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Abstract: We prove that the canonical model of a nonsingular surface of general
type with pg = 6 and K2 = 13 whose canonical image is not contained in a pencil of
quadrics is a complete intersection of four quasihomogeneous forms of degree 2 and
two quasihomogeneous forms of degree 1 in the cone over a weighted Grassmannian

P(12)⋉G(1

2

4
, 3

2
).
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1. Introduction

This work is dedicated to the proof of the following theorem.

Theorem 1.1. Let S be a nonsingular surface of general type with pg = 6
and K2 = 13 whose image under the canonical map is not contained in a
pencil of quadrics. Then,

(i) |KS| is base point free and S is regular;

(ii) there exists a map ρ : S → P(12)⋉G(1
2

4
, 3

2) that factors through the
pluricanonical morphism S → ProjR(S,KS);

(iii) the image of S under ρ is a complete intersection of four quasihomo-
geneous forms of degree 2 and two quasihomogeneous forms of degree

1 in P(12)⋉G(1
2

4
, 3

2).

The starting point was the question of Miles Reid whether the work of
Mukai on the classification of Gorenstein Fano 3-folds extends to a wider
class of Fano 3-folds. In such wider class one would find as first cases Fano 3-
folds not necessarily Gorenstein (allowing cyclic quotient singularities) whose
anticanonical ring has codimension 3.

Mukai’s linear section theorem asserts that an indecomposable Gorenstein
Fano 3-fold V with at most Gorenstein canonical singularities of genus 7, 8,
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9 or 10 is isomorphic to a linear section of an homogeneous space X. Fano
3-folds of the type described above have genus 6 10 or equal to 12. The
linear section theorem tidies the upper end of this range. While for genus
6 5 the anticanonical model, ProjR(V,−KV ), is a complete intersection in
(weighted) projective space and for genus 6 it can be related to Buchsbaum–
Eisenbud’s theorem; for genus > 7, the anticanonical ring is of codimension
> 4. I.e, that we know of, the format of the equations of the anticanonical
model is not prescribed in any manner by any structure theorem. The main
ingredient in Mukai’s proof is called the vector bundle method. It consists
in constructing on V (or on a linear section T ∈ |−KV |) the restriction of
the tautological vector bundle of X. In a series of articles [6, 7, 9, 10, 11]
dedicated to this result, Mukai uses ladders C ⊂ T ⊂ V of linear sections of
V to set up the embedding V →֒ X; whether using T to construct a bundle
on V or using C to construct a bundle on T , embedding T in X and then
extending the embedding to V . Though, as Mukai explains in [6], the genus
12 is not a section of an homogeneous space, the vector bundle method still
yields a satisfactory description of the anticanonical model.

Reid’s question is motivated by the following theorem.

Theorem (Altınok [1]). There are precisely 69 families of K3 surfaces with
cyclic quotient singularities 1

r
(a,−a) whose general element is a codimension

3 subvariety in weighted projective space given by the 4 × 4 Pfaffians of a
skew 5× 5 matrix.

Suppose that (T,H) is a polarised K3 surface with a cyclic quotient singu-
larity of type 1

2
(1, 1) and such that h0(T ) = 5. This surface belongs to the

first family of Altınok’s list. Her result states that for a general K3 with these
invariants the ring R(T,H) =

⊕
n>0H

0(T, nH) is isomorphic to a quotient

C[x1, . . . , x5, y]

Pfaff

where Pfaff is the ideal generated by the submaximal Pfaffians of a skew
matrix 



0 m12 m13 m14 q1
0 m23 m24 q2

0 m34 q3
−sym 0 q4

0
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with mij ∈ 〈x1, . . . , x5〉 and qi ∈ S2 〈x1, . . . , x5〉 ⊕ 〈y〉. This suggests that

T should be recovered from an embedding T →֒ G(1
2

4
, 3

2
) as a complete

intersection. In fact, such is the assertion of Proposition 2.8 in Corti and
Reid’s paper [5] for all general K3 surfaces of each family of Altınok’s list.
Their proof relies on Buchsbaum–Eisenbud’s theorem [3] for Gorenstein ideals
of codimension 3. In particular they do not give an explicit construction of
a bundle (or of an orbi-bundle) on T .

Notice that if the image of T →֒ G(1
2

4
, 3

2
) is a linear section of G(1

2

4
, 3

2
),

in particular, there exists a Fano 3-fold V such that T ∈ |−KV |. This 3-
fold V has a cyclic quotient singularity of type 1

2(1, 1, 1) and therefore is not
Gorenstein. However a general member of |−2KV | is a nonsingular surface
of general type with pg = 6 and K2 = 13.

Let us explain the nature of our assumptions. It is traditional to start an
analysis of a particular birational class of surfaces of general type with pg > 4
by considering the case with birational canonical morphism. Here we consider
surfaces S with the aforementioned invariants whose canonical image is not
contained in a pencil of quadrics. However, the canonical image of S must be
contained in at least one quadric (see the proof of Proposition 3.1); so that
what we require is that S be general in this sense. Additionally, we can also
show from our assumptions that the canonical map is a birational morphism.
We refer the reader to the work of Ciliberto [4] on regular surfaces with pg = 5
and K2 = 10, where it is shown that there exist special loci in the component
of the coarse moduli space of these surfaces corresponding to the birational
canonical morphism. In some of these special loci the canonical image of the
corresponding surface is contained in one more quadric than expected.

The proof of Theorem 1.1 is half-split in the next two sections. In section 3,
Proposition 3.1 deals with the proof of regularity. We establish ρ in section 4
using the Mukai’s vector bundle technique. This consists in finding a suitable
vector bundle E on S and using its sections to write ρ. In doing so, we rely
on a good knowledge of R(S,KS) which, in the end, turns out to be the main
computation. Indeed there is a nontrivial step that involves showing that a
set of 5 relations of the ring R(S,KS) are all the generators of the canonical
ideal IKS

.
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2. Preliminaries

An algebraic surface S is a surface of the general type if KS is a nef divisor
and K2 > 0. In particular, by this convention, surfaces of general type are
always minimal. As to displaying skew symmetric matrices, we follow the
convention of only writing their upper triangle. If M is skew 5 × 5 matrix,
Pf1,Pf2,Pf3,Pf4,Pf5 denote the five submaximal Pfaffians of M , i.e. Pfi is
the Pfaffian of the matrix obtained by removing the line and column i of the
matrix M . PfM denotes the ideal generated by the submaximal Pfaffians of
M .

2.1. Cones over a weighted Grassmannian. Weighted Grassmannians
were defined by Corti and Reid in [5]. Consider a polynomial ring C[mij]
where 1 6 i < j 6 5 and suppose that there exist ci ∈

1
2Z such that

wt(mij) = ci +cj. The weighted Grassmannian of weights c1, . . . , c5 (denoted
by G(c1, . . . , c5)) is the subscheme of P[mij] defined by the ideal generated
by the submaximal Pfaffians of the skew matrix:




m12 m13 m14 m15

m23 m24 m25

m34 m35

m45


 . (1)

(Notice that despite the terminology, this definition only generalises the no-
tion of Grassmannian of subspaces of dimension 2 of a fixed 5-dimensional
vector space.) Let aG(2, 5) denote the affine cone over the Grassmannian
G(2, 5) ⊂ P9. In the same way as weighted projective space (w.p.s.) is the
quotient of the punctured affine cone over ordinary projective space by a
weighted C∗-action, so is the weighted Grassmannian (w.G.) a quotient of
punctured aG(2, 5) by a weighted C∗-action. We draw yet another compa-
rison between w.p.s. and w.G., this time within the context of graded rings.
Suppose that (X,D) is a pair consisting of an algebraic variety and an ample
divisor. Let x1, . . . , xn be a choice of generators of the graded ring R(X,D)
and consider the epimorphism ev : C[x1, . . . , xm]→ R(X,D). Suppose, addi-
tionally, that there exist m quasihomogeneous forms f1, . . . , fm in the kernel
of the map ev such that m+dimX = n and such that the image of X under
the map ψ : X −→ P[X1, . . . , Xm] defined by p 7→ (x1(p), . . . , xn(p)) is cut
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out by f1, . . . , fm. Then if

DdimX = deg(ψ(X)) =
deg(f1) · · · deg(fm)

wt(x1) · · ·wt(xn)

we can conclude that ψ(X) is a complete intersection. Moreover, we deduce
that

R(X,D) =
C[x1, . . . , xn]

(f1, . . . , fm)
.

This argument is tacitly employed when one calculates divisorial rings when
they happen to be complete intersections. One important fact to be borne in
mind when applying the previous argument is that w.p.s. are arithmetically
Cohen-Macaulay schemes. In particular this ensures that a sequence like
f1, . . . , fm cutting out a “correct-dimensional” subscheme cannot give rise
to embedded components. Weighted Grassmannians are suitable varieties
in which to draw arguments like the previous, when the ring R(X,D) is
no longer a complete intersection, but a quotient by a 5 × 5 Pfaffian ideal,
which is to say, the first nontrivial structure in codimension 3. To make
this idea more precise we need introduce the notion of cone over a weighted
Grassmannian.

Definition 2.1. Let C[mij] with 1 6 i < j 6 5 be a weighted polynomial ring
for which there exist c1, . . . , c5 ∈

1
2
Z such that wt(mij) = ci + cj. Consider

an injective graded homomorphism of degree 0 of C[mij] into a graded ring
A = C[x] whose remaining generators∗ z1, . . . , zn have weights b1, . . . , bn.
We define the cone over a weighted Grassmannian of weights (b1, . . . , bn)
and (c1, . . . , c5) to be the subscheme of P[x] = ProjA given by the ideal
generated by the 5 submaximal Pfaffians of (1). We denote this subscheme
by P(b1, . . . , bn)⋉G(c1, . . . , c5).

Remark 2.2. Consider P[z1, . . . , zn] and P[mij] as linear subspaces of P[x].
Then the cone over a weighted Grassmannian P(b1, . . . , bn)⋉G(c1, . . . , c5) is
the quotient the punctured join in affine space A[x] of A[z1, . . . , zn] and of
the affine cone aG(2, 5) ⊂ A[mij] by the following weighted C∗-action:

zl 7→ λblzl and mij 7→ λci+cjmij for 1 6 l 6 n and 1 6 i < j 6 5.

Proposition 2.3. Let G be the the cone over a weighted Grassmannian
P(b1, . . . , bn)⋉G(c1, . . . , c5). Denote

∑5
1=1 ci by k. Then

∗we use x to denote the collection of all mij and all zl.
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(1) G is a variety of dimension (n+ 6);

(2) ωG = OG(−2k −
∑

i bi);

(3) deg G =
∑

(k−ci
3 )−

∑
(k+ci

3 )+(2k

3 )∏
l bl·

∏
i<j(ci+cj)

;

(4) H i(OG(j)) = 0 for all 0 < i < n+ 6.

Proof : Item (i) is clear from either the definition or the geometric interpre-
tation of cone over a weighted Grassmannians. Item (ii) is deduced from the
projective resolution of the ideal of Pfaffians:

A
(Pfi)
←−

5⊕

i=1

A(ci − k)
M
←−

5⊕

i=1

A(−ci − k)
(Pfi)

t

←− A(−2k)← 0 (2)

where A = C[z1, . . . zn, mij] with wt(zi) = bi and wt(mij) = ci + cj. The
dualising module of P is given by OP(−4k−

∑
i bi) and ωG = OG(−2k−

∑
i bi)

follows from Gorenstein adjunction.
Given that R is a quotient of A by a Gorenstein ideal, the computation of

the degree can be carried out from (2) by a standard formula in the theory
of Hilbert series. Namely we have:

deg G =

(
2k
3

)
−

∑5
i=1

(
2k+ci−k

3

)
+

∑5
i=1

(
2k−ci−k

3

)
−

(
2k−2k

3

)
∏

l bl ·
∏

i<j(ci + cj)

where the numerator is a sum of binomial coefficients of the form “{2k +
twist} choose {codim G}” whose sign changes as we move a step in (2).
Likewise item (iv) follows from a standard computation in the theory of
arithmetically Cohen–Macaulay subschemes. We split sequence (2) into short
exact sequences and use H i(OP(j)) = 0 for 0 < i < 9 + n.

Proposition 2.4. A general complete intersection of four quasihomogeneous

forms of degree 2 in G(1
2

4
, 3

2) is a nonsingular regular surface of general type
with pg = 6, K2 = 13 and whose canonical image is not contained in a pencil
of quadrics.

Proof : The weighted GrassmannianX = G(1
2

4
, 3

2) is a subscheme of weighted
projective space P(16, 24) = P[xij, yi] where 1 6 i < j 6 5. We claim that X
is nonsingular away from P[y1, . . . , y4]. Indeed, since X and G(2, 5) have the
same affine cone and G(2, 5) is nonsingular, X is nonsingular away from the
locus of points of the affine cone with nontrivial C∗ stabiliser. It is clear that
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if four quasihomogeneous forms are chosen general enough (i.e. so that it is
possible to write them as yk = q2(xij) for k = 1..4) the subscheme they cut
out in X does not meet P[y1, . . . , y4] and therefore, by an argument of the
type of Bertini’s theorem this subscheme is nonsingular. In this situation,

the intersection of these forms with G(1
2

4
, 3

2) is a surface, S, with KS =

OX(1)|S. We calculate its invariants: pg = 6, q = 0, K2
S = 24 · 13

4 = 13.

Since the map sym2 : S2H0(KS)→ H0(2KS) is surjective, we deduce that
the canonical image of S is not contained in a pencil of quadrics.

3. Generators of the canonical ring of S
Proposition 3.1. Let S be a nonsingular surface of general type with pg = 6
and K2 = 13 whose canonical image is not contained in a pencil of quadrics.
Then the canonical map is a birational morphism. Moreover, S is regular.

Proof : The canonical image of S is not contained in a pencil of quadrics if
and only of the map

sym2 : S2H0(KS)→ H0(2KS)

has a kernel of dimension 6 1. Now, on one hand, by Riemann–Roch

χ(OS(KS)) = χ(OS) +K2
S ⇐⇒ h0(2KS) = 20− q(S).

On the other hand dimS2H0(KS) = 21 and accordingly,

q(S) > 1⇐⇒ dimKer(sym2) > 2.

Therefore if the canonical image of S is not contained in a pencil of quadrics
then q(S) = 0; among other things. A classical result of Bombieri [2] states
that for a nonsingular surface of general type with K2 > 5 the linear system
|2KS| is base point free. Hence, for a surface of general type with K2 > 5
such that sym2 is surjective, the canonical linear system is base point free. If
the morphism ϕKS

maps S onto a curve then there exists a positive integer
r such that KS = E1 + · · ·+ Er, where Ei are nonsingular curves, fibres of
a factor map of ϕKS

. Since Ei are numerically equivalent, denoting by E
a particular fibre, we deduce that 13 = K2

S = rKSE, so that KSE = 1.
However by adjunction, KSE + E2 = 2g − 2 which is a contradiction, since
E2 = 0. We deduce that ϕKS

is a birational morphism onto a surface of
degree 13.

As far as the canonical ring is concerned, if sym2 is surjective, R(S,KS)
needs no new generators in degree 2. It is a theorem of Ciliberto [4] that
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the degree of the generators of R(S,KS) is 6 3. Hence we should determine
whether the map

H0(KS)⊗H0(2KS)→ H0(3KS)

is or is not surjective. We will show that R(S,KS) is generated by H0(KS)
so the answer is affirmative. Our proof relies on the hyperplane principle
and on the geometry of a general canonical curve C ∈ |KS|. We recall the
statement of the hyperplane principle and leave the proof to the reader.

Proposition 3.2 (Hyperplane principle). Let R be a graded ring and x0 ∈ Rd

a nonzero-divisor. Denote by R̂ the quotient R/(x0). Then, there exists an
exact sequence:

0→ R(−d)
x0−→ R

π
−→ R̂→ 0

of graded homomorphisms of degree 0 such that the following hold:

(1) If x̂1, . . . , x̂n ∈ R̂ generate the ring R̂ then choosing pre-images x1, . . . ,
xn under π of x̂1, . . . , x̂n the elements x0, . . . , xn ∈ R generate R.

(2) If R̂ = C[x̂1, . . . , x̂n]/(f1, . . . , fm) then there exist F1, . . . , Fm in
C[x0 . . . , xn] such that R = C[x0 . . . , xm]/(F1, . . . , Fm).

Suppose that S ⊂ Pn is a canonical surface. Then a general hyperplane
section is a curve with a halfcanonical divisor given, by adjunction, as the
restriction to the curve of the canonical divisor of S. Let f ∈ H0(KS)
be an equation of the hyperplane, then under some assumptions, the ring
R(S,KS)/(f) is the halfcanonical ring R(C, A).

Proposition 3.3. Let S be a nonsingular regular surface of general type. If
C ∈ |KS| is a nonsingular curve cut out by f ∈ H0(KS), then

R(C, A) = R(S,KS)/(f).

Proof : By regularity and Kodaira vanishing the cohomology space H1(nKS)
is null for any integer n. Hence from the restriction exact sequence, we deduce
that

0→ H0((n− 1)KS)
f
−→ H0(nKS)→ H0(C, nA)→ 0.

The direct sum of these sequences implies that R(C, A) ≃ R(S,KS)/(f).
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3.1. The halfcanonical ring of C ∈ |KS|. We return to the case of a
nonsingular surface of general type with pg = 6 and K2

S = 13 whose canonical
image is not contained in a pencil of quadrics. Recall from Proposition 3.1,
that such surface is necessarily regular and its canonical map is a birational
morphism. By Bertini’s theorem, a general member C ∈ |KS| is a nonsingular
reduced curve of genus 14 with a halfcanonical divisor A = KS|C whose space
of global sections H0(A), by regularity of S, is 5-dimensional. Moreover A is
free and the map

sym2 : H0(A)→ H0(2A), (3)

(which we still denote by sym2) is surjective. The next proposition in con-
junction with the hyperplane principle shows that R(S,KS) is generated in
degree 1.

Proposition 3.4. Let C be nonsingular curve of genus 14 with a halfcanonical
divisor A such that h0(A) = 5. Assume that sym2 is surjective. Then R(C, A)
is a codimension 3 ring generated in degree 1.

Proof : We start by proving the following lemma.

Lemma 3.5. Let A and B be two divisors on an algebraic curve C. The ex-
tension bundles of OC(B) by OC(A) with maximum number of global sections
are parametrised by the cokernel of the multiplication map

H0(KC −A)⊗H0(B)→ H0(KC +B −A).

Proof : The group classifying extensions of OC(B) by OC(A) is Ext1(B,A).
By Serre duality we have:

Ext1(B,A) = Ext1(KC +B −A,KC) ≃ H0(KC + B − A)∨.

On the other hand, extensions of OC(B) by OC(A) with maximum number
of global sections,

0→ OC(A)→ F → OC(B)→ 0

have zero connecting homomorphism H0(B)→ H1(A), i.e. F has maximum
number of global sections if and only if its class [F ] ∈ Ext1(B,A), under
the canonical morphism Ext1(B,A) → Hom(H0(B), H1(A)) maps to zero.
Which is to say, F has maximum number of global sections if and only if

[F ] ∈ Ker
{
Ext1(B,A)→ H0(B)∨ ⊗H1(A)

}
. (4)
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Again by Serre duality we have

H1(A) ≃ Ext0(A,KC)
∨ = Ext0(0, KC − A)∨ = H0(KC −A)∨.

Finally, dualising statement (4) we conclude that extension classes corres-
ponding to bundles with maximum number of global sections are in bijection
with the cokernel of H0(KC −A)⊗H0(B)→ H0(KC +B −A).

The lemma is used in the remainder of this proof to equate the cokernel of
the maps

H0(A)⊗H0(nA)→ H0((n+ 1)A) (5)

with certain extension bundles on C. First, let us treat the case n > 3. From
Lemma 3.5, showing that (5) is surjective is equivalent to showing that all
extension bundles of OC(A) by OC((2− n)A) with 5 global sections are split
extensions. Let F be such an extension bundle

0→ OC((2− n)A)→ F → OC(A)→ 0. (6)

Since h0(F ) = 5, there exists a section of F with nontrivial divisor of zeros
δ. This section yields an embedding OC(δ) →֒ F , which upon saturation
gives:

0→ OC(ξ)→ F → OC((3− n)A− ξ)→ 0.

Since ξ is effective and n > 3 we deduce that h0(ξ) = h0(A) = 5. Besides,
as OC(ξ) does not embed into OC((2− n)A), the composition of OC(ξ)→ F

with the map F → OC(A) of (6) is injective. Since A is free, we conclude
that ξ ≃ A and therefore that F is isomorphic to the split extension.

Let us now show that the map

H0(A)⊗H0(2A)→ H0(3A) (7)

is surjective. Let F be an extension of OC(A) by OC with 6 global sections,

0→ OC → F → OC(A)→ 0. (8)

Our aim is to show that F is split. From the dimension of the space of global
sections of F we deduce that for any two p, q ∈ C there exists a section of
that bundle vanishing on p+ q. Denote the divisor of zeros of such a section
by δ. Saturating the embedding OC(δ) →֒ F we obtain

0→ OC(ξ)→ F → OC(A− ξ)→ 0

where ξ ⊃ δ is an effective divisor. Since p, q can be chosen general enough
we have h0(A − ξ) 6 h0(A) − 2 and accordingly h0(ξ) > 3. Assume for the
time being that C has no g2

9. Then deg(ξ) > 10. But then h0(A − ξ) 6 1
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since ∄g2
9 =⇒ gon(C) > 4. Therefore h0(ξ) > h0(A) and we must have

ξ ⊂ OC(A). From the fact that A is free we conclude that ξ = A. In other
words, an element of the cokernel of (6) corresponds to the split extension,
i.e. the cokernel is null. Hence, provided that we can show that C has no g2

9

we can show that R(C, A) is generated in degree 1. We need an auxiliary
result.

Lemma 3.6. Let C be a nonsingular curve and A a halfcanonical divisor
for which sym2 : H0(A) → H0(KC) is surjective. Let D be a divisor on C.
Denote by d the dimension of H0(A)/H0(A−D). Then:

deg(D)− h0(D) 6
d(d+ 1)

2
− 1.

Proof : Since sym2 is surjective, the induced map

S2

(
H0(A)

H0(A−D)

)
→

H0(KC)

H0(KC −D)

is surjective. Hence h0(KC) − h
0(KC −D) 6

d(d+1)
2 . On the other hand, by

Riemann-Roch,

h0(KC)− h
0(KC −D) = deg(D)− h0(D) + 1.

To show that the surjectivity of sym2 implies the nonexistence of a g2
9

we begin by showing that gon(C) > 6. Suppose there exists a divisor on
C with h0(D) = 2 and deg(D) 6 5. Since h0(A) − h0(A − (A − D)) = 3,
applying Lemma 3.6, we deduce that h0(A − D) > 8 − deg(D). Hence
h0(A) − h0(A − D) 6 deg(D) − 3. In particular, deg(D) = 4 or 5. By
the same lemma, we deduce that if deg(D) = 5, then deg(D)− 2 6 2 and if
deg(D) = 4, that deg(D) − 2 6 0. A contradiction in both cases. We have
shown that gon(C) > 6. Finally, assume that for some d 6 9, there exists a
free g2

d on C and let us denote the divisor of the associated complete linear
system by D. Since h0(A)−h0(A−(A−D)) 6 2, from Lemma 3.6 we deduce
that deg(A−D)−h0(A−D) 6 2, i.e. h0(A−D) > 2, which is a contradiction,
since gon(C) > 6. We have finished the proof of Proposition 3.4.

Corollary 3.7. Let S be a nonsingular surface of general type with pg = 6
and K2 = 13 whose canonical image is not contained in a pencil of quadrics.
Then the canonical ring R(S,KS) is generated in degree 1.
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Corollary 3.8. Let S be a nonsingular surface of general type with pg = 6
and K2

S = 13 whose canonical image is not contained in a pencil of quadrics.
Then the canonical morphism factors through S → ProjR(S,KS), the pluri-
canonical morphism, and therefore the canonical image of S is a surface with
at most Du Val singularities.

4. Generators of the canonical ideal S
From Corollary 3.7 we know that there exists a surjective homomorphism of

graded rings ev : C[x1, . . . , x6]→ R(S,KS). To describe the canonical model
of S we need to describe the canonical ideal IKS

, which is the kernel of the
map ev. By analogy with the case of complete intersections in projective
space, we hope to obtain this information from a “key variety.” This variety

is the cone over a weighted Grassmannian X = P(12)⋉ G(1
2

4
, 3

2).

4.1. A vector bundle on S. As we show in the proof of Proposition 3.4 a
general member of |KS| is a nonsingular curve C with gon(C) > 6. Suppose
that there exists a nonsingular member of |KS| with a (free and complete)
g1

6 that we denote by ξ. Then the evaluation morphism

2OS → 2OC → OC(ξ)

has a locally free kernel of rank 2. Its dual E is a locally free sheaf of rank 2
(or equivalently a vector bundle of rank 2) fitting in the exact sequence:

0→ 2OS → E → Ext1(OC(ξ),OC)→ 0. (9)

This is the bundle we use to write the embedding of S into P(12)⋉G(1
2

4
, 3

2).
Before we enumerate its properties we show that there exists a nonsingular
curve C ∈ |KS| with a g1

6.

Proposition 4.1. Let S be a nonsingular surface of general type with pg = 6
and K2

S = 13 whose canonical image is not contained in a pencil of quadrics.
Then there exists a nonsingular curve in |KS| with a g1

6.

Proof : From Corollary 3.8, Σ ⊂ P5, the canonical image of S, has at most
Du Val singularities. By a numerical argument Σ is contained in a quadric Q
of rank > 3. To show that there exists a nonsingular curve C ∈ |KS| having
a pencil of degree 6, it is enough to show that the hyperplane section of Σ
determining C is contained in a quadric of rank 6 4, since the ruling of a
quadric of rank 3 induces on the curve a pencil of degree 6 and the rulings
of a quadric of rank 4, pencils of degree 6 and 7. If rankQ 6 4 then this is
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obvious: all hyperplane sections satisfy the requirement. In the remaining
cases we must show that there exists a hyperplane H such that Q ∩ H is a
quadric of rank 6 4 and Σ∩H is a nonsingular curve, which is to say, H is not
tangent to Σ at any point of Σ ∩H. Suppose that rankQ > 5. The variety
parametrising tangent hyperplanes to Q (the dual of Q) is a nonsingular
quadric in dual projective space of dimension rankQ− 2 > 3. Its linear span
has dimension rankQ−1 and coincides with the locus of hyperplanes H such
that rankQ ∩ H 6 rankQ − 1. The dual variety of Σ (containing an open
subset parametrising hyperplanes containing tangent planes at nonsingular
points of Σ) has dimension 6 2 + 2 = 4. Suppose that rankQ = 5, then,
since the dual of Σ is not a hyperplane in dual projective space, there exists
a hyperplane H not tangent to Σ such that rankQ ∩ H 6 5 − 1 = 4. If
rankQ = 6 then the dimension of the dual of Q is 4 and since the dual of Σ
does not coincide with the dual of Q, there exists a tangent hyperplane to Q
not tangent to Σ. For this hyperplane rankQ ∩H 6 6− 2 = 4.

Remark 4.2. As we mentioned before, C ∈ |KS| has a halfcanonical divisorA
with h0(A) = 5, given by the restriction of the canonical divisor of S. Notice
that by Proposition 3.3 we deduce that the map sym2 : S2H0(A)→ H0(KC)
is surjective. Indeed this fact holds for any nonsingular curve C in |KS|. In
particular we can use the arguments of the proof of Proposition 3.4 to deduce
that gon(C) = 6 and that C has no g2

9.

Proposition 4.3. Let S be a nonsingular surface of general type with pg = 6
and K2 = 13 whose canonical image not contained in a pencil of quadrics.
Then, there exists a bundle E of rank 2 and determinant KS such that:

(1) dimH0(E ) = 4;
(2)

∧2H0(E )→ H0(KS) has a kernel of dimension 6 2;
(3) H0(KS)⊗H0(E )→ H0(E (KS)) has a 1-dimensional cokernel.

Proof: Let C ∈ |KS| be a nonsingular curve with a g1
6. Since the gonality of

C is 6 such linear system is necessarily free and complete. In what follows we
make no distinction between ξ and its associated divisor. Use Castelnuovo’s
free-pencil trick to obtain

0→ OC(A− ξ)→ 2OC(A)→ OC(A+ ξ)→ 0.

From this we deduce that h0(A− ξ) > h0(A)− deg(ξ) = 2. And since C has
no g2

9, h
0(A− ξ) 6 2. We deduce that |A− ξ| is a g1

7. (Not necessarily a free
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one.) Let us denote it by η. Recall that

0→ E
∨ → 2OS → OC(ξ)→ 0. (10)

Since Ext1
OS

(OC(ξ),OS) = OC(A− ξ), the dual of the above sequence is

0→ 2OS → E → OC(η)→ 0. (11)

From this and the fact that C ∈ |KS| we deduce that det(E ) = KS.

Proof of (i). By regularity of S, dimH1(2OS) = 0. Taking global sections of
the exact sequence (11) we get h0(E ) = h0(2OS) + h0(OC(η)) = 4.

Proof of (ii). Here, we use an argument involving the restriction of E to the
curve C ∈ |KS| used to construct E . Consider the following diagram:

0 //
E ∨

��

// 2OS

��

// OC(ξ) //

��

0

0 // E

��

id
// E //

��

0

EC OC(η)

Applying the snake lemma we deduce that

0→ OC(ξ)→ EC → OC(η)→ 0. (12)

Since E (−KS) ≃ E ∨ and from (10), H0(E ∨) = 0, we deduce that the res-
triction morphism yields an isomorphism H0(EC) ≃ H0(E ) on the global
sections of EC and E . From

0→ 2OS → E → OC(η)→ 0

we see that there exists a pair of sections s1, s2 ∈ H
0(E ) such that s1∧s2 6= 0

on S but s1 ∧ s2 = 0 on C. Therefore, item (ii) of this proposition, follows
from the next lemma.

Lemma 4.4.
∧2H0(EC)→ H0(A) has a kernel of dimension 6 3.

Proof : Let us denote by W the kernel of the map

2∧
H0(EC)→ H0(A).

The projective space P[W ] is a linear subspace of P(
∧2H0(EC)). The variety

of skew tensors of rank 2, which we denote by G(2, H0(EC)), is also contained
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in P(
∧2H0(EC)). Let a ∧ b be an element of P[W ] ∩ G(2, H0(EC)). This

means that a, b ∈ H0(EC) span a (torsion free) subsheaf of E of rank 1, that
is given by OC · a+OC · b. Since C is nonsingular this sheaf is invertible. The
saturation of OC · a+OC · b ⊂ EC yields

0→ OC(δ)→ EC → OC(A− δ)→ 0,

where OC ·a+OC ·b ⊂ OC(δ). Since gon(C) = 6 and h0(δ) > 2 we deduce that
deg(δ) > 6. From (12) we deduce that OC(δ) →֒ ξ or OC(δ) →֒ η. The same
sequence yields that h0(EC(−δ)) 6 2. Since h0(ξ − δ) 6 1 and h0(η − δ) 6 1
we conclude that

dim P[W ] ∩G(2, H0(EC)) 6 1.

Therefore we must have dimW 6 3.

Remark 4.5. If the canonical image of S is contained in a quadric of rank
3, then the image of C under ϕ|A| is also contained in a quadric of rank
3. Therefore η has a base point. And EC can be the split extension, i.e.
EC ≃ OC(ξ)⊕OC(η). In this situation, if δ ≃ ξ, h0(EC(−δ)) = 2.

Proof of (iii). Tensoring (11) with OS(KS) we have

0→ 2OS(KS)→ E (KS)→ OC(A+ η)→ 0.

So that, by RR and Serre duality on C, and using the regularity of S,

h0(E (KS)) = 2h0(KS) + h0(OC(A+ η)) = h0(KS) + h1(OC(ξ)) = 21.

Since dimH0(KS)⊗H0(E ) = 24 all we have to show is that the kernel of the
map:

H0(KS)⊗H0(E )→ H0(E (KS)) (13)

is 4-dimensional. To see this, we identify this map with the map on global
sections of a map of sheaves. We choose a 2-dimensional subspace of H0(E )
projecting down to H0(η) and write evaluation maps in the following dia-
gram:

0 //

��

2OS

��

∼
// 2OS

��

0 // N // 2OS

⊕
2OS

//

��

E

��

2OS
// η
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Tensoring the middle sequence with OS(KS), we deduce that the map on
global sections of the morphism

2OS(KS)⊕ 2OS(KS)→ E (KS)

is exactly that of (13). Thus its kernel is isomorphic to H0(N (KS)). Notice
that none of the evaluation maps needs to be surjective, as η (and con-
sequently E ) might have base points. The snake lemma applies to the first
two rows, giving

0→ N → 2OS → η. (14)

Lemma 4.6. dimH0(N (KS)) = 4.

Proof : By Castelnuovo’s free-pencil trick, the map

H0(C,OC(η))⊗H
0(C, A)→ H0(C,OC(A+ η)) (15)

has a kernel isomorphic to H0(C,OC(ξ + B)), where B denotes the base
locus of η. Since degB 6 1 and C has no g2

9, h
0(ξ + B) = 2. By (14)

the dimension of N (KS) equals the dimension of the kernel of the map
2H0(KS)→ H0(C, A+ η) given by multiplication of the two linearly inde-
pendent sections of H0(η). This map factors through 2H0(KS)→ 2H0(C, A)
(whose kernel is 2-dimensional) and the map of (15). We conclude that
dimH0(N (KS)) = 4.

4.2. The map ρ : S → X = P(12)⋉G(1
2

4
, 3

2
). Let s1, s2, s3, s4 denote a choice

of basis for H0(E ). We denote by t a choice of a generator of the cokernel of
H0(KS) ⊗ H0(E ) → H0(E (KS)). Additionally let {u1, u2} ⊂ H0(KS) be a
choice of 2 (not necessarily linearly independent) generators of the cokernel
of

∧2(E ) → H0(KS). Let X denote the cone over a weighted Grassman-

nian P(12)⋉G(1
2

4
, 3

2) that (by definition) is a projectively Gorenstein sub-
scheme of P(12, 16, 24). We fix notation for the variables of this w.p.s. as in
P[z1, z2, mij, ni]. Define a map ρ : S → X in the following way:

p 7→ (u1(p), u2(p), si ∧ sj(p), si ∧ t(p)) where 1 6 i < j 6 4.

The image of S under ρ is denoted by Γ.

Proposition 4.7. Let S be a nonsingular surface of general type with pg = 6
and K2

S = 13 whose canonical image is not contained in a pencil of quadrics.
Then there exists a map ρ of S into the cone over a weighted Grassmannian
X which is an embedding away from −2-cycles. The image of S under this
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map is contained in the intersection of two quasihomogeneous forms of degree
1 and four quasihomogeneous forms of degree 2.

Proof : Let P denote the w.p.s. P(12, 16, 24). Since the space H0(KS) is
generated by {u1, u2, si ∧ sj | 1 6 i < j 6 4}, there exists a 6-dimension sub-
space V of 〈z1, z2, mij, 1 6 i < j 6 4〉 ≃ H0(P,O(1)) such that V ≃ H0(KS).
Therefore ρ composed with a projection onto the linear subspace P[V ] ⊂ P
yields the canonical map. By Corollary 3.8 the canonical map is an embed-
ding away from −2-cycles. Likewise, ρ is an embedding away from −2-cycles.

Since the restriction of H0(OP(1)) is only 6-dimensional, there are two
linear forms of P[z1, z2, mij, ni] vanishing on Γ. We denote a choice of two
linearly independent quasihomogeneous forms of degree 1 vanishing on Γ
by L1, L2 ∈ 〈z1, z2, mij〉. Since si ∧ t is an element of H0(2KS) and the
map sym2 : S2H0(KS)→ H0(2KS) is surjective we deduce that there exist
q1, q2, q3, q4 ∈ S2 〈z1, z2, mij〉 such that the four quasihomogeneous forms of
degree 2, ni − qi, vanish on Γ.

Since the dimension of X = P(12)⋉ G(1
2

4
, 3

2) is 8 we aim to show that Γ
is the complete intersection of L1, L2, y1 − q1, . . . , y4 − q4. At the same time
this enables the understanding of the structure of the canonical ideal. From
now on, we fix a choice of the linearly independent forms vanishing on Γ
as given in the previous proposition. Notice that since the map sym2 has
a 1-dimensional kernel, the quadratic forms qi are only well defined modulo
this kernel. Let us also fix a choice of qi.

Proposition 4.8. Consider the four quasihomogeneous forms of degree two,
y1− q1, y2 − q2, y3 − q3, y4− q4 vanishing on Γ. Let Υ ⊂ P[z1, z2, mij] be the
variety cut out on X by y1 − q1, . . . , y4 − q4. In other words, consider Υ in
P[z1, z2, mij] cut out by the 5 submaximal Pfaffians of




m12 m13 m14 q1
m23 m24 q2

m34 q3
q4


 .

Then, Pf1,Pf2,Pf3,Pf4 are linearly independent modulo 〈z1, z2, mij〉 · Pf5.
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Proof: Given any set of homogeneous elements s, t, u, v of the Serre module
of E , we denote by Pf(s, t, u, v) the Pfaffian:

Pf




s ∧ t s ∧ u s ∧ v

t ∧ u t ∧ v
u ∧ v



 .

We argue by contradiction. Suppose that there exist αi ∈ C and L ∈
〈z1, z2, mij〉 such that

4∑

i=1

αi Pfi +LPf5 = 0 (16)

is a nontrivial linear dependence relation. Let us show that then, there exists
a section s ∈ H0(E ) and a section u ∈ H0(E (KS)) spanning the cokernel of
the map H0(KS)⊗H0(E )→ H0(E (KS)) such that s ∧ u = 0. Let i0 be an
integer in {1, 2, 3, 4} such that αi0 6= 0. In view of (16) we deduce that

4∑

i=1

αi Pf((sj)j 6=i0, t) + LPf(s1, s2, s3, s4) = 0.

Let u = t + L
αi0

si0. It is easy to see that Pf(s, t, u, v) is skew-multilinear in

s, t, u, v. Bearing this in mind we deduce that

4∑

i=1

αi Pf((sj)j 6=i0, u) =
4∑

i=1

αi Pf((sj)j 6=i0, t) + LPf(s1, s2, s3, s4) = 0.

Consider a new basis of H0(E ) given by

ai0 = si0 and aj = αi0sj ± αjsi0 for j 6= i0.

The ± signs can be determined as a function of i0. Then

Pf((aj)j 6=i0, u) =
4∑

i=1

αi Pf((si)i 6=i0, u) = 0.

Therefore we can reduce to the case when Pf(s1, s2, s3, t) is zero. This is

Pf




s1 ∧ s2 s1 ∧ s3 s1 ∧ t

s2 ∧ s3 s2 ∧ t
s3 ∧ t



 = 0. (17)

Notice that G(2, 3) ≃ P2 and therefore all tensors in
∧2 〈s1, s2, s3〉 are decom-

posable. Accordingly, recalling that the kernel of
∧2H0(E )→ H0(KS) is at
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most 2-dimensional (see Proposition 4.3), there are three possibilities, enu-
merated by the dimension of Ker{

∧2 〈s1, s2, s3〉 → H0(KS)}. If this kernel is
2 dimensional then, possibly after changing the choice of basis of 〈s1, s2, s3〉
we can assume that s2∧s3 6= 0 and so from (17) we get (s2∧s3)(s1∧t) = 0, i.e.
s1∧ t = 0. If the kernel is 1-dimensional then we can assume that s1∧ s2 = 0
and that s1∧s3, s2∧s3 form a regular sequence in R(S,KS). Then from (17)
we deduce that there exists k ∈ H0(KS) such that s1 ∧ t = k(s1 ∧ s3) and
s2 ∧ t = k(s2 ∧ s3). Then s1 ∧ (t− ks3) = 0 and s2 ∧ (t− ks3) = 0. Finally if
that kernel is 0-dimensional and hence s1 ∧ s2, s1 ∧ s3, s2 ∧ s3 form a regular
sequence in R(S,KS), (17) implies that there exist k1, k2, k3 ∈ H

0(KS) such
that 





s3 ∧ t = k1(s1 ∧ s3)− k2(s2 ∧ s3)
s2 ∧ t = k1(s1 ∧ s2) + k3(s2 ∧ s3)
s3 ∧ t = k2(s1 ∧ s2) + k3(s1 ∧ s3).

And then, for example, s3 ∧ (t+ k1s1 − k2s2) = 0.

We have shown that a nontrivial linear dependence relation as (16) implies
the existence of s in H0(E ) and u in H0(E (KS)) spanning the cokernel of the
map H0(KS)⊗H0(E )→ H0(E (KS)) such that s ∧ u = 0. The next lemma
draws the contradiction.

Lemma 4.9. Let u ∈ H0(E (KS)) be a section spanning the cokernel of the

map H0(KS)⊗H0(E ) → H0(E (KS)). Then the map H0(E )
∧t
→ H0(2KS) is

injective.

Proof : The map E → OS(2KS) given by wedging sections of E with u may
not be surjective. In any case its image is a torsion free sheaf that we write as
OS(2KS−D)⊗Iδ for some divisor D and for some 0-dimensional subscheme
δ of S. Since E is globally spanned except a possibly at a 0-dimension locus
of S, D is the divisor of zeros u. We have

0→ OC(D −KS)⊗ Iδ′ → E → OS(2KS −D)⊗ Iδ → 0

for some 0-dimensional subscheme δ′ of S. We need to show that the dimen-
sion ofH0(OS(D−KS))⊗Iδ′) is zero.This must hold, otherwise, h0(D−KS) >

0 implies that u ∈ H0(E (KS)⊗OS(−KS)) and hence u ∈ H0(KS)⊗H0(E ),
which not true.
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Corollary 4.10. Let Υ ⊂ P7 = P[z1, z2, mij] be the variety defined in the
previous proposition as the zero locus of the 5 submaximal Pfaffians of




m12 m13 m14 q1
m23 m24 q2

m34 q3
q4




Then, Υ is of pure dimension 4.

Proof : To show that the components of Υ have dimension 6 4 we argue by
contradiction. Suppose that Υ has a component Z of dimension > 5. Then
a general P5 section is an (irreducible) variety Z ′ of dimension > 3 defined
by the 5 submaximal Pfaffians of




m12 m13 m14 q′1
m23 m24 q′2

m34 q′3
q′4




where q′i ∈ S2 〈mij〉 and such that Z ′ is contained in a single quadric hyper-
surface (given by Pf5 of the above display) and contained in 4 cubic hyper-
surfaces whose equations— Pf1, . . . ,Pf4 —are linearly independent modulo
Pf5. Since

Z ′ ⊂ G(2, 4) = (Pf5 = 0) ⊂ P5[mij]

there are only two possibilities. Either Z ′ is 4-dimensional or it is 3-dimen-
sional. In the first instance Z ′ = G(2, 4) and then there would not be any
cubic hypersurfaces through Z ′, which are not multiples of Pf5. We deduce
that we must have dimZ ′ = 5. Since G(2, 4) is a nonsingular 4-dimensional
hypersurface of P5 its Picard group is free of rank 1. This implies that there
exists d > 1 such that Z ′ is the complete intersection of G(2, 4) and an
hypersurface of degree d. Since Z ′ is already contained in a cubic hyper-
surface which does not vanish on G(2, 4), d has to equal 3. But then Z ′ is
a complete intersection of type (2, 3) in P5 and as such is not contained in
four cubic hypersurfaces whose equations are linearly independent modulo
the quadric equation. This, again, is a contradiction. We deduce that Υ has
components of dimension 6 4. However, notice that Υ is also the intersection

of X = P(12)⋉ G(1
2

4
, 3

2
) with four quasihomogeneous forms y1−q1, . . . , y4−q4

and since X is 8-dimensional this implies that the components of Υ have di-
mension > 4.
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Proposition 4.11. Let S be a nonsingular surface of general type with pg = 6
and K2 = 13 whose canonical image is not contained in a pencil of quadrics.
Let ρ : S → X be the map of S into a cone over a weighted Grassmannian of
Proposition 4.7. Then, Γ is a complete intersection in X of 6 quasihomoge-
neous forms; two of degree 1 and 4 of degree 2.

Proof : We know from Proposition 4.7 that Γ ⊂ X is contained in the in-
tersection of two quasihomogeneous forms of degree 1 (L1 and L2) and of
four quasihomogeneous forms of degree 2 (y1 − q1, y2 − q2, y3 − q3, y4 − q4,
with qi ∈ S2 〈z1, z2, mij〉). Consider C[X] the homogeneous ring of X =

P(12)⋉ G(1
2

4
, 3

2) in P(12, 26, 24) and contained in it, the homogeneous ideal of
Γ, which we denote by I. Saying that Γ is the complete intersection of 6
quasihomogeneous forms in X is saying that

I = (L1, L2, y1 − q1, y2 − q2, y3 − q3, y4 − q4).

Consider the ideal J ⊂ C[X] given by

J = (y1 − q1, y2 − q2, y3 − q3, y4 − q4).

Lemma 4.12. The ideal J is the homogeneous ideal of the variety Υ viewed
as a subvariety of X, in other words, Υ is a complete intersection in X.

Proof : By Corollary 4.10 Υ has pure dimension 4, which is to say that J ⊂
C[X] has codimension 4. Since X is arithmetically Cohen-Macaulay, by the
theorem of Unmixedness the radical ideal of each primary ideal in a primary
decomposition of J :

J = P1 ∩ · · · ∩ Pn

is minimal over J . In particular this means that for some integer i, RadPi

is the homogeneous ideal of the component of Υ containing Γ. Since the
canonical image of S is isomorphic to the intersection of Υ with two hyper-
planes, the degree of that component of Υ, is 13. In other words, the degree
of RadPi is 13. Since J is generated by 4 quasihomogeneous forms of degree
2 we deduce that deg J = 24 deg(X). By Proposition 2.3, deg(X) = 13

24 and
accordingly deg J = 13. We have:

deg J = 13 =
∑

degPi >
∑

RadPi > 13.

Hence degPi = deg RadPi (therefore Pi equals RadPi) and n = 1. In other
words, J is prime.
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From this lemma, we deduce that in order to show that I is the homo-
geneous ideal of Γ, it is enough to show that Υ is not contained in any
5-dimensional linear space. This is easily verified since Υ is in complete
intersection in X and we know from Proposition 2.3 that the cohomology
groups H i(OX(j)) on X vanish for all 0 < j < 8.

With the last proposition we have finished the proof of Theorem 1.1.
We can easily derive the following corollary which is a finner description
of R(S,KS) than that given by Buchsbaum–Eisenbud’s theorem.

Corollary 4.13. Let S be a nonsingular (regular) surface of general type
with pg = 6 and K2 = 13 whose canonical image is not contained in a
pencil of quadrics. Then, the canonical ring R(S,KS) is a codimension 3
ring, generated in degree 1 and the canonical ideal IKS

is generated by the 5
submaximal Pfaffians of a skew matrix




m12 m13 m14 q1
m23 m24 q2

m34 q3
q4




where mij ∈ H0(KS), span a subspace of H0(KS) of dimension > 4 and
qi ∈ S2H0(KS) are general quadric forms.
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