20, T4—20} L (:) {$2—$0,$4—$0}(A',E/) = x4—12 # 0,

thus the induced Jacobi structure on N/Fy is not null. (For the notation,
see the proof of Theorem 6.2.)

Remark 7.1. This is an example where we may see that the reducibility
condition (A, E)#(D+) C TN x R+ D of Theorem 6.2 is less strict than that
of Reduction Theorem proved in [30] and [29], which requires E|y € I'(T'N).
In this example, E|y = 0/0z( and it is transverse to N.
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