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Universidade de Coimbra
Preprint Number 04–25

THREE OBSERVATIONS ON THE DETERMINANTAL
RANGE

N. BEBIANO AND G. SOARES

Abstract: Let A,C ∈ Mn, the algebra of n × n complex matrices. The set of
complex numbers

4C(A) = {det (A− UCU∗) : U∗U = In}
is the C-determinantal range of A. In this note, it is proved that 4C(A) is an
elliptical disc for A,C ∈ M2. A necessary and sufficient condition for 4C(A) to
be a line segment is given when A and C are normal matrices with pairwise dis-
tinct eigenvalues. The linear operators L that satisfy the linear preserver property
4C(A) = 4C(L(A)), for all A,C ∈ Mn, are characterized.

1. Introduction
Let Mn be the algebra of n× n complex matrices, and let Un be the group

of n × n unitary matrices. Let Hn denote the real space of n × n Hermit-
ian matrices. For A,C ∈ Mn, with eigenvalues α1, . . . , αn and γ1, . . . , γn,
respectively, the C-determinantal range of A is the set of the complex plane
denoted and defined by

4C(A) = {det (A− UCU ∗) : U ∈ Un}. (1)

This set is compact and connected, but it may not be simply connected [1].
The C-determinantal range of A can be viewed as a variation of the concept

of C-numerical range of A, introduced in [10], and defined by

WC(A) = {Tr (CU ∗AU) : U ∈ Un}.
In fact, both sets are ranges of continuous functions defined on the unitary
similarity orbit of A ∈ Mn, O(A) = {U ∗AU : U ∈ Un} and a certain
parallelism exists between the properties of these notions [1, 2]. Nevertheless,
it seems much more complicated to deal with 4C(A) than with WC(A).

It can be easily seen that the n! points (not necessarily distinct)

zσ =
n∏

i=1

(αi − γσ(i)), σ ∈ Sn,
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Sn the symmetric group of degree n, belong to 4C(A). In the sequel, these
points will be called σ-points.

It is easy to verify that 4C(A) is unitarily invariant, that is,

4C(A) = 4U∗CU(V ∗AV ), for any U, V ∈ Un.

Let A,C ∈ Mn be normal matrices. Since A and C are diagonalizable under
unitary similarity transformations, and 4C(A) is unitarily invariant, we may
consider A = diag (α1, . . . , αn) and C = diag (γ1, . . . , γn) in (1). Marcus [13]
and G. N. de Oliveira [18] conjectured that

4C(A) ⊆ Co {
n∏

i=1

(αi − γσ(i)) : σ ∈ Sn}, (2)

where Co {·} is the convex hull of {·}. This conjecture was proved in certain
special cases (see [3, 5, 8, 11, 15, 16]), but even the case n = 4 remains
open. While it seems difficult to prove (or disprove) (2), to give the complete
characterization of 4C(A) it is much more difficult. Indeed, even the state-
ment of a necessary and sufficient condition for 4C(A) to be a line segment is
not trivial. Sufficient conditions for 4C(A) to be a line segment are known.
Fiedler [9] proved that if A = diag (α1, . . . , αn), C = diag (γ1, . . . , γn) and all
the αi and γj belong to the same straight line through the origin, that is,
arg (α1) = · · · = arg (αn) = arg (γ1) = · · · = arg (γn)(modπ), then 4C(A)
is a line segment through the origin and the equality in (2) holds. In [3]
it was proved that if A = diag (α1, . . . , αn), C = diag (γ1, . . . , γn) and all
the αi and γj belong to the same circle with center at the origin, that is,
|α1| = · · · = |αn| = |γ1| = · · · = |γn|, then 4C(A) is a line segment through
the origin and the equality in (2) holds.

One of the motivations of this note is the exploitation of the parallelism
between the properties of 4C(A) and WC(A), as well as to emphasize the
analogies of the proof techniques.

The note is organized as follows. In section 2, we prove that 4C(A) is an
elliptical disc when A,C ∈ M2. In section 3, a necessary and sufficient con-
dition for 4C(A) to be a line segment is given, when A = diag (α1, . . . , αn),
C = diag (γ1, . . . , γn) and α1, . . . , αn and γ1, . . . , γn are pairwise distinct. We
conjecture that this restriction on the eigenvalues may be relaxed and that
if 4C(A) is a line segment, then the line containing it passes through the
origin.
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In section 4, linear operators L on Mn (and on Hn) that satisfy the linear
preserver property 4C(A) = 4C(L(A)), for all A,C ∈ Mn (for all A ∈ Hn

and C ∈ Mn) are characterized.

2. The elliptical range theorem for 4C(A)
For C = diag (γ1, γ2) and A ∈ M2, it was proved [2] that 4c(A) is an

elliptical disc with foci (α1 − γ1)(α2 − γ2) and (α1 − γ2)(α2 − γ1), and with
the length of the minor axis equal to |γ1 − γ2|

√
Tr AA∗ − |α1|2 − |α2|2. In

this section, we generalize this result for A,C ∈ M2. The result is stated
in Theorem 2.1, which treats the general case. In fact, following analogous
steps to those used in Section 2 of [12] we can prove for A,C ∈ M2, that
4C(A) = 4C1(A1), A1 and C1 being matrices of the form (3).

Theorem 2.1. Let

A = ξ1

[
α a
b α

]
and C = ξ2

[
γ c
d γ

]
, (3)

where α, γ, ξ1, ξ2 ∈ C with |ξ1| = |ξ2| = 1, a ≥ b ≥ 0 and c ≥ d ≥ 0. Let
α1, α2 and γ1, γ2 be the eigenvalues of A and C, respectively. Then

4C(A) = (ξ1α− ξ2γ)2 − (ξ2
1ab + ξ2

2dc) +

+ ξ1ξ2 {r[(ac + bd) cos t + i(ac− bd) sin t] : r ∈ [0, 1], t ∈ [0, 2π)} ,

that is, 4C(A) is an elliptical disc with (α1−γ1)(α2−γ2) and (α1−γ2)(α2−γ1)
as foci and major and minor axis

{
(ξ1α− ξ2γ)2 − (ξ2

1ab + ξ2
2dc) + ξ1ξ2s(ac + bd) : s ∈ [−1, 1]

}

and
{

(ξ1α− ξ2γ)2 − (ξ2
1ab + ξ2

2dc) + iξ1ξ2s(ac− bd) : s ∈ [−1, 1]
}

,

respectively.

Lemma 2.1. (Nakazato [17], Li [12]) Let A,C be matrices of the form (3)
with ξ = ξ2 = 1. Then

WC(A) = {2αγ + r[(ac + bd) cos t + i(ac− bd) sin t] : r ∈ [0, 1], t ∈ [0, 2π)} ,

which is the elliptical disc with {2αγ + s(ac + bd) : s ∈ [−1, 1]} as the major
axis and with {2αγ + is(ac− bd) : s ∈ [−1, 1]} as the minor axis.
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We now prove Theorem 2.1.
Proof. The following expansion can be easily obtained

det (A− U∗CU) = det A + det C − Tr (ZTAZU ∗CU), (4)

where

Z =

[
0 −1
1 0

]
.

We can assume A,C ∈ M2 of the form

A = ξ1

[
α −b
−a α

]
and C = ξ2

[
γ c
d γ

]
, (5)

where α, γ, ξ1, ξ2 ∈ C are such that |ξ1| = |ξ2| = 1, −a ≤ −b ≤ 0 and c ≥
d ≥ 0. Having in mind (4), and applying Lemma 2.1 to the matrices A and
C defined in (5), we can conclude that 4C(A) is the elliptical disc centered
at (ξ1α− ξ2γ)2− (ξ2

1ab + dcξ2
2), with 2(ac + bd) and 2(ac− bd) as the lengths

of its major and minor axis, respectively. Hence, the semi-focal distance is
given by 2

√
ab
√

cd. The direction of the major axis is u = 2ξ1ξ2(ac + bd).
Since |ξ1| = |ξ2| = 1, we have |u| = 2(ac + bd). The foci of the elliptical disc
are

fi = (ξ1α− ξ2γ)2 − (ξ2
1ab + dcξ2

2)± 2
√

ab
√

cd
u

|u| , i = 1, 2.

We observe that the eigenvalues of A and C are αi = ξ1(α ±
√

ab) and
γi = ξ2(γ ±

√
cd), i = 1, 2, respectively. By straightforward computations,

we have that f1 = (α1− γ1)(α2− γ2) and f2 = (α1− γ2)(α2− γ1), and so the
theorem follows. ¥
Remark. Li [12] proved that WC(A) is an elliptical disc. Following analo-
gous steps, an alternative proof for Theorem 2.1 can be obtained.
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3. A necessary and sufficient condition for 4c(A) to be
a line segment

In order to prove the main result of this section, we recall the definition of
cross ratio of z1, z2, z3, z4 ∈ C∞. Define S : C∞ −→ C∞ by

S(z) =
(z − z3)(z2 − z4)
(z − z4)(z2 − z3)

if z2, z3, z4 ∈ C;

S(z) =
z − z3

z − z4
if z2 = ∞;

S(z) =
z2 − z4

z − z4
if z3 = ∞;

S(z) =
z − z3

z2 − z3
if z4 = ∞.

We have S(z2) = 1, S(z3) = 0 and S(z4) = ∞, and S is the unique Möbius
transformation which satisfies the previous conditions. The cross ratio of
z1, z2, z3, z4 ∈ C∞ denoted by (z1, z2, z3, z4), is the image of z1 under the
unique Möbius transformation which takes z2 to 1, z3 to 0, and z4 to ∞.

The following lemma will be used in the proof of Lemma 3.2. For a proof,
see e.g [7].

Lemma 3.1. Let z1, z2, z3 and z4 be four distinct points in C∞. Then (z1, z2, z3, z4)
is a real number if and only if z1, z2, z3 and z4 belong to the same straight
line or to the same circle.

We give a solution to Problem 10484 in [6]:

Lemma 3.2. Let n ≥ 2, and let α = (α1, . . . , αn) and γ = (γ1, . . . , γn) be
complex row vectors such that α1, . . . , αn and γ1, . . . , γn are pairwise distinct.
Consider the n! complex numbers (counting multiplicities)

zσ =
n∏

i=1

(αi − γσ(i)), σ ∈ Sn.

For P (α, γ) = Co {zσ : σ ∈ Sn} , P (α, γ) is a line segment of a line passing
through the origin if and only if all the αi and γj lie on a common circle or
straight line.

Proof. (⇒) For αi, αj, γi, γj ∈ C∞, i, j = 1, . . . , n, by the definition of cross
ratio, we have

(αi, αj, γi, γj) = S(αi),
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where S is the unique Möbius transformation such that S(αj) = 1, S(γi) = 0
and S(γj) = ∞. By definition of S,

S(αi) =
(αi − γi)(αj − γj)
(αi − γj)(αj − γi)

.

For σ = (id) and τ = (ij), we clearly have

(αi − γi)(αj − γj)
(αi − γj)(αj − γi)

=
zσ

zτ
,

and so

S(αi) =
zσ

zτ
=
|zσ|eiarg (zσ)

|zτ |eiarg (zτ )
.

Since zσ and zτ belong to P (α, γ) and P (α, γ) is a line segment of a line
passing through the origin, then arg (zσ) = arg (zτ)(modπ). Thus,

S(αi) =
|zσ|
|zτ | or S(αi) = −|zσ|

|zτ | .

Since S(αi) is a real number, we conclude that (αi, αj, γi, γj) is a real number
for i, j = 1, . . . , n. By Lemma 3.1, αi, αj, γi and γj belong to the same circle
or to the same straight line.

(⇐) Suppose that all the αi and γj, i, j = 1, . . . , n, belong to the same
circle or to the same straight line. By Lemma 3.1, there is a unique Möbius
transformation S such that S(αj) = 1, S(γσ(i)) = 0 and S(γσ(j)) = ∞ and

S(αi) =
(αi − γσ(i))(αj − γσ(j))

(αi − γσ(j))(αj − γσ(i))

is a real number, for i = 1, . . . , n and σ ∈ Sn. Consider the transposition
τ ∈ Sn such that τ(k) = σ(k) for k 6= i, j, τ(i) = σ(j) and τ(j) = σ(i). Then

S(αi) =
zσ

zτ
=
|zσ|eiarg zσ

|zτ |eiarg zτ
.

By the hypothesis, S(αi) is a real number for i = 1, . . . , n, and so arg (zσ) =
arg (zτ)(modπ) for all σ, τ ∈ Sn. As P (α, γ) = Co {zσ : σ ∈ Sn} is a compact
and connected subset of R (or of eiθR, θ real), it follows that P (α, γ) is a line
segment. ¥
Theorem 3.1. Let A and C be n × n normal matrices with eigenvalues
α1, . . . , αn and γ1, . . . , γn, respectively, such that α1, . . . , αn, γ1, . . . , γn, are
pairwise distinct. The set 4C(A) is a line segment of a line passing through
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the origin if and only if all the αi and γj lie on a common circle or straight
line.

Proof. (⇒) Let 4C(A) be a line segment of a line through the origin. The
endpoints of this segment are corners (z belonging to the boundary of 4C(A)
is a corner, if in the neighborhood of z, 4C(A) is contained in an angle with
vertex at z and measuring less than π.) It is known [2] and [8] that if z is a
corner, then z = zσ for some σ ∈ Sn. Thus, 4C(A) = Co {zσ : σ ∈ Sn} =
P (α, γ) is a line segment of a line through the origin, and by Lemma 3.2 all
the αi and γj lie on a common circle or straight line.

(⇐) If all the αi and γj lie on a common circle or straight line, by Lemma
3.2 P (α, γ) is a line segment of a line passing through the origin. In these
cases, (2)holds with equality [3, 9]. ¥
Observation. We conjecture that the restriction on the eigenvalues may
be relaxed and that if 4C(A) is a line segment, then the line containing it
passes through the origin. The sufficient condition is trivial. This relaxation
is still valid for the necessary condition in the case n ≥ 2.

4. A linear preserver property
We investigate the structure of those linear operators L : Mn −→ Mn that

satisfy the relation 4C(A) = 4C(L(A)), for all A, C ∈ Mn. We start with
some useful lemmas.

Lemma 4.1. Let A ∈ Mn. The following conditions are equivalent:

(i) For any C ∈ Mn, 4C(A) is a singleton.
(ii) A is a scalar matrix.

Proof. The proof (ii) ⇒ (i) is trivial. We prove the direct implication.
Let A ∈ Mn. Since 4C(A) reduces to a singleton for any C ∈ Mn, there

exists a matrix C ∈ Mn such that the eigenvalues of A and C are pairwise
distinct and the corresponding determinantal range is a singleton. Thus, all
the σ-points, σ ∈ Sn, coincide with the singleton 4C(A), and so

αi − γi

αj − γi
=

αi − γj

αj − γj
=

γi − γj

γi − γj
= 1, i, j = 1, . . . , n.

We conclude that αi = αj, for all i, j = 1, . . . , n.
Because the set 4C(A) is unitarily invariant, we may use Schur’s Lemma

and consider A in upper triangular form. Suppose that A = (ajh) is not
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a normal matrix, and so there exists ajh 6= 0, with j < h. By the hy-
pothesis, 4C(A) is a singleton for any C. Hence, there exists a matrix C
such that γσ(j) 6= γσ(h), σ ∈ Sn, and for which 4C(A) is a singleton. Let
V = PσP(1j)◦(2h) ∈ Mn, where Pσ = (δjσ(h)) and P(1j)◦(2h) is the permutation
matrix associated with τ = (1j) ◦ (2h) ∈ Sn. It is easy to see that

{det (A− V (W2 ⊕ In−2)V
TCV (W2 ⊕ In−2)

∗V T : W2 ∈ U2} ⊂ 4C(A).

This region is an elliptical disc with foci zσ and zσ◦(jh), and with the length
of the minor axis |ajh||γσ(j) − γσ(h)|. Since 4C(A) is a singleton, this is a
contradiction. It follows that A is a normal matrix, namely, a scalar matrix.
¥

Lemma 4.2. Let ξ ∈ C. The equality det (In − C) = det (ξIn − C) is valid
for all C ∈ Mn if and only if ξ = 1.

Proof. The part (⇐) is clear.
Suppose that ξ 6= 1. Taking C = In we obtain det (In−C) = 0. We also have

det (ξIn −C) = det ((ξ − 1)In) = (ξ − 1)n. As ξ 6= 1, then det (ξIn −C) 6= 0,
a contradiction. ¥
Lemma 4.3. (Schneider [19]) A linear operator on Hn mapping the cone of
positive semi-definite matrices onto itself must be of the form A 7→ U ∗AU or
A 7→ U ∗ATU, for some invertible U ∈ Mn.

Theorem 4.1. A linear operator L : Hn −→ Hn satisfies

4C(A) = 4C(L(A)), for all A ∈ Hn and for all C ∈ Mn,

if and only if there exists a unitary matrix U such that L is of the form

A 7→ UAU ∗ or A 7→ UATU ∗.

Proof. The implication (⇐) is clear.
We prove the converse. First of all, if L(A) = 0, then A is a scalar matrix.

In fact, this is a consequence of Lemma 4.1, since 4C(A) = 4C(L(A)) is
a singleton for any C ∈ Mn. Suppose A 6= 0. Then there exists a non-
singular matrix C such that 4C(A) = 0. But, if C is non-singular, then
4C(0) = 4C(L(A)) 6= 0, which contradicts 4C(A) = 4C(L(A)) = 0. Hence
A = 0 and so L is non-singular.

Next, note that 4C(L(In)) = 4C(In) = det (In − C), for all C ∈ Mn and,
by Lemma 4.1, L(In) = ξIn, for some ξ ∈ C. For all C ∈ Mn, we have
4C(ξIn) = 4C(In) and, by Lemma 4.2, it follows that ξ = 1. Therefore, the
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operator L preserves In and 4C(A). Now, we show that this operator L maps
the set of positive definite matrices onto itself. To this end, let A be positive
definite. Suppose L(A) is not positive definite. Then there exists r ≥ 0 such
that L(A) + rIn is singular. We know that

4C(L(A + rIn)) = 4C(L(A) + rIn) = 4C(A + rIn),

for all Hermitian C. In particular for C = 0, we have

40(A + rIn) = 40(L(A) + rIn).

Since A + rIn is positive definite, 40(A + rIn) = det (A + rIn) > 0. On the
other hand,

40(L(A) + rIn) = det (L(A) + rIn) = 0,

because L(A) + rIn is a singular matrix. Hence, there does not exist r ≥ 0
such that L(A) + rIn is singular, and so L(A) is positive definite.

Since L is invertible, one can apply the previous arguments to L−1 to
conclude that L−1 maps the set of positive definite matrices into itself. Thus,
it preserves In and4C(A). Hence, L maps the set of positive definite matrices
onto itself. By Lemma 4.3, there exists an invertible matrix U such that the
operator L is of the form

A 7→ UAU ∗ or A 7→ UATU∗.

Since L(In) = In, we have UU ∗ = In. ¥
The following result will be used in the proof of Theorem 4.2.

Lemma 4.4. [2] Let C be an n× n normal matrix with simple eigenvalues.
If there exists at least one corner on the boundary of 4C(A), then A ∈ Mn

is a normal matrix.

Theorem 4.2. A linear operator L : Mn −→ Mn satisfies

4C(A) = 4C(L(A)), for all A,C ∈ Mn

if and only if there exists a unitary matrix U such that L is of the form

A 7→ UAU ∗ or A 7→ UATU ∗.

Proof. (⇒) Let L be a linear operator in Mn such that 4C(A) = 4C(L(A))
for all A,C ∈ Mn. Suppose that A is a Hermitian matrix. We prove that
L(A) is Hermitian.

By the hypothesis, 4C(A) = 4C(L(A)) for all C ∈ Mn. In particular, there
exists C ∈ Hn such that the eigenvalues of C and A are pairwise distinct and
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also the eigenvalues of C and L(A) are pairwise distinct. Since A and C are
Hermitian, it follows that

4C(A) = [min
σ

zσ, max
σ

zσ], σ ∈ Sn.

As 4C(A) = 4C(L(A)), using Lemma 3.2 we can conclude that the eigen-
values of C and L(A) belong to the same straight line or to the same circle.
Since C is Hermitian it has real eigenvalues, so L(A) has real eigenvalues.

Since 4C(L(A)) = [minσ zσ, maxσ zσ], the endpoints of this line segment
are corners and, by Lemma 4.4, L(A) is normal. Thus, L(A) is Hermitian
and L(Hn) ⊆ Hn.

By Theorem 4.1, we have

(i) L(A) = UAU ∗ or (ii) L(A) = UATU∗.

Consider A ∈ Mn in the cartesian decomposition, that is, A = Re A+ i Im A,
where Re A = (A + A∗)/2 and Im A = (A − A∗)/2i are Hermitian matrices.
If (i) holds, then

L(A) = L(Re A) + iL(Im A)
= U(Re A)U∗ + iU(Im A)U ∗

= UAU ∗.

If (ii) holds, a similar argument can be used. The converse implication follows
directly. ¥
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