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RECOVERING RISK-NEUTRAL PROBABILITY DENSITY
FUNCTIONS FROM OPTIONS PRICES USING CUBIC

SPLINES
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Abstract: We present a new approach to estimate the risk-neutral probability
density function (pdf) of the future prices of an underlying asset from the prices of
options written on the asset. The estimation is carried out in the space of cubic
spline functions, yielding appropriate smoothness. The resulting optimization prob-
lem, used to invert the data and determine the corresponding density function, is
a convex quadratic or semidefinite programming problem, depending on the formu-
lation. Both of these problems can be efficiently solved by numerical optimization
software.

In the quadratic programming formulation the positivity of the risk-neutral pdf
is heuristically handled by posing linear inequality constraints at the spline nodes.
In the other approach, this property of the risk-neutral pdf is rigorously ensured by
using a semidefinite programming characterization of nonnegativity for polynomial
functions.

We tested our approach using data simulated from Black-Scholes option prices
and using market data for options on the S&P 500 Index. The numerical results we
present show the effectiveness of our methodology for estimating the risk-neutral
probability density function.

Keywords: Option Pricing, Risk-Neutral Density Estimation, Cubic Splines, Qua-
dratic Programming, Semidefinite Programming.

1. Introduction
The risk-neutral probability measure is a fundamental concept in arbitrage

pricing theory. By definition, a risk-neutral probability measure (RNPM)
is a measure under which the current price of each security in the economy
is equal to the present value of the discounted expected value of its future
payoffs given a risk-free interest rate. Fundamental theorems of asset pricing
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indicate that RNPMs are guaranteed to exist under an assumption of no
arbitrage.

If a unique RNPM on the space of future states of an economy is given, we
can price any security for which we can determine the future payoffs for each
state in the state space. Therefore, a fundamental problem in asset pricing is
the identification of a risk neutral probability measure. While the dynamics
of an economy and the parameters for its stochastic models are not directly
observable, one can infer some information about these dynamics from the
current prices of the securities in this economy. In particular, one can extract
one or more implied risk-neutral densities of the future price of a security
that are consistent with the prices of options written on that security. When
there are multiple RNPMs consistent with the observed prices, one may try to
choose the “best” one, according to some criterion. We address this problem
in this article using optimization models.

For a stock or index, the set of possible future states can be represented
as an interval or ray, discretized if appropriate or necessary. In most cases
the number of states in this state space is much larger than the number
of observed prices, resulting in a problem with many more variables than
equations. This underdetermined problem has many potential solutions and
we can not obtain an unique or sensible solution without imposing some
additional structure into the risk neutral probability measure we are looking
for.

The type of additional structure imposed has been the differentiating fea-
ture of the existing approaches to the problem of identifying implied RNPMs.
These approaches can be broadly classified as parametric and nonparamet-
ric techniques and are reviewed by Jackwerth [13], see also Section 2 below.
Parametric methods choose a distribution family (or a mixture of distribu-
tions) and then try to identify the parameters for these distributions that are
consistent with the observed prices [3, 16]. In non-parametric techniques, one
achieves more flexibility by allowing general functional forms and structure
is introduced either using prior distributions or smoothness restrictions. Our
approach fits into this last category and we ensure the desired smoothness of
the RNPM using spline functions.

Spline functions are piecewise polynomial functions that assume a pre-
determined value at certain points (knots) and satisfy certain smoothness
properties. Other authors have also used spline fitting techniques in the
context of risk-neutral density estimation, see [1, 8]. In contrast to existing



RECOVERING RISK-NEUTRAL PDFS FROM OPTIONS PRICES 3

techniques, we allow the displacement of spline knots in a superset of the set
of points corresponding to option strikes. The additional set of knots makes
our model flexible and we use this flexibility to optimize the fit of the spline
function to the observed prices. The basic formulation, without requiring
the nonnegativity of the risk-neutral probability density function (pdf), is a
convex quadratic programming (QP) problem.

Two strategies to impose the nonnegativity of the RNPM are presented and
discussed in this paper. The first and the simpler strategy is to require the
estimated pdf to remain nonnegative at the spline nodes. This scheme keeps
the structure of the problem since it brings only linear inequality constraints
to the basic formulation. However, there is no guarantee of nonnegativity
between the spline nodes. Our second approach replaces the basic QP for-
mulation with a semidefinite programming (SDP) formulation but rigorously
ensures the nonnegativity of the estimated pdf in its entire domain. It is
based on an SDP characterization of nonnegative polynomial functions due
to Bertsimas and Popescu [2] and requires additional variables and linear
equality constraints as well as semidefiniteness constraints on some matrix
variables. To our knowledge, this is the first spline function approach to
risk-neutral density estimation with a positivity guarantee.

The rest of this paper is organized as follows: In Section 2, we provide
the definition of RNPMs and briefly discuss some of the existing approaches.
In Section 3, we discuss our spline approximation approach to RNPMs and
develop our basic QP optimization model. The treatment of nonnegativity is
given in Section 4. Section 5 is devoted to a numerical study of our approach
both with simulated and market data. We provide a brief conclusion in
Section 6.

2. Risk-neutral probability measures and existing ap-
proaches

We consider the following one-period economy: There are n securities
whose current prices are given by si0 for i = 1, . . . , n. At the end of the
current period, the economy will be in one of the states from the state space
Ω. If the economy reaches state ω ∈ Ω at the end of the current period, secu-
rity i will have the payoff si1(ω). We assume that we know all si0’s and si1(ω)’s
but do not know the particular terminal state ω, which will be determined
randomly.
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As an example of the set-up explained in the previous paragraph, we con-
sider a particular security (stock, index, etc.) and let the n securities be
financial options written on this stock. Here, Ω denotes the state space for
the terminal price of the underlying stock and si1(ω) denotes the payoff of the
option i when the underlying stock price is ω at termination. For example,
if option i is a European call with strike price Ki to be exercised at the end
of the current period, we would have si1(ω) = (ω −Ki)

+.
Next, we give a definition of RNPMs:

Definition 1. Consider the economy described above. Let r denote the one-
period (risk-free) interest rate. A risk neutral probability measure in the

• discrete case and on the state space Ω = {ω1, ω2, . . . , ωm} is a vector
of positive numbers p1, p2, . . . , pm such that
(1)

∑m
j=1 pj = 1,

(2) si0 = 1
1+r

∑m
j=1 pjs

i
1(ωj), i = 1, . . . , n;

• continuous case and on the state space Ω = (a, b) is a density func-
tion p : Ω→ IR+ such that
(1)

∫ b
a p(ω)dω = 1,

(2) si0 = 1
1+r

∫ b
a p(ω)si1(ω)dω, i = 1, . . . , n.

It is well known that the existence of a risk-neutral probability measure
is strongly related to the absence of arbitrage opportunities as expressed in
the First Fundamental Theorem of Asset Pricing (see [10]). We first give an
informal definition of arbitrage and then state this theorem:

Definition 2. An arbitrage is a trading strategy

• that has a positive initial cash flow and has no risk of a loss later, or
• that requires no initial cash input, has no risk of a loss, and a positive

probability of making profits in the future.

Theorem 1. A risk-neutral probability measure exists if and only if there are
no arbitrage opportunities.

As we argued in the Introduction, since the payoffs of the derivatives de-
pend on the future values of the underlying asset, we can use the prices of
these derivatives to get information about the probability distribution of the
future values of the underlying. We can say that the prices of option con-
tracts contain some information about the market expectations, namely a
possible correspondence between the price of the underlying and its strike.



RECOVERING RISK-NEUTRAL PDFS FROM OPTIONS PRICES 5

There are several approaches, reported in the literature, to derive risk-
neutral probabilities from options prices (see the surveys in [1], [3], [5], [13],
and [19]).

Among the methods developed to estimate the risk-neutral probability
measure we can specify: approximation function methods applied to the
probability density function, stochastic process methods for the underlying
asset, finite difference methods, approximating function methods applied to
the volatility smile, and implied binomial tree methods. In the next para-
graphs we provide a brief description of these methods. As we will see, some
of them assume a specific parametrized form for the density function on the
underlying asset and then try to identify the optimal parameters. Others try
to fit the data by a risk-neutral probability density function (pdf) with unpre-
scribed shape. Parametric methods derive the risk-neutral pdf’s from a set
of statistical distributions and the set of observational data. Non-parametric
methods infer those densities solely from the set of observational data.

Approximating function methods applied to the probability density functions
assume that the risk-neutral density function has a predefined form, such as
a mixture of lognormals (see Bahra [3] and Mellick and Thomas [16]). These
methods use the option pricing formula (see Cox and Ross [9]), which shows
that the price of a call option is the discounted risk-neutral expected value
of the payoffs

C (t, T,K) = e−r(T−t)
∫ ∞
K
p(ω) (ω −K) dω. (1)

For put options we have

P (t, T,K) = e−r(T−t)
∫ K
−∞

p(ω) (K − ω) dω. (2)

Here, C (t, T,K) and P (t, T,K) are the prices of European calls and puts
at time t, respectively, with striking price K and expiring time T , r is the
risk-free interest rate, and p (ω) is the risk-neutral pdf for the value ω of the
underlying asset at time T . After replacing p (ω) by some predefined form,
the risk-neutral pdf can be estimated by minimizing the distance between
the observed option prices and the prices produced by the formulas (1) and
(2).

Rather than assuming a parametric form for the risk-neutral pdf one can
consider a particular stochastic process for the prices of the underlying as-
set. The analytical formula of the risk-neutral pdf is then derived from the
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parameters of the stochastic process. The canonical example is the Black-
Scholes model [4] in which the geometric Brownian motion followed by the
underlying asset price implies a lognormal risk-neutral pdf.

It is shown in [6] that if one could obtain prices of puts and calls, with the
same expiration but different strike prices varying in IR, then one can de-
termine the risk-neutral distribution uniquely, since the second derivative of
the call function (1) with respect to the strike K is related to the probability
density function by:

∂2C (t, T,K)

∂K2
= e−r(T−t)p (K) . (3)

Breeden and Litzenberger [6] applied finite difference methods to approximate
the second derivative in the left hand side, as a way to approximate the risk-
neutral pdf that appears in the right hand side.

Approximating function methods applied to the volatility smile try to fit the
implied volatility curves. This method was developed by Shimko [18]. First,
the author used the Black-Scholes option pricing formula to obtain implied
volatilities from a set of observed option prices. Then a continuous implied
volatility function is fitted. The implied volatility function, given by the
Black-Scholes model, is used to derive a continuous option pricing function.
Finally, using (3) a probability density function is obtained. Shimko [18]
used a polynomial smoothing function for fitting the implied volatility curves.
Brunner and Hafner [7] first fit a curve to the smile between available strikes
to obtain the corresponding portion of the pdf and then extrapolate the tails
of the pdf using mixtures of two log-normal distributions. Other authors like
Campa et al. [8] or Anagnou et al. [1] have used splines. Despite the use of
the Black-Scholes model these methods do not explicitly assume a lognormal
risk-neutral pdf.

Implied binomial tree methods were used by Rubinstein [17]. First a prior
guess of the risk-neutral pdf for all possible states j = 1, ...,m is established
using binomial trees. These prior guesses p`j are set according to a lognormal
distribution. The prices calculated by this process must fit correctly the
observed option prices. Rubinstein [17] achieved this goal by minimizing the
sum of the squared deviations between the probabilities pj that are being
sought, and the priors p`j:

min
m∑

j=1

(
pj − p`j

)2
(least squares fitting).
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Jackwerth and Rubinstein [14] proposed different objective functions, such
as:

m∑

j=1

(
pj − p`j

)2

p`j
(goodness of fit),

m∑

j=1

∣∣∣pj − p`j
∣∣∣ (`1 fitting),

−
m∑

j=1

pj log


pj
p`j


 (maximum entropy),

and
m−1∑

j=2

(pj−1 − 2pj + pj+1)
2 .

It was observed by Jackwerth and Rubinstein [14] that these criteria, as the
number of strikes increases, lead to similar risk-neutral pdf’s independently
of the values of the priors p`j. Note also that the last criterion does not
assume a prior but instead it searches for a discrete approximation of a risk-
neutral pdf by minimizing an approximation to its second-order derivative
with respect to the underlying asset level (see the details in [14]).

3. The basic formulation using splines
As discussed in the Introduction, one of the desired structural properties

of a RNPM estimate is smoothness. The strategy developed in this section
guarantees appropriate smoothness of the risk-neutral pdf by estimating it
using cubic splines. The estimation is carried out by the solution of an
optimization problem where the optimization variables are the parameters of
the spline functions.

3.1. Splines. In this subsection, we recall the definition of spline functions.
Consider a function f : [a, b]→ IR to be estimated by using its values f(xs)
given on a set of points xs, s = 1, . . . , ns + 1. It is assumed that x1 = a and
xns+1 = b.

Definition 3. A spline function, or spline, is a piecewise polynomial approx-
imation S(x) to the function f such that the approximation agrees with f on
each node xs, i.e., S(xs) = f(xs), s = 1, . . . , ns + 1.

The graph of a spline function S contains the data points (xs, f(xs)) (called
knots) and is continuous on [a, b]. A spline on [a, b] is of order q if (i) its first
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q − 1 derivatives exist on each interior knot, (ii) the highest degree for the
polynomials defining the spline function is q.

A cubic (third order) spline uses cubic polynomials of the form fs(x) =
αsx

3 + βsx
2 + γsx + δs to estimate the function in each interval [xs, xs+1]

for s = 1, . . . , ns. A cubic spline can be constructed in such a way that it
has second-order derivatives at each node. For ns + 1 knots (x1, . . . , xns+1)
there are ns intervals and, therefore, 4ns unknown constants to evaluate. To
determine these 4ns constants we use the following conditions:

fs(xs) = f(xs), s = 1, . . . , ns, and fns(xns+1) = f(xns+1), (4)

fs−1(xs) = fs(xs), s = 2, . . . , ns, (5)

f ′s−1(xs) = f ′s(xs), s = 2, . . . , ns, (6)

f ′′s−1(xs) = f ′′s (xs), s = 2, . . . , ns, (7)

f ′′1 (x1) = 0 and f ′′ns(xns+1) = 0. (8)

The last condition leads to a so-called natural spline.

3.2. The Quadratic Programing Formulation. We now formulate an op-
timization problem with the objective of finding a risk-neutral pdf described
by cubic splines for future values of an underlying security that provides a
best fit with the observed option prices on this security.

For the security under consideration, we fix an exercise date, a range [a, b]
for possible terminal values of the price of the underlying security at the
exercise date of the options, and an interest rate r for the period between
now and the exercise date. The other inputs to our optimization problem
are market prices CK of call options and PK for put options on the chosen
underlying security, with strike price K and the chosen expiration date. Let
C and P , respectively, denote the set of strike prices K for which reliable
market prices CK and PK are available. For example, C may denote the
strike prices of call options that were traded on the day that the problem is
formulated.

Next, we consider a super-structure for the spline approximation to the risk-
neutral pdf, meaning that we choose how many knots to use, where to place
the knots and what kind of polynomial (quadratic, cubic, etc.) functions to
use. For example, one may decide to use cubic splines as we do in this paper
and ns+1 equally spaced knots. The parameters of the polynomial functions
that comprise the spline function will be the variables of the optimization
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problem we are formulating. For cubic splines with ns+1 knots, we will have
4ns variables (αs, βs, γs, δs) for s = 1, . . . , ns. Collectively, we will represent
these variables by y ∈ IR4ns. For all y chosen so that the corresponding
polynomial functions fs satisfy the systems (5)-(8) of the previous section, we
will have a particular (natural) spline function defined on the interval [a, b].
Let py(ω) denote this function. Note that we do not impose the constraints
given in (4) because the values of the pdf we are approximating are unknown
and will be the result of the solution of the optimization problem.

By imposing the following additional restrictions we make sure that py is
a probability density function:

py(ω) ≥ 0, ∀ω ∈ [a, b], (9)
∫ b
a
py(ω)dω = 1. (10)

In practice the requirement (10) is easily imposed by including the following
constraint in the optimization problem:

ns∑

s=1

∫ xs+1

xs
fs(ω)dω = 1. (11)

One can easily see that this is a linear constraint in the components (αs, βs,
γs, δs) of the optimization variable y. The treatment of (9) is postponed to
the next section and is ignored until the end of this section.

Next, we define the discounted expected value of the terminal value of each
option using py as the risk-neutral probability density function:

CK(y) =
1

1 + r

∫ b
a
py(ω)(ω −K)+dω, (12)

PK(y) =
1

1 + r

∫ b
a
py(ω)(K − ω)+dω. (13)

If py was the actual risk-neutral probability density function, the quantities
CK(y) and PK(y) would be the fair values of the call and put options with
strikes K. The quantity

(CK − CK(y))2

measures the squared difference between the observed value and discounted
expected value considering py as the risk-neutral pdf. Now consider the
overall residual least squares function for a given y:

E(y) =
∑

K∈C
(CK − CK(y))2 +

∑

K∈P
(PK − PK(y))2. (14)
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The objective now is to choose y such that E(y) is minimized subject
to the constraints already mentioned. The resulting optimization problem
is a convex quadratic programming problem corresponding to the following
formulation:

min
y

E(y) s.t. (5), (6), (7), (8), (11). (15)

3.3. Functions CK(y) and PK(y). We now look at the structure of prob-
lem (15) in more detail. In particular, we evaluate the function CK(y). Con-
sider a call option with strike K such that x` ≤ K < x`+1. Recall that
y denotes a collection of variables (αs, βs, γs, δs) for s = 1, . . . , ns and that
x1 = a, x2, . . . , xns, xns+1 = b represent the locations of the knots. The for-
mula for CK(y) can be derived as follows:

(1 + r)CK(y)

=
∫ b
a
py(ω)(ω −K)+dω

=
ns∑

s=`

∫ xs+1

xs
py(ω)(ω −K)+dω

=
∫ x`+1

K
py(ω)(ω −K)dω +

ns∑

s=`+1

∫ xs+1

xs
py(ω)(ω −K)dω

=
∫ x`+1

K

(
α`ω

3 + β`ω
2 + γ`ω + δ`

)
(ω −K)dω

+
ns∑

s=`+1

∫ xs+1

xs
(αsω

3 + βsω
2 + γsω + δs)(ω −K)dω.

One can easily see that this expression for CK(y) is linear in the components
(αs, βs, γs, δs) of the optimization variable y. A similar formula can be derived
for PK(y). Another relevant aspect that should be pointed out is that the
formula for CK(y) will involve coefficients of the type x5

s which can, and
in fact does, make the Hessian matrix of the QP problem (15) severely ill-
conditioned.

4. Guaranteeing nonnegativity
The simplest way to deal with the requirement of nonnegativity of the

risk-neutral pdf is to weaken condition (9), requiring the cubic spline ap-
proximation to be nonnegative only at the knots:

fs(xs) ≥ 0, s = 1, . . . , ns and fns(xns+1) ≥ 0. (16)
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Then, the basic QP formulation changes to:

min
y

E(y) s.t. (5), (6), (7), (8), (11), (16). (17)

One can easily see that problem (17) is still a convex quadratic programming
problem, since (16) are linear inequalities in the optimization variables. The
drawback of this strategy is the lack of guarantee of nonnegativity of the
spline functions between the spline knots. This heuristic strategy proved
sufficient to obtain nonnegative pdf estimates in most of our experiments
some of which are reported in Section 5. However, in some instances pdf
estimates assumed negative values between knots. Since our aim is to esti-
mate a probability density function, estimates with negative values are not
acceptable.

In what follows, we develop an alternative optimization model where the
nonnegativity of the resulting risk-neutral pdf estimate is rigorously guaran-
teed. The cost we must pay for this guarantee is an increase in the complexity
of the optimization problem. Indeed, the new model involves semidefiniteness
restrictions on some matrices related to new optimization variables. While
the resulting problem is still a convex optimization problem and can be solved
with standard conic and semidefinite optimization software (see, e.g., [20]),
it is also more expensive to solve than a convex QP.

The model we consider is based on necessary and sufficient conditions for
ensuring the nonnegativity of a single variable polynomial in intervals, as
well as on rays and on the whole real line. This characterization is due
to Bertsimas and Popescu [2] and is stated in the next proposition.

Proposition 1 (Proposition 1 (d),[2]). The polynomial g(x) =
∑k
r=0 yrx

r

satisfies g(x) ≥ 0 for all x ∈ [a, b] if and only if there exists a positive
semidefinite matrix X = [xij]i,j=0,...,k such that

∑

i,j:i+j=2`−1

xij = 0, ` = 1, . . . , k, (18)

∑

i,j:i+j=2`

xij =
∑̀

m=0

k+m−`∑

r=m
yr


 r
m




 k − r
`−m


 ar−mbm, (19)

` = 0, . . . , k, (20)

X � 0. (21)
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In the statement of the proposition above, the notation


 r
m


 stands for

r!
m!(r−m)! and X � 0 indicates that the matrix X is symmetric and positive

semidefinite. For the cubic polynomial fs(x) = αsx
3 + βsx

2 + γsx + δs we
have the following corollary:

Corollary 1. The polynomial fs(x) = αsx
3+βsx

2+γsx+δs satisfies fs(x) ≥ 0
for all x ∈ [xs, xs+1] if and only if there exists a 4×4 matrix Xs = [xsij]i,j=0,...,3

such that

xsij = 0, if i+ j is 1 or 5,
xs03 + xs12 + xs21 + xs30 = 0,

xs00 = αsx
3
s + βsx

2
s + γsxs + δs,

xs02 + xs11 + xs20 = 3αsx
2
sxs+1 + βs(2xsxs+1 + x2

s)
+ γs(xs+1 + 2xs) + 3δs,

xs13 + xs22 + xs31 = 3αsxsx
2
s+1 + βs(2xsxs+1 + x2

s+1)
+ γs(xs + 2xs+1) + 3δs,

xs33 = αsx
3
s+1 + βsx

2
s+1 + γsxs+1 + δs,

Xs � 0.

(22)

Observe that the positive semidefiniteness of the matrix X s implies that
the first diagonal entry xs00 is nonnegative, which corresponds to our earlier
requirement fs(xs) ≥ 0. In light of Corollary 1, we see that introducing the
additional variables Xs and the constraints (22), for s = 1, . . . , ns, into the
earlier quadratic programming problem (15), we obtain a new optimization
problem which necessarily leads to a risk-neutral pdf that is nonnegative in
its entire domain. The new formulation has the following form:

min
y,X1,...,Xns

E(y) s.t. (5), (6), (7), (8), (11), [(22), s= 1, . . . , ns]. (23)

All constraints in (23), with the exception of the positive semidefinite-
ness constraints Xs � 0, s = 1, . . . , ns, are linear in the optimization vari-
ables (αs, βs, γs, δs) and Xs, s = 1, . . . , ns. The positive semidefiniteness
constraints are convex constraints and thus the resulting problem can be re-
formulated as a (convex) semidefinite programming problem with a quadratic
objective function.
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For appropriate choices of the vectors c, fi, g
s
k, and matrices Q and Hs

k, we
can rewrite problem (23) in the following equivalent form:

miny,X1,...,Xns c>y + 1
2
y>Qy

s.t. f>i y = bi, i = 1, . . . , 3ns,

Hs
k •Xs = 0, k = 1, 2, s = 1, . . . , ns,

(gsk)
>y +Hs

k •Xs = 0, k = 3, 4, 5, 6, s = 1, . . . , ns,

Xs � 0, s = 1, . . . , ns,

(24)

where • denotes the trace matrix inner product.
We should note that standard semidefinite optimization software such as

SDPT3 [20] can solve only problems with linear objective functions. Since
the objective function of (24) is quadratic in y a reformulation is necessary
to solve this problem using SDPT3 or other SDP solvers. We replace the
objective function with min t where t is a new artificial variable and impose
the constraint t ≥ c>y + 1

2y
>Qy. This new constraint can be expressed as

a second-order cone constraint after a simple change of variables; see, e.g.,
[15]. This final formulation is a standard form conic optimization problem
— a class of problems that contain semidefinite programming and second-
order cone programming as special classes. Since SDPT3 can solve standard
form conic optimization problems we used this formulation in our numerical
experiments.

5. Numerical experiments
In this section, we report some numerical experiments obtained with the

methodologies introduced in this paper to estimate the risk-neutral pdf,
namely the approaches that led to the formulation of problems (17) and (23).
We have applied the active set method provided by Matlab to solve the con-
vex QP problem (17) and the Matlab-based interior-point code SDPT3 [20]
to solve the SDP problem (23) (more precisely its reformulation described
at the end of the last section). The performance of these two approaches is
illustrated with two different data sets, one generated from a Black-Scholes
model and the other extracted from the S&P 500 Index.

In the problem formulations, we chose the number of knots not much bigger
than the number of strikes. The first knot a is smaller than the first strike
and the last knot b is bigger than the last strike. This assignment guarantees
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that the range of the possible terminal values for the underlying asset at
maturity includes all strikes.

Numerically, we solved scaled versions of both the QP problem (17) and
the SDP problem (24). The need for scaling the data of these problems re-
sults from the fact that the Hessian matrix in (15), which appears in both
problems, is highly ill-conditioned, as we have already pointed out in Sec-
tion 3.3. Since the magnitude of ω plays a relevant role in the size of the
entries of this Hessian matrix, we used as our reference scaling factor the
average value of the components of the vector of the knots. Let us call this
average value xavg. Then each knot xs, s = 1, . . . , ns + 1, is scaled by xavg
and replaced by x′s = xs/xavg. Such a scaling amounts at the end to scale
the variables αs, βs, γs, δs corresponding to the spline coefficients by, respec-
tively, a, b, c, d, whose values depend on xavg as well as on the expressions
for the integrations given in Section 3.3. The problem is then solved in the
scaled variables α′s, β

′
s, γ
′
s, δ
′
s, s = 1, . . . , ns. We also multiply each term of

the objective function in (15) by 1/x2
avg. The unscaled solution is recovered

by the formulas (αs, βs, γs, δs) = (aα′s, bβ
′
s, cγ

′
s, dδ

′
s), s = 1, . . . , ns.

5.1. Black-Scholes data. The first example corresponds to Black-Scholes
options data generated using the function blsprice provided by the Finan-
cial Toolbox of Matlab. This function computes the value of the call or put
option in agreement with the Black-Scholes formula. To generate the data
we must supply the current value of the underlying asset, the exercise price,
the risk-free interest rate, the time to maturity of the option, the volatility,
and the dividend rate.

The call and put option prices were generated considering 50 as the current
price for the underlying asset, 0.1 as the risk-free interest rate, a time to
maturity of 0.5, a volatility of 0.2, and no dividend rate. We considered
129 call options and 129 put options with strikes varying from 1 to 129
with increment 1. The number of knots was set to 131 and the knots were
equally spaced between 0.01 and 130. The risk-neutral pdf corresponding to
the prices generated from this data is known to be the following lognormal
density function

p(ω) =
1

ωσ
√

2π (T − t)
e
−(ln(ω/S0)−(r−σ2/2)(T−t))

2

2σ2(T−t) ,



RECOVERING RISK-NEUTRAL PDFS FROM OPTIONS PRICES 15

where r = 0.1, σ = 0.2, T − t = 0.5, and S0 = 50. This function is depicted
in solid lines in all the four plots of Figure 1.

We solved the scaled instances of problems (17) and (24) defined by the
Black-Scholes data and scaling reported above. The plots of the recovered
probability density functions are depicted in Figure 1 (left) for both problems.

In our formulations, the Hessian matrix is known to be positive semi-
definite. However, it is also highly rank-deficient and, due to round-off errors,
it exhibits small negative eigenvalues, around −10−18. These negative eigen-
values proved to be troublesome for Matlab’s active set QP. The scaling
reduced significantly the ill-conditioning of this matrix, allowing a relatively
accurate eigenvalue computation. We have modified the Hessian matrix, by
adding a multiple ξ of the identity to the scaled Hessian matrix, using as
coefficient ξ = (3/5)|λmin|104. Under this modification, the modified scaled
Hessian becomes numerically positive definite. This choice for ξ approxi-
mately provided the best fit to the lognormal shape.

In both QP and SDP cases, the recovered pdf obtained with Hessian modi-
fication approximately exhibited the desired lognormality property. It can be
seen from both plots that the pdf computed is slightly less positively skewed
than the lognormal one. We also observe at the ends that the recovered pdf’s
started deviating from the lognormal flatness. Finally, we point out that the
expected prices of the call options computed using the recovered risk-neutral
pdf adjusted relatively well to the Black-Scholes prices (see right plots of
Figure 1).

5.2. S&P 500 data. The other data was obtained from publicly available
market data. We collected information related to European call and put
options on S&P 500 Index traded in the Chicago Board of Options Exchange
(CBOE) on April 29, 2003 with maturity on May 17 (data set 1), on March
24, 2004 with maturity on April 17 (data set 2), and on March 24, 2004 with
maturity on June 17 (data set 3). We chose this market because it is one of
the most dynamic and liquid options markets in the world.

The interest rate was obtained from the Federal Reserve Bank of New York.
We considered a Treasury Bill with time to expiration as closest as possible
to the time of expiration of the options.

5.2.1. Preprocessing the data. As indicated in Section 2, a risk-neutral prob-
ability measure exists if and only if there are no arbitrage opportunities. It is
possible, however, to observe arbitrage opportunities in the prices of illiquid
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Figure 1. Recovered probability density functions from data
generated by a Black-Scholes model using QP and SDP ap-
proaches (left plots). Fitted recovered expected prices for both
approaches (right plots).

derivative securities. These prices do not reflect true arbitrage opportuni-
ties — once these securities start trading, their prices will be corrected and
arbitrage will not be realized.

Still, in order to have meaningful solutions for the optimization problems
that we formulated in the previous sections, it is necessary to use prices in
these optimization models which contain no arbitrage opportunities. Thus,
before solving these problems we need to eliminate prices with arbitrage
violations such as absence of monotonicity. The following theorem establishes
necessary and sufficient conditions for the absence of arbitrage in the prices
of European call options with concurrent expiration dates:

Theorem 2 (Herzel [12]). Let K1 < K2 < · · · < Kn denote the strike prices
of European call options written on the same underlying security with the
same maturity, and let Ci denote the current prices of these options. These
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securities do not contain any arbitrage opportunities if and only if the prices
Ci satisfy the following conditions:

(1) Ci > 0, i = 1, . . . , n.
(2) Ci > Ci+1, i = 1, . . . , n− 1.
(3) The piecewise linear function C(K) with break-points at Ki’s and sat-

isfying C(Ki) = Ci, i = 1, . . . , n, is strictly convex in [K1, Kn].

Theorem 2 provides us with a simple mechanism to eliminate “artificial”
arbitrage opportunities from the prices we use. In our numerical experiments,
after gathering price data for call and put options from the S&P 500 Index,
we first eliminated options whose prices were outside the ask-bid interval, and
then we generated call option prices from each one of the put option prices
using the put-call parity. In cases where there was already a call option with
a matching strike price, in the event that the price of the traded call option
did not coincide with the price obtained from the put option price using put-
call parity, we used the price corresponding to the option with the higher
trading volume. After obtaining a fairly large set of call option prices in this
manner, we tested for monotonicity and strict convexity in these call prices
as indicated by Theorem 2. After the prices that violated these conditions
had been removed, we formulated and solved the optimization problems as
outlined in Section 4.

In order to guarantee the quality of the data we collected another piece of
information related to the market options: the trading volume (see [11]). It
is known that end-of-day settlement prices can contain options that are not
very liquid and these prices may not reflect the true market prices. Inaccurate
prices are usually related to less traded options. In contrast, options with
higher volume represent better the “market sentiment” and the investors
expectations. We experimented to incorporate the trading volume in our
problem formulation by modifying the objective function of problems (17)
and (24) in the following way:

∑

K∈C
θK[(CK − CK(y))]2 +

∑

K∈P
µK [(PK − PK(y))]2.

Here θK is the ratio between the trading volume for the option CK and the
trading volume for all options:

θK =
trading volume for CK

trading volume for all call options
.
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The weight µK is defined similarly for put options. Note that options with
zero volume have a weight equal to zero. However, we observed that the
effect of incorporating this type of weighting after eliminating arbitrage was
relatively minor.

5.2.2. Results. The results are presented for the three data sets mentioned
before, in a manner similar to the Black-Scholes case. In the first data set
(Figure 2) the original number of calls and puts was 40 each. After eliminat-
ing arbitrage opportunities we reduced the problem dimension to 24 calls for
which we considered 36 knots. In the second data set (Figure 3) the original
number of calls and puts was 38 each. After eliminating arbitrage opportu-
nities we reduced the problem dimension to 24 calls for which we considered
32 knots. Finally, in the third data set (Figure 4) the original number of calls
and puts was 29 each. After eliminating arbitrage opportunities we reduced
the problem dimension to 14 calls for which we considered 23 knots.

The upper plots of Figures 2, 3, and 4 correspond to the QP approach
whereas the lower ones were obtained by SDP. The Hessian modification has
been done by adding ξI to the scaled Hessian matrix, choosing the reference
value ξ = (3/5)|λmin|104 adjusted for the Black-Scholes data.

The recovered probability density functions are slightly negatively skewed,
as opposed to what happened in the Black-Scholes case. This behavior is
expected according to some authors and to what is known about the behavior
of the risk-neutral pdf after the crash of 1987 (see [14]).

We have observed that the pdf estimated using the QP model and the
Hessian modification assumes small negative values at the higher tail of the
distribution, roughly between 1050 and 1100 (Figure 2), between 890 and 925
(Figure 3), and between 1380 and 1480 (Figure 4). As prescribed, the semi-
definite optimization model corrects this behavior and obtains a nonnegative
pdf estimate.

Finally, we point out that the expected prices of the call options computed
using the recovered risk-neutral pdf adjusted relatively well to the S&P 500
prices (see right plots of Figures 2, 3, and 4).

6. Concluding remarks
We have developed and tested a new way of recovering the risk-neutral

probability density function (pdf) of an underlying asset from its correspond-
ing option prices. Our approach is nonparametric and uses cubic splines.
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Figure 2. Recovered probability density functions from S&P
500 Index data using QP and SDP approaches (left plots). Fitted
recovered expected prices for both approaches (right plots). Data
set 1.

The core inversion problem is a quadratic programming (QP) problem with
a convex objective function and linear equality constraints.

To guarantee the nonnegativity of the inverted risk-neutral pdf we followed
two alternatives. In the first one we kept the QP structure of the core prob-
lem, adding linear inequalities that reflect only the nonnegativity of this pdf
at the spline nodes. The second one extends the nonnegativity requirement to
the entire domain of the recovered pdf by imposing appropriate semidefinite
constraints. In the examples tested, we observed that the QP approach is
less sensitive to scaling than the semidefinite programming (SDP) approach.
While the simpler QP approach is generally sufficient to recover an appropri-
ate risk-neutral pdf both with simulated and market data, there are instances
where the solution of the more difficult SDP model is necessary to obtain a
nonnegative pdf estimate.
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Figure 3. Recovered probability density functions from S&P
500 Index data using QP and SDP approaches (left plots). Fitted
recovered expected prices for both approaches (right plots). Data
set 2.

We plan to investigate the numerical estimation of the volatility based on
the knowledge of the previously estimated risk-neutral pdf. Another topic of
future research is to consider uncertainty in the data and to study the robust
solution of the corresponding uncertain QP and SDP problems.
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