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ABSTRACT: In this paper we study the convergence properties of a finite difference
discretization of a second order elliptic equation with mixed derivatives and variable
coefficient in polygonal domains subject to general boundary conditions. We prove
that the finite difference scheme on nonuniform grids exhibit the phenomenon of
supraconvergence, more precisely, for s € [1, 2] order O(h®)-convergence of the finite

difference solution and its gradient if the exact solution is in the Sobolev space
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1. Introduction

We consider the discretization of the differential equation

Au = —(aug )y —(buy)y— (buy ), — (cuy)y+(du)y+(eu)y+ fu=g in QC ](Rj
1

subject to Dirichlet boundary condition

u=1vY on O (2)
or third kind boundary conditions
Bu = (auy + buy)n, + (bug + cuy)n, + au =1 on 01, (3)

by using finite difference operators defined on a general nonuniform rectan-
gular grid Qg satisfying certain compatibility conditions with the domain
Q.

~ Our aim is to study the behaviour of the scheme for a sequence of grids
Qp, H € A, with maximal mesh -size H,,,, converging to zero without any
restriction on the non uniformity of 2. In this case the scheme is first order
consistent but our purpose is to show nevertheless that the finite difference
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approximations and their gradients are more accurate. This property of
the FDM is usually called supraconvergence and was considered without be
exhaustive in [5] - [12], [14], [19], [22]-[24].

Corresponding results have been obtained by the authors [7] for general
second order elliptic equations in polygonal domains subject to Dirichlet
boundary conditions and assuming that u € C*(Q). Attending to this fact,
the purpose of this paper to extend these results to boundary conditions of
the third kind but assuming optimal smoothness assumptions for u. The
one dimensional version of the results that we present in this paper were
established in [8]. We note that the Laplacian in a square with Neumann
boundary conditions has been previously considered by Marletta [24] using
a different approach.

A main step in the proof of the supraconvergence result is to establish a
relation to a linear finite element method combined with a special kind of
quadrature. The rectangular grid Qy has associated a triangulation 7z of
the domain and the finite difference method that we study can be seen as an
equivalent fully discrete Galerkin scheme. As a consequences we also show
that in the context of FEM’s the second convergence order of the gradient of
the (fully discrete) FE approximation, a fact that wasn’t nonstandard and
which was firstly observed by the authors in [8]. In this way the results of this
paper can be viewed as introducing a superconvergent finite element method.
This property is usually known as a supercloseness of the gradient (see [30])
or superconvergence (see [1], [3], [21], [33]).

Attending that the superconvergence of the fully discrete FE approximation
is obtained for general nonuniform rectangular grids, the triangulation can
be nonuniform - the interior angles can go to zero. We mention that the
standard linear piecewise linear FEM defined with a elliptic sesquilinear form
(strongly coercive sesquilinear form) and quasi uniform triangulations enable
us to compute a second order accurate approximations but with respect to
Lo-norm.

The paper is organized as follows. In Section 2 we present the variational
formulation of the boundary value problem problem (1), (3) and the fully
discrete nonstandard piecewise linear FEM. In Section 3 the FD scheme is
introduced. One main ingredient on the convergence analysis is the stability
of the FDM. Such stability is established in Section 4 as a consequence of
the stability of the fully discrete sesquilinear form associated with the fully
discrete nonstandard piecewise linear FEM. In Section 5 is established an
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estimate for the truncation error. As a corollary of the estimate for the
truncation error and of the stability inequality we establish the main result
of this paper - Proposition 3- which stands that the H'-norm of the error is

an O(H? ) provided that u € H*"1(Q), s € [1,2].

Based on the results of this paper a joint work with R. D. Grigorieff is
under preparation.

2. Fully discrete Galerkin approximation

In this section we describe our discretization. It is obtained as a non-
standard linear finite element approximation in combination with certain
quadrature rules which leads to a fully discrete method. The choice of our
discretization has two consequences. On the one hand the approximation to
the gradient shows superconvergence that it is second order accurate if the
exact solution lies in H3(2). On the other hand the method is equivalent to
a familiar finite difference approximation for (1).

We start with the common variational formulation of (1). Let Q C IR? be a
bounded regular polygonal domain, i.e. the boundary 02 of €2 is the union of
straight line segments which form no cuts. Let g € L?(Q) and » € H'/?(0%)
be given. By (-,:)g and < -, > we denote the standard inner product on
L*(Q)) and L?(99), respectively. We also use || - ||; for the usual norm in the
Sobolev space H'(2). The variational formulation of our problem is:

find u € H'(Q2) such that
a(u,v) = (g,v)o+ < ,v > Vove H(Q), (4)

where H'(Q) and H'?(0€2) are the usual Sobolev spaces and a(-,-) is the
sesquilinear form defined by

a(v,w) = (avy, wy)o + (bvg, wy)o + (bvy, wy)o + (cvy, wy)o + (—dv, wy)o
+ (—ev,wy)o + (fv,w)o+ < dvn, + evny + av, w >,
(5)
for v,w € H(Q), where (n,,n,) denotes the outer normal on 9.

The coefficients of (1) in the given problem are assumed to be smooth
enough, e.g. a,b,c € W3*(Q), e, d, f € W>>(Q) and o € W*>(99) is suf-
ficient. (Note that the use of the space W2°°(9Q) for a Lipschitz boundary re-
quires some extra explanation: by a € W (9) we mean that o € W2>(T)

for each straight section I'.) Schemes for less regular coefficients are also
known [15, 16, 18, 20, 28] which are based on earlier work by Samarskij [27] .
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We also impose the general assumption that the homogeneous problem (4),
i.e. with g and 1 taken to be equal to zero, has only the solution u = 0.
The discretization of (5) is obtained in the following way. We first introduce
a nonequidistant rectangular grid in Q. Let h = (h;)z and k = (k¢)z be two
sequences of mesh-sizes, i.e. of positive numbers. We define the grid

Rlz{ZCjE]RZ $j+1:$j+hj,j€Z}

with g € IR given and a corresponding grid IRy with the meshsize vector k in
place of h and v, in place of xy. Let IRy be the two-dimensional rectangular
grid

Ry =R, x Ry C IR?
and define

Qp =QNRy, 0y =00 N1Ry, QH:QHRH.

The grid Qp is assumed to satisfy the following geometric condition with
respect to the region €
(Geom) The intersection of € with the rectangle (z;_1 /2, ;11/2) X (Ye—1/2, Ye41/2)
formed by midpoints of the grid IRy is, for all j, ¢ either is empty or it is a
diagonal of the rectangle.

By Wx we denote the space of grid functions on Q. Let Oje = (2172, Tj41/2)
X (Ye-1/2, Yer12) N Q and wje = |- Then

(v, wy) g = g wievjewie for vg,wg € Wy (6)
(Ij,ye)GQH

defines an inner product on Wy. Similarly,

< $H,XH >H'= Z 0t PjeXj (7)
(.%'jﬂg)é(?QH
is an inner product for grid functions pg, xg on 0Qy, where o, := |L';/,

Lo = (2j_12, Tj11/2) X (Ye—1/2, Ye+1/2) N OQ. The discrete problem has the
form:
find uy € Wy such that

CLH(UH,UH) = (gH,UH)H—i— < ¢H;UH >H VUH - WH. (8)

Here ay is a sesquilinear form which we are now going to define. Let 7y be
a triangulation of ) using the set )y as vertices. By Pyvy we denote the
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continuous piecewise linear interpolation of vy with respect to 7. Then agy
is given as a sum

ag =a+b+ct+d+e+ f+7 9)
of sesquilinear forms corresponding to the different terms in the continuous
variational problem (5). They are all constructed in a similar way on the basis
of linear triangular finite elements combined with an individual quadrature
for each of the terms. Here the discretization of the mixed order derivative
terms requires special attention (see below).

Let A € Ty. We define aa , to be the value of a in the midpoint of the
side of A parallel to the z-axis. Then let

a(vy, wy) = Z aA;c/(PHUH)x(PHwH)x dxdy. (10)
AeTy A

Similarly, let ca, be the value of ¢ in the midpoint of the side of A parallel
to the y-axis and

clvg, wg) = Y CA,y/(PHUH)y(PHlUH)y dxdy. (11)
A€ETy A
The approximation of the first order terms is achieved by
d(vp, wg) == — Z [Pr(dve)] Az / (Pgwp), dedy, (12)
A€ETy A
e(vy,wy) == — Z [PH(evH)]A’y/(PH@DH)y dxdy. (13)
AeTy A
Finally,
flog,wy) = Z Wit f (x5, Ye) v 0W; 0. (14)
(2;.y0)€Qn

The function g on the right-hand side of (1) is discretized by the grid function

1
JE Y0

The discretization of the function % in the boundary condition is given by

1
Yz, ye) = 0—6/ Y(z,y)do, for (xj,ye) € 0O0y. (16)
Jt JT



6 J.A. FERREIRA

In Section 5 we will also consider the possibility of taking gy to be the
pointwise restriction of g to the grid . The boundary term in (5) is simple
approximated by

Y(vm, wy) =< avg + dvgn, + evgny, wg > for vy, wg € Wy, (17)

For the discretization of the mixed derivative terms we need some prepa-
rations. We consider two special triangulations of €2 which we call TI?) and

TE@. They are obtained from the disjoint decomposition

Ry = Ry URY,

where the sum j + ¢ of the indices of the points (z;, y,) in ]Rg) and in IRg) is

even or odd, respectively. To simplify the following definition we introduce
IRS) = IRS). With each point (z;,y/,) € IRy we associate the triangles
A%, i = 1,2,3,4, which have a right angle at (x;,y,) and two of the four
closest neighbour grid points of (x;,ys) as further vertices. We then define

for v € {1,2} the triangulations

Ty = 1{AY) c O C(rpw) €RY O ie{1,2,3,4))

7@:@%@\UA),@MGMW i€ {1,2,3,4})
AETB%)

17 =T u Ty L v=1,2

(18)

(A denotes the interior of A).
Figure 1 shows an example of a triangulation.

F1GURE 1. Triangulation 7, }(IV). A indicates triangles of TIETVQ)
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With respect to the triangulations 7, IE,V), v = 1,2, the continuous piecewise

linear interpolation PI({V )UH of a grid function vy € Wy is well-defined.
Let ba := (xa,ya) where (xa,ya) is the vertex of A associated with the

angle g of A. Then

b vy, wy) = Z bA/(Pg)UH)I(Pg)wH)ydxdy
AeT 8

+ > ba / (PY vy, (PY 0 ) dady (19)
AeT &

= b%)(vH, wy) + bé?(vﬂ, wr),

and

b(vs, wi) = %(b(l)(vg, wir) + b (v, wir)) (20)

for vy, wy € Wgy.

3. Relations to finite differences

The discretized variational problem (8) is equivalent to a finite difference
scheme which we will, at least in its main parts, derive in this section. Es-
pecially, in interior grid points we will obtain in (21) the standard finite
difference discretization Ay of the given differential operator A on a nonuni-
form grid. It is this relation which shows, that our later convergence theorem
is a supraconvergence result for the finite difference scheme (21).

The finite difference equations belonging to (8) are obtained by choosing
grid functions vy that vanish in all but one grid point in Q. For their
formulation we use the centered finite difference quotients

(o —V_ (2 — Vj
(1/2),, _ Yjt1/2¢ J=1/2.4 (1/2), _ Y+ Jil
0, i = - . , Oy Viy1/20 = T — .
j+1/2 j—1/2 j+1 j
5.0y = Vi1 — Uj—14
v,k

Ljr1 — Lj-1
in z-direction and also correspondingly defined quantities in y-direction.
First we take points in Q. By collecting the terms arising from (8) it is
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straightforward to obtain the equations

Aguy = =082 (adlPug) — 6,(b8,up) — 6, (bdyup) — 8P (ol Pug)
+0,(dug) + 5y(euH) + fug = gy in Qp.

1)
If the operator A contains mixed derivatives then Aguy acts on grid points
outside Q near to oblique parts of the boundary. In this case the missing
quantities informing Aguy are determined by auxiliary equations. They can
be given in the following way. Let R := (xj,x;11) X (ye, Yr4+1) be a rectangle
such that one of its diagonals forms part of J€2. In the approximation of (buy),
the the value of uy belonging to the grid point outside of Qp is determined
by the equation

5(/2) Wjt1/20 = o1/ Ujy1/2,041- (22)

For example, if b is a constant function and w is constant on 92 then (22)
simply means that

un(P) = —un(Q)

where P and () are the vertices of the rectangle R lying inside and outside
of Qp, respectively. Similarly, in the approximation of (bu,), the auxiliary
equation is

50/2)

1/2
gy Wiet1/2 = 5;(, / )Uj+1,£+1/2-

We now turn to the discretized form of the boundary conditions which are
obtained by choosing the test function vy to vanish in the whole of Qg
except in one point of JQy. Our aim is to give some examples the discrete
boundary conditions in a familiar or at least intuitively understandable form.
Frequently, boundary conditions containing derivatives are discretized with
the aid of auxiliary grid points outside the solution domain 2, and we pro-
ceed in the same way. We do not systematically consider all possible and
most general cases because the only purpose is to provide some idea of how
they look like. For example, in the following discussion there are no mixed
derivatives included, i.e. we set

b=0.

Let us first consider a boundary grid point (x;,y,) on a bottom horizontal
piece of 92 which is not a vertex (see Figure 2).
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FIGURE 2

By choosing v;¢ = 1 and vy, = 0 elsewhere in (8) we obtain

hi—1 4 h;
— 682 (@M up)jewie — (€88 u) join e % + (0u(dum))jewie
1 hi_14 h;
+(f um)jewje + (5((€Uﬂ)j,£+1 — (eun)je) + (a “H)J?f> %
hi_1 4 h;
= gjeWie T Vi % :

We introduce an auxiliary variable u;,_; in the auxiliary point (z;,ys — k¢)
and the corresponding new unknown wu;,—1. Then the last equation can be
rewritten as

(Agun)je — gidwie + [=My(c6M? um)je+ (Ny(eun));u
hj_l + hj B

+ (aum)je —Vj 5 0,
where . "
-1 ¢
M =V, — Vi 23
(M, ve) ;e fo + Ey Vjr+1/2 T Fr1 + ko Vjo—1/2 (23)
1
(Ny UH)j,K = Zk‘g_lk?g (5251/2)5?51/2)1}1{)3'76 . (24)
The equation above then leads to the additional discretization
Apgug =gg  in (x4, y0) (25)

of the differential equation (1) on the boundary and the discretized boundary
condition

—My (c 5;1/2) uH) Ny + Ny(euH) +auyg =Yy In (Ija ?Jé) :

Here n = (n,,n,) = (0, —1) is the outer normal in (z;, ye).

As next case we consider a boundary grid point (x;,y,) which lies on an
oblique side of 02 and is not a vertex as shown on Figure 3. We proceed in
a a similar manner as before.
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FIGURE 3

We don’t give the details but write down only the result. One of the result-
ing equations is, as always, the discretized differential equation (25) in the
boundary grid point (z;,y,). After introducing the auxiliary variables u;_1 ,
u; 41 in the auxiliary grid points (z; —h;_1,y,) and (z;, y+k¢). The discrete
boundary condition reads as

(Mo (a b uy) — No(dug)ljens + [My(c6* ug) — Ny(euy)]n,

+ aug =i in (z5,Y0)
The operators M, and N, are defined correspondingly to M, and N, (see
(23) and (24)).
For the rest of this section we simplify the calculations further by assuming
that there are no first order terms in A, i.e.

d=e=0.

Let (z;,y¢) be a vertex obtained by the intersection of a horizontal and a

vertical piece of J€). We first consider the case that the associated interior
s

angle is B and (z;41,y,—1) is an interior point (see Figure 4). In this case we

define auxiliary variables u;_1, and u; ;1 in the auxiliary points (x; — h;, yr)
and (xj,ye + ke—1).

FIGURE 4
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As always, one of the equations associated with the boundary grid point is
(25). In addition, the discretized boundary condition is now expressed by
the two separate equations

—Mx(a5g(c1/2)uﬂ+cvu1{ = Yy,
1)

U2 upg +auy = vy in ().

For example, in the case a = 1 and a = 0, ¥y = 0 the first equation gives the
well-known second order approximation w41, = uj—1 ¢ for the homogeneous

Neumann boundary condition.

: : : . 3T
Let now (z;,y/) be a reentrance corner (i.e. the interior angle is 7) and

(zj41,y0-1) lies outside Q. The linear equation associated with this vertex
can be obtained from (8) in the form

ko—q

(A = gu) (), ye) wje + == [—Mx(mﬁ(gl/ Dup)je + (oun)je — (%DH)J',K}

+% [—My(C‘S@(/l/ Dug)je) (o) — (wﬂ)ﬂ] =0.

(26)

It would be some artificial to interprete this equation in a similar way as in
the cases before.

Next we consider the case of a vertex (z;,y,) such that (z;_1,y,-1) and

(2j41,Ye—1) are also on 00y and (x;,ye—1) lies inside Q (see Figure 5). It is

convenient to introduce three auxiliary variables in points

Li,Ye

FIGURE b
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(2, ye+ke), (x;j—hj_1,y¢) and (x;+h;,ye). The discrete boundary conditions
can then be given in the form

(c 551/2) u)jerj2 = (¢ 551/2) Ug)je-1/2 (27)
L s - (1/2) 4
Q(a Op " um)jrr 20 my +(C oy U ) j 012 n, + (qum)je=1j0 (28)

1

2
where (1, 7,7) and (n;,7n,) denote the outer normal vectors near (z;,ye)
with positive or negative z-component, respectively.

The calculations in this section underline the widely accepted superiority
of the finite element over the finite difference formulation in the presence of
general boundary conditions, even if the boundary is not curved. Of course
in the special case of the Laplace operator in a rectangle as domain €2 it is
standard knowledge how to set up the finite difference discretization of the
boundary conditions for a second order convergent scheme. The approxima-
tion of the differential operator itself has the expected finite difference form
which is expressed in the following.

(@68 up)jrppemy + (€68 ug)jorom, + (qun)je = bjy, (29)

Proposition 1. Let the sesquilinear form ag(-,-) and the operator Ay be
defined by (9) and (21), respectively. Then the equation

ag(vg,wy) = (Agvg, wy)y

holds for all vy and wy € Wy such that wyg = 0 on 0Qy. |

4. Inverse stability

We now consider a sequence of grids IRz such that the maximal meshsize
H oy = max{h;, ke, j,¢ € Z} tends to zero. We use the symbol “A” for the
sequence of mesh-size vectors and write “(H € A)” for the convergence with
respect to H running through this sequence.

One main ingredient for the convergence analysis is the following inverse
stability result.

Theorem 1. Let the grids Qp, H € A, satisfy condition (Geom). Assume
that the homogeneous variational problem (4), i.e. with g = 0, ¥ = 0, has
only the solution v = 0. For each H € A let Ty be a triangulation of
Q. Denote by Py the corresponding piecewise linear interpolation operator.
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Then there exists a constant C such that for H € A with H,,q small enough

| Pgog|i < C  sup lag(ve, wi)|

3 Vg c WH 30
0twgewy || Prwm||1 (30)

The proof of this theorem differs only in minor details from the one of
Theorem 2 in [7] and is omitted.

5. Estimating the truncation error

Our error estimates are based on the inverse stability inequality in Theorem
1 applied to the global discretisation error Ryu — uy in place of vy, where
Ryu € Wy denotes the pointwise restriction of u to the grid Q. Hence, since
ug solves (4) we have to bound the truncation error

ag(Ruu,vg) — (9, vg)n— < Y, vg >g (31)

in terms of || Pyvg|l;. This will be done in the rest of this section.
Our starting point is the quantity (ggy,vy)y in (31). According to the
definition of gy in (15) we have

romn = 3 / (Au)(z, y)dady Ty, (32)

(,y0)€Qn DJ?ZQQ

In order to simplify the presentation of the results we introduce in what
follows some notations.

Let 75" C 7Ty denote the subset of triangles that have one side in common
with the oblique part of Q. 7% is avoid for a domain € which is the union
of rectangles.

If A € T3 and (za,ya) is the vertex associated with the angle g, then by

Ia, and In, we denote the catheti of A and by (za,ya/2) and (742, ya) we

represent their midpoints. By 2, we denote x component of the midpoint of

the neighbour rectangle of A which is in {2 being y- defined analogously.
The introduced quantities are represented in Figure 6.
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A
IAy y% N

P = (za,ya) - I5e
0

FIGURE 6

Let vy be a grid function and A € 7, ﬁbl. By A,va we denote the backward (or
the forward) difference of vy involving the extreme points of the horizontal
cathatus with respect to  component. Finally we represent by A,v;, the

difference vj;1¢ — v;¢ being Ayva and Ayv;, defined analogously.

We consider in what follows each contribution of Au in (32) separately. We

star by the contribution of —(auy),.

Theorem 2. Let a(Rpyu,vy) be defined by (10) and

a(u,vy) = Z (—auy).dxdyvj,  forvg € Wy.

(25,90)€Qn 0.2

Then
a(Rpu,vy) — alu,vy) = Z / augN,do Ve + Ry,
(75,90)€00H T

where R, satisfies:
(1) If u € H*(Q)) then

1/2
|R,| < C (Z (diamA)QUI?p(A)> [Prvrl

AeTy
(2) If u e H3(Q) then R, = R,,, + Ra,,. + Ra,.,, with
ke [ _
R,,, = Z Mg (auy)y do Ayv,y,

(75,Ye41/2)€08 ye

(33)

R = 3 P [ e dds +2 [ Gy fag)dy Ans)

I, Iay

bl
AeTg 2
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and

R

arem

1/2
<C (Z (diamA)A‘luI%s(A)) [ Prv |-

AeTy

Proof: Let Ij’g+1/2 = {(.CIZ', yg+1/2) P Tj-1)2 <x < $j+1/2} N €. By partial n-
tegration with respect to x and partial summation with respect to 7 we obtain

EL(U, UH) - Z (aum) ($j+1/27 y)dy Aac@j,é
($j+1/2,ye)€Q Ly
(34)
— / alyNydo Ujy.
(27,90)€0Qy © Lt
From (10) we have
a(Rgu,vp) = Y gyl (a0 0) (@552, v0) Datjp. (35)

(7j41/2,y0)€Q

In order to estimate a(Rpyu,vy) — a(u,vy) we consider the quantities

Gi= Y [ [ - @) w0 0)] dy A

(j4+1/2:50) €EQ Tiv1/2,0
(36)
and
QQ = Z |:(a’53(31/2)U)($j+1/2, y) — (adél/Q)u)(ijrl/Q’ yg):| dy
(Tj41/2,90)€Q Tiv1/2,0
Aﬂ?ﬂg.
(37)

Near oblique sections of 0f2 the definition of (53(;1/2)u)(:cj+1/2, y)fory € I 100
requires that u is defined outside ). For this purpose we extend u for each
involved triangle A into the mirror triangle outside the domain such that
the norms in H? or H?, respectively (depending on whether u € H?(Q) or
u € H3(Q)), with respect to the extended domain are bounded independently
of j,¢ and H € A by the corresponding norms with respect to A (see [26]).
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Estimate for Q:
Introduce the variable & by © = x; + £h; and let w(&,y) = u(x; + hj;é,y).
Then

(aux)(xjﬂ/%y) - (a5g(cl/2)u)($j+1/27y)

1 _
= alogn) [ueg) — w(1.0) +00.0)] 177

(38)

Let A\ be the linear functional

M) = F() = F1) + £(0), f € WE0,1)

The functional ) is bounded in W2(0, 1) and vanishes if f is a polynomial of
degree less or equal two. Thus from the Bramble-Hilbert Lemma there exists
a positive constant C' such that

AN < CIF ey, £ € WE(0,1)
for s € {2,3}.
Applying this result in (38) we obtain for u € H*({2)
(ante — a7 0) (50172, 9) < Cllallochy uar sy (39)

We use the bound (39) in (36) to derive after an application of Schwarz’s
inequality for sums and estimating the Li-norm over (z;j,x;41) X 141 /2.0 by
the corresponding Ls-norm

Q< Cllall S B2,

(%’4-1/2»?%)69

V2| Pyupl. (40)

2
Lo((wj,zj41) % Ljy1/2,0) )

The right-hand side can be further estimated to yield the more convenient
bound

Q1 < Cllallwo( ) (diamA)**~Vul
AeTy

Estimate for @Qo:

We assume for simplicity that {2 is the union of rectangles. The main problem
in bounding ), arises from the fact that on nonuniform grids we have in (37)
no longer the midpoint rule. Thus we have to work a little bit more and
exploit the alternating behaviour of the error in y-direction. Let

Q21 = Z (a53(51/2)u)($j+1/27 y)dyAx@j,é — Q2 (42)

(Tj+1/2:90) €Q Lisajae

froa) P Paromls s € {2,3). (41)
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and

Q22 = i Z </<3£1(a59(01/2)u)($j+1/2,ye—1/2)
(7j41/2,y0)€EQ
+ (ko1 + ko) (a8S P ) (24172, 90) + ke(ady P u) (241 2, 3/4+1/2)) Ayvje .
(43)
In the first step we estimate (Qo1. Since (Q9; is a second order accurate
quadrature formula we can derive in the same way as for (); the bound

Qul <C > Ly '1@d )y (24172, MLty | DaDial-
(Tj41/2,y0)€Q

for t € {1,2}. Since

1 Tj+1
R e L (44)
¥ X

J

we can further estimate Q91 by

(%‘4-1/2;1/4)69

With s :=t + 1 this leads for u € H*(2) as in the case of ()1 to the bound

Qa1] < Cllalls-1.00( Y (diamA)*~ul

Ha) Pl Prvall, s € {2,3}

AeTy
(45)
Let ()22, the part of Q2 — (J21 for which holds the representation
Ky
Q22,p = Z i [(aég(gl/Q)U)(xj+1/2>y£+1/2)

(Tj41/2:Y041/2)EQ

(@) (w172 90) | A

Ko
+ > @) @y )
(T41/2,Ye41/2)EQ
- (059(;1/2)14)(%“/2, y£+1)} AW YIS
(46)
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Its easy to show that (a2, = Q%%p + Q%),p with

ko
Q== > @) yen) = 2@ V) (12 Y o)
(Tjg1/2:Ye41/2)EQ
(a2 u) (@51 /2, ye)] (Dabjes1 + Dalse)

(47)

and

2 Ko
ng),p = Z 8 [<a55(”1/2)u)(35j+1/2,y£+1/2)

(Tjt1/2:Ye41/2)EQ

(@) (117,90 | (D02 50)

ko
LD DR [ S CIyaeyy
(Tj41/2:Ye41/2)EQ
—(a5g(cl/2)u)($j+1/27 y£+1)} AVTAWIYE
(48)
Estimate for Qégpz
Let w be defined by

w(§) = (a5:(cl/2)u)($j+1/27 Yo + Ekp)
then
(@5;(51/2)U)($j+1/2, Yer1) — 2(a5q(;1/2)u)($j+1/27 yé+1/2) + (a5q(;1/2)u)($j+1/2, Yr)

— w(1) - 2w(%) +w(0).
(49)

The linear functional

AJ) = (1) = 2f(5) + J(0), f € WH(0, 1) (50)

is bounded and vanishes if f is a polynomial of degree zero or one. Thus
from the Bramble-Hilbert Lemma exists a positive constant C' such that

A< CUF o, f € WH(0,1), (51)
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for t € {1,2}. Applying this result in (49) and considering (44) we obtain for
u e HTHQ)

(a5;(v1/2)u)($j+1/2a Yer1) — 2(a59(61/2>u)(:z:j+1/2, y£+1/2) + (aég(clmu)(fjﬂ/m Yr)
S CHQHLOOhj_lké_lHuytxHL1((9U]'7%'+1)X(ye,yéﬂ))’
(52)
for t € {1,2}. Following the lines considered in the estimation of Q; we
establish

Q4] < Cllallse (Y (diam APV lullfrua) [ Pavall , s € {2,3}.

A€eTy
53
: (2) . (53)
Estimate for Qs
We have
2 _ Be T as1/2) 50/2)
Q227p T Z g (CL T u)(xj+1/27y€) o (CL x u)(xj-i-l/% y€—|—1)
(Tjg1/2:Ye41/2)EQ
AxAyl_)j’g )
(54)

and we easily get

2
‘Q;Q),p‘ < C”aHLOO Z keHUCUyHL1(($J'71‘;'+1)X(yz,yeﬂ))

(Tj41/2:Ye41/2)EQ

(1682 08) @111/, 90| + O 00) (54112, 9e51)] )
The last inequality enable us to conclude that if u € H%(Q) then

2
Q5] < Cllaliool D Rellwel Tyt Py

(Tj41/2:Y041/2) EQ

and finally

2 .
Q52, < Cllall o D (diamA)?|[ull3za) "2 [ Prvnlh.
AeTy
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In what follows another estimate to Q%p is obtained assuming that u €
H3(Q). From (54) using partial summation with respect to j we obtain

5 k’g Yet+1
QQZ),p = Z 8 [/ (aés(clﬂ)u)y(xjﬂ/?’ y)dy
Ye

(Tj41/2:Y041/2)EQ

Yo41
- / (a5§;1/2)u)y($j71/27 y)dy| Ayvje

kg Ye+1 (1£/2)
T Z _ng/ (a0, Zu)y (), /2, y) dy Dyj 0
(ajj,y4+1/2)€89 Ye

(55)
Attending that for (aég(cl/z))y(xjﬂ/g, y) — (auy)y(Tj41/2,y) holds an estimate
analogous to (39) with s = 2 and w,2(., y) replaced by u,2,(.,y), and that

Tjt1/2
(@) (zs17209) = @) + [ (aus)yeda,

J

we conclude

k€ Ye+1 _
= 3 ol [ o)y byt

(75,Y041/2)€0Q be

where

IR < Cllall2,00( Z kzlHu.TQyH%2((a:j,xj+1)X(yg,yg_,_l)))l/zHPHUH”l

(Tj41/2,Y0)€EQ

< Cllallace( Y (diamA){fulFsa))" | Prronl:
AeTy

which conclude the proof.

Remark 1. Let us assume in Theorem 2 that u is null on the boundary 0.

Let A* € T be a triangle with vertices (x,y) (associated with the angle
T

5), (j,Ye41) and (xj11,ye). Let Ry, a- be the term of R,,,, correspondent
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to A*. We have

I
Ruse = 2 [ Gy +2 [ () (g dy 5o

I, IAy

ke I e
= 8 ()~ 2u() + u( )w——/ [
~1/2

k( Tjy1/2 Ye+1/2
+Z / (aty) 2y Vs 0,
x

J

where w(§) = (auy)(xj, ye+Eke), € € [0,1]. Using the Bramble-Hilbert Lemma
the following estimate can be shown

1 B Yeo+1 -
kelw(1) = 2w(3) +w(0)]|vs,] < Ckéhj/ (@) (5, )] dyl 68 P01 0.4

Ye

Yo4+1 Tjt1/2
= Cké/ / hj (‘(aux)yt| + hj|(aux)ytx‘) dz dy ‘59(31/2)@%1/2»”

Ye Ti—%

forte{l,2}.

Considering the last estimate in the representation of R, we obtain

ere,A*

lallaoe Y (diamA)?|Jugey | sy |(Pave)eal
AcVi(A¥)

| Gege, A*
+ > (lalloo(diamA) |y 1(a)
AeVa(A*)

+lallestoo(diamA) Hugey |1 a) | (Prvm)e.al,

where t € {1,2} and V1(A*) and Vo(A*) represent the union of A* with the
triangles which are respectively in (z;_1,2;) X (Y, ye+1) and in smaller set of

triangles containing (x; — hQ ,T5) X (Yo, Yog1)-
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Attending that A* is arbitrary in T3 we deduce

| a€l‘€

< C(Y (diamA)H|ull3sa)) '
AeT !

+ (> (diamA)* w3 a)) (56)
AeT"?

+ (Y (diamA)Y I |ul3aa) " | Promlls
AeTS?

where t € {1,2} and T3 = {A € Vi(A*),A* € T}, i = 1,2, being Vi(A¥)
defined as above ( with convenient adaptations).

As a consequence, if u € H3 ()N WZOO(UAGT}(;M,QA) and T is contained
in a strip of width O(H paz) then

[Ra,.| < OHYZ Prros 1.

max

Geze

We establish is what follows the theorem correspondent to Theorem 2 for
the contributions of —(cuy),.

Theorem 3. Let c¢(Rpu,vg) be defined by (11) and ¢(u,vy) be

c(u,vg) = Z / (—cuy)ydedy v for vy € W (57)
(Ij,yg)EQH D]'»ZQQ

Then

c(Ryu,vg) — ¢(u,vg) = Z / cuyn,do v+ R,
iy

(75,90) €00

where R, satisfies:
(1) If u € H*(Q) then

1/2
|R| <C (Z (diamA)2U|§p<A>> [ Prvmlly
A€eTy
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(2) If u € H3(Q) then R. = R, + R..,, + R, with

CGIEC CTETTL

h; Lj+1 ~
R., = Z nygj / (cuy), do Ay0; 0,

(T41/2,Y0) €08

R = Y B [ uptigdraims+2 [ (u)atos) dr o,

In
AeTgH Iag 2"

and

Re,..; < C(Y (diamA)!|ul|Faa) | Pavs |-
AeTy

Remark 2. Holds a remark analogous to Remark 1.

Let us consider now the contribution of the mixed derivatives. We establish
in the next result an estimation for the error associated with the discretization

of (buy),. Let by, (Rpu,vy) be defined by
1

by (Rpu, vp) = 3 (b;?(RHu,vH) + bgc)(RHu,vH)) , for vy € Wy,

where bz%)(., .) is defined by (19).

Theorem 4. Let by, (u, vi) be

by (w, vpr) = Z (=buy),dxdyv;y  for vg € Wy (58)

(z,0)€Qn 0.2

Then
bye(Ritt, vgr) — boy(u,v) = ) / buyndo v+ Ry,
(z;,y0)€0Qn Lje

where Ry satisfies:
(1) If u € H*(QY) then

[Ry| < C( Y (diamA) |l fg0a) 2 Prviy
A€eTy
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(2) If u € H3(Q) then R, = Ry, + Ry, + Ry,,,, with

exre rem

1 1 Yet1/2
ol = Z Ux(i(bj,@rl —bjo)Ayu(xj, ye) + 5/ (buy)(x;) dy
(xj,y0+1/2)€ Ye
1 Ye+1 B
5 [ ) s,

Yet+1/2

1 1
Ri.= D (50, ya)Ayua — 5/ (buy)(za,y) dy)Asva

o Ia
AeTg" =]

Ry

1 1
+ | M p) A s) + 5 [ (b)) dy
%
_ /IA

< C( Y (diamA)HullFaga) 2| Prvm |-
AETH

(buy)(x@ y) dy> Ayt_)A

Y

and

| R

rem

Proof: For simplicity we assume that €2 is the union of rectangles. By
partial integration with respect to x and partial summation with respect to
7 we obtain

Bym (u7 UH) - Z / (buy) (xj+1/27 y) dy Af@j»f

_JI.
(@j11/2.y0)€Q " /2L

(59)
— Z / buyn, do vj ..
x] ye Eaﬂ
Attending to the definition of b, (.,.) and (19) we have
kO ',1251(/1/2)’“ ev1/2 + 0 '+1,£51§1/2)U L2 -
byx(RHuva) = Z ) 5 J J 2] J Ax'vjf
(7j41/2,90) €EQH
kg bj,£+153(;1/2)uj,€+1/2 + bj+1,£+1(5g(;1/2)uj+1,€+1/2 _
Y Axvj,Z—H-

2 2
(60)
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Let A be the functional (50) and
F(&) = blaj + Ehy, yo) 05 Pule; + €y, yeraye), € € [0,1].
Using (51) it easy to show that

bj,£5g(/1/2)uj,£+1/2 + bj+1,€(53(;1/2)uj+1,£+1/2

| 5 - j+1/2,€5351/2)uj+1/2,€+1/2| (61)
< CHth,OOkﬁilhéilnuymtHLl(($j7$j+1)><(ye,ye+1))
and
bj,£+16z(/1/2)uj7€+1/2 + bj+1,€+161(/1/2)uj+1,€+1/2 (1/2)
| 5 = bjt1/2.0410y " Uji1/2.041/2]
< OHth’OOkﬁ_lh;_lHuyxtHLl((%@jﬂ)x(ye,yul)) ’
(62)
for t € {1,2}.
Considering (61) and (62) in (60) we obtain
ko
by (Reu, vy) = Z - 55:(51/2)Uj+1/2,€+1/2 (63)
(Tj41/2,90)€EQH
(bj+1/2,£Aaﬂ7j,£ + bj+1/2,£+1Ax@j,£+1) +R
with
R < Clblloo( Y (diamA)* |[ul 3 a))? | Pavi
AeTy
for t € {1,2}, or in a more convenient form
R < Clblls-100( Y (diamA)** V| a)) [ Prvr
AeTy
for s € {2,3}.
For by, (u,vy) holds the following representation
~ Ye+1/2
bym(ua UH) = Z / buy ]—|—1/27 )dyAxUjf
(Tj11/2:Y0)€ v (64)

Yo4+1
+ / (buy)(xj+1/2> y) dyAaﬂ_)j,KJrl )

Yevr1/2



26 J.A. FERREIRA

and so we deduce an estimate for by, (Rpu, vyg) — by, (u, vy) estimating sep-
arately the following terms

bivi/2.0+bjt1/2.011
Qb1 = Z ki 2 — 03 12 041/2
(»Tj+1/2,yz)€§H
ver Vjo+ Uj st
= [ b dy ) A2
Ye

1 k
Qb2 = 5 Z (56bj+1/2,€53(/1/2)uj+1/2,€+1/2

($j+1/2’yz)€QH

Yeyr1/2
- / (buy)(%ﬂ/% Y) dy) (—Ay A5

Ye
and

1 ky
Qb3 = 3 Z <§ j+1/2,£+152(,1/2)uj+1/2,€+1/2

(Tj41/2:Y0) €

Ye+1
- / (buy)(xﬂ—l/% y) dy> AyAx@j,é .

Yet+1/2

Estimate for (1:
First of all we note that

ks bj+1/2,€ + bj+1/2,€+1 5<1/2)

Y41
Ujt1/2,041/2 — / (buy)(xj41/2,y) dy

9 y
Ye
Yet1 (65)
= / (0(z 1172, Yer12) — b(@j31/2,Y)) uy(@js1/2,y) dy + R
Ye
where
9, _1 Tj+1 Yot
R < bt [ [ () + sl dy
Ly Ye
Moreover
Yo+1

\ (b($j+1/2, y£+1/2) - b($j+1/2, y))uy($j+1/2; y) d3/|
Ye

Lj+1 Yeor1
< C\Ib!|2,ook?h;1/ / (luy| + || + hj(luyal + [uge,l)) dy da.
Ty Ye
(66)
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Considering (65) and (66) in the expression of ()1 we obtain

Lj+1 Yeor1
Qual < Clblan( S ke/ / (T + [

(lj+1/27yl) Q
hi(luye + [ugz, ) dy da )2 Progl),

and so

Qb1 < Cllblloco( Y (diamA) ullfgaa) || Prval )y -
AeTy

Estimate for Q) o:

Using in (p2 partial summation with respect to j we obtain the following
representation

Q2= Q) + Q) (67)
with
(1) Ljt+1/2 1

20,5 = Z ké b(x, ye) 3 (w, yerr) — 2u(, yei1j2) + ule,ye))

(zj, y£+1/2 —1/2

Ye+1/2 1/9
. / (Oo.) = b)), dy) dad 20,
Ye

and

(2) ke

2Qb,2 - Z Nz 2 b] —1z/2, 55 .7 Ne/24+1/2

(x,ye+1/2)€0Q
Yov1/2
_/ (buy)(xj—nm/% Y) dy) Ayvjy .
Ye

By the Bramble-Hilbert Lemma holds the following inequality
1
(P00 () = 2o, + o) ) |

yé+%
< Cllbl]s soke / (| + [ttnye]) dy

Ye

(68)

We also have

Yet1/2

[ )~ b)), < Wl [ G+ el (69

Ye
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Considering (68) and (69) in Qélg we easily obtain

Ljt+1/2 Ye+1
QY <Ol Y i / / Tyl + luya?
Tj—1/2

(CUJ Z/e+1/2 ye

+ug,2?) dy dx )2 Prog|r -

The last estimate enable us to conclude that

Qs (3" (diamA)*|ul

AeTy

Yoo a2 Pavall (70)

for s = 2.
It is easy to show that the estimate (70) also holds for s = 1.

Estimate for (3:

For ()p3 holds the decomposition Q3 = Ql()lg + Q%, analogous to the de-
composition (67) established for @2, with |Ql()1§\ bounded by the the upper
bound of (70), and Qg given by

2 1 ke,
)EON

(Tj,Ye41 /2

Ye+1
- / (buy) (@5 2, 9) dy | Ay

Yot1/2

Estimate for Qz()22) + Qg

We have
@, H@ _ Bla. A
Qb,Z + Qb,3 — Z N (xj*nm/% yf) yUij.0,
(T5,Ye41/2) €00

with

bi—n,s2.0 = bj—n, j2.041
B(xj—nz/%y@) = k= a 4j 120 51(/1/2)uj—77m/2,£+1/2

Yer1/2 1 Yo+1
[ by g [ Gu) i dy.

Ye Yet+1/2

N | —
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We note that B(x;_, /2, y¢) = B(zj,y¢) + R, with R = Ry + Ry and

Reo= [ (P )~ 2ul) + )

J xT

Ro= (5 0w s
+1LZ:w@>—MWH»%A4)(m,

with ]j = (Ij,l‘j+1) if Ne = —1 and [j = (xj_l’xj) if Ny = 1.
For R, applying the Bramble-Hilbert Lemma we obtain

Yeo+1
UMSQWmﬁl//‘UW
I Jy,

For Ry holds

+ |ugye|) dydx,  t € {1,2}.

Ye+1
mﬂswwmm//‘u%wwwmwm

I; Jye
Then we conclude ) )
Qs+ Qi3 = Ry + R,

Yet+1
S el +

(x] yg+1/2 689

where

B

—I—k?(|uy| + ‘nyD) dy dx‘5g(/1/2)@j,é+1/2| ;
for t € {1,2}, or in a more convenient form
IRII < Cllbllace( D (diamA)**V[ullF a)) I Pror
A€eTy

for s € {2,3}.
Finally, from the estimates for |Qy,|, ¢ = 1,2, 3, we conclude the proof.
|

Remark 3. (1) Let vy in Theorem 4 be null on the boundary 0Qy. If
1s the union of rectangles then

o (Rirtt,vir) — by (u,v)| < OCS (diam )l
AeTy

Hoa) Pl Pronls
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for s € {2,3}.
Let Q) be now a polygonal domain. In this case we have

by(E(RHU’7 UH) - Byﬂf(ua UH) = Rbewe —l— Rbrem'

We consider now Ry,_.. Let A* € T and we suppose that A* has
vertices (xj,ye), (zj41,ye) and (z;,yer1) being the first vertex associ-

T
ated with the ) angle. The term of Ry,,. associated wit A*, Ry ., 1S

given by

kﬁ (1/2) Ye+1/2 ~
= | 5bj1/2.00, g1 2001/2 — (bus) (T jq12,y) dy | Duvj

begce, * y
: 2 ’ Ye
ké 1 Yet1/2
+ (ij—1/2,£+15g(,1/2)uj—1/2,£+1/2 - 5/ (buj)(xj—l/%y) dy
Ye
]fg 1 Ye+1 -
+ Zbj_1/2’65351/2)uj_1/2’£+1/2 — 5/ (ij)(ZUj_l/g, y) Ayvﬂ.
Yey1/2
(71)
Attending that V110 = Vi1 = 0, for Ry: . holds the following rep-
resentation
h: Tjt1/2 Yoy1/2 Yo+1 -
Rbewe,A* = ?j (/ (buy>m dy - / (b(y£>uy>1' dy> daj(si(fl/2)v]+1/2,£
Tj—1/2 Ye Ye

bit1/2.0
— h; ( j+4/ (u<xj+1/27y€+l) - 2U($j+1/2ay£+1/2) + U(%’H/Q;W))

1 Yev1/2 3
by O b ) 0

Ye

bi—1 2,041
— hj <% (U(I‘jq/z, Yop1) — 2“(%‘71/2, y£+1/2) + u($j—1/27 ye))

1 Yet1/2 (1/2)
+§ ((b - b(y£+1))uy)$j—1/2 dy 595 UVjt1/2,0 -
Ye
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Using this representation and the Bramble-Hilbert Lemma it can be
shown that

< Clblhee D> (diamA) |yl o)l (Patm)ealla)
AEV;(A%)

| Ry

exe,A*

+bllse Y ((diamA) ™yl ray + (diamA) gyl 2 a) || (Pata)eallna)
AeVh(A)

+blliee Y (diamA) |yl a) + (diamA)? |uyel| 2 a) | (Pata)eallpa)
AEVR(A)

wheret € {1,2}, Vi(A*) is defined in Remark 1, Va(A*) is the union of
A* with the triangles of the smaller set of triangles containing (z;_1/2—
%, i) X (Yo, Yey1). Attending that A* is arbitrary in T3 we deduce

| Ry

< ) (diamA)H|ull3sa) '
AeT !

exre

+ (D (diamA)|ullfaa) | 1Pl

AeT?

where T was defined in Remark 1 and T2 is defined analogously
H H
to Tf{bl’?

The last estimate enable us to conclude that if
w € Hy(Q) N W (U gan2) and Y Al = O(Hpay)
AeTgH
then
| R
(2) For Ry, holds the following

max

< O(HY2 )| Pavi s

| Ry

< Z |77x‘k5 (Hu(xj)/HL1(ye,yz+1) + Hu(xj>//HL1(yz,ye+1)> ‘Ay@j,f‘

(75,Ye41/2) €00

stl

where u(z;)(y) == u(xj,y).
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(3) For vy € Wy, let by (Rpu,vy) be defined by
by (R by (R
bay(Riztt, vig) — y (R, vi) + bay (Rpu, vi)

2
where bg;)(., ) s given by (19). Let bay(u, vg7) be defined changing in
the definition of by,(u,vy) x with y.
For the difference
boy(Ru, vg) — 595?4(71'7 vn),

holds a result analogous to Theorem 4.

Let us consider now the contribution of (du), in (32).

Theorem 5. Let d(Ryu, Pyvy) be defined by (12) and

ci(u,UH) = — Z (du)(zj51/2,y) dy DAy forvg € Wy
5 Liv1y2.0
(Tj11/2,y0)€Q " 7T /2
Then 3
d(Ryu,vy) = d(u,ve) + Ry
where Ry satisfies:

(1) If u € H*(Q) then

1/2
[Rq| < C (Z (diamA)Qlu%m)) [ Prv|l,

A€eTy
(2) If u € H3(Q) then Ry = Rg,, + Ra,, + Ra,,, with
]% Yet+1 ~
Rdstl - Z _771‘§ (du)y do Ayl}j,g ’
(T5,Ye41/2) €00 ye
I
Ru= Y 2 [ @y, 2 [ ey o)
AeTg Iay Iay
and
|Ra...| < CCY (diamd)*|[ullfsa) | Prvmlh -

AeTy
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Proof: An estimate to d(u, Pgvg) — d(u, vg) is obtained estimating sepa-
rately

Q= Y [ (@)6pn) - Dutery) didss (72

(Tj41/2:Y0)EQ Livaye

and

Q4= Z / (Du(zj11/2,y) — Du(@jinjo, ye)) dyDgvje  (73)

(2j41/2:ye) €D Liv1y2

where Du(zj112,9) = & ((du)(z;j,y) + (du)(zjs+1,y)) . The bounds to these
two terms are obtained following the steps used in Theorem 2 on the estima-
tion of )1 and ()5 respectively.

|

Remark 4. For Theorem 5 holds a remak analogous to Remark 1. In the
context of a domain with an oblique side and with homogeneous boundary
conditions, we have

< C( (diamA)*ullFa) 1 Pronll,
AETH

provided that w € H3*(Q). In fact, if A € T has the vertices (x;,yr) (asso-
: : 7T
ciated with the angle 5), (j11,ye) and (xj,yey1) then

‘ Rd@IE

Ris = "2 [ @) dya,ms+2 [ (o) oy dy A

IA IA

2y
2

Yeor1
— / / (du)oy dy dz 65204110 + R,
Tj-1/2

Y

with
Tjt+1
RI < CRy [ (o)l daldf 5000

z/e+1/2 Tj+1
< Chih / [ @1l + el ) do dy ;01

to|f\

For the contribution of (eu),) holds the following result:
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Theorem 6. Let e(Ryu, Pgvy) be defined by (13)

e(u,vg) = — Z / (ew)(z, Yey1/2) dx Ayvj g forvg € Vi .
(201200 ¥ L1720
Then
e(Ryu, Prvg) = é(u,vg) + Re
where R, satisfies:
(1) If u € H*(Q) then

1/2
[Re| < C (Z (diamA)QIUI?p(m) [ Prv |l

AeTy
(2) If u € H3(Q) then R, = Re,,, + Re,,. + Re,.,, with
h. [%i+1
Re,, = Z —nygj / (eu)y do Ayvyp,
(Tj41/2,Y0) €08 i
I
Roo= Y B [ e a2 [ ety dod,o).
AeTgh Ing Tag
and
Rl < OCY (diam ) ulfns)) ] P

AeTy

Remark 5. Holds a remark analogous to Remark 4.
Let us look now to the difference

f(Rgu,vg)g — (fu,vg)y for vy € Wy,
where f(.,.) is defined by (14). As a preparation for the study of the last
term we prove the following:

Lemma 1. The following identity holds for all a;,b; € IC,j =1,...,4:
4 4 4
42&261 = Zaiz:bﬁr(al+a2—a3—a4)(bl+b2—bg—b4)
i=1 i=1 =1
+ (a1—a2+a3—a4)(b1—b2+b3—b4)
+ (al—ag—a3+a4)(b1—b2—b3+b4).
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Proof: The assertion follows applying the identity 2(ab+cd) = (a+c¢)(b+
d) + (a —¢)(b— d) to 2(a1by + asbs) and 2(asbs 4+ a4by) and to the resulting
terms.

m

Theorem 7. Assume that u € H*(Q). Let (fu)g € Wy be defined by (15)

then
|F(Rew, o) u—((fu)m, ve) ] < C( Y (diamA)!|ull3a)+Sm) || Pavalh,
AeTy
(74)
where Si can be estimated either by
Su< 3 (diamd)uldea, (75)
AeTgM
or, assuming u € H?(Q), by
S < S (diamA) | Auls) (76)
AeT

Proof: We decompose

((fuw)m,ve)m — f(Ruu, ve)n (77)

into the contributions belonging to full rectangles contained in 2 and the
remaining triangles. We begin considering such rectangle S = (z;,z,41) X
(ye, yer1) and subdivide it in four congruent subrectangles Sy, . .., Sy of equal
size, numbering them from bottom left to top right. By P, we denote the
common vertex of S and S; and we use the abbreviations v; = vy (P;), (fu); =
(fu)u(P).

The contribution E(S) of (77) belonging to S is then

E(S) = Z pili (78)

where
S|

pi:/Si fudxdy—T(fu)i,izl,...,éL (79)
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We apply Lemma 1 to 4F(S) and study the behaviour of the four resulting
summands. The ﬁrst one is

sz (/fudxdySqu )Z

1=1
The Bramble—Hllbert Lemma furmshes

18]
/Sfud:z:dy Z

and we obtain

| < Ol f 2o (diamS)?[ul5)

4
. S

[E1(S)] < C|If |0 (diamS)?ul i3> Juil (80)
i=1

Li(S)> S1,952 € {07 L, 2}

Next we estimate the second summand that have the form

Ey(S) == (p1+p2— p3 — pa)(01 + V2 — U3 — Uy)
= (p1+p2—p3—p1)(Uje — Vjos1 + Ujs10 — Vjs1.041) -

Thus we obtain

s
where \u\&Q) = max |51 52

\EZ(S)’ < \Pl+P2—P3—P4|k€ (\(PHUH)y(xj;yeﬂm)\ + ’(PHUH)y(xjH,WH/z)D .

To estimate further consider

pr=p= [ fudsay [ Fuddy + S ((fu), — (fu)).

From the Bramble-Hilbert Lemma follows

fudxdy — fudxdy
Sl S3

On the other hand
Yo+1
by((fun = () =y [ Fuly(asen)dy = [ (o), dady+ R

Ye

< C’Hle,oodiamSMgi).

where from another application of the Bramble-Hilbert Lemma ( or more
elementary from the error bound of the rectangle rule ) we have

S
R < C| flla.0oh /S gy |ddy < C||fla,ohilully.
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In the same way p, — ps can be bounded. Altogether we have shown
[Bo(S)] < O flla.(diamS)? (Jult + ul?)

(I(Prrvm)y(z), Yesrjo)l + [(Prom)y (1, ye+1/2)\)<é1)
The two other summands E3(S) and Ey(S) coming from the application of
Lemma 1 can be bounded in the same way as Fs(S).

We turn now to the contribution of (77) belonging to triangles in 7,3 if
there any at all. To be specific, let S be such a triangle with vertices P :=
Py = (xj,y0), Ps := (zj41,y¢) and Py := (xj,yey1). Let S;, ¢ =1,..., 4, denote
the four congruent triangles that partition .S with the aid of the midpoints
of the sides of S, where S; has P, as one vertex. Then the representation
(78) of E(S) with the quantities p; from (79) remaining the same. Lemma
1 is then applied and the summands F;(5), i = 2,3, 4, can be estimated as
before. But there is a difference with E;(S) which we write as

Ey(S) = En(S) + E12(S)
with

_ S| S| o
By = ( [ pudsay = Blgwn+ e - Bl + (fu)4)) >a,

B = B (< (fu)y — ()2 + (Fuly + (Fu))

The quantity F11(S) has the same bound as F1(S) in (80). In E15(S) the
differences (fu)s — (fu); and (fu)s — (fu)y can be bounded as in the first
part of the proof leading to the lower order estimate

4
. S S
[Bral < C||fls.sodiam (uly + fuli) Y Joi]
i=1
The assertion with (75) is now derived from the presentation
f(Rau,vg) — ((fu)m,ve)e = Y E(S)
ScQ

by an application of Schwarz’s inequality for sums. All terms in the sum are
estimated in the form

lull s lwa (@, D) < Nlullfas) + 1Slhwon (@, 7)1
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< ullzegs) + ol Zz(s)

where the last inequality stems from the fact that wpy is either equal to a
function of type Pgyvy or a derivative of it, so that a norm equivalence can
be applied.

For the proof of the assertion with (76) we note that

|((fu)s = (fuh] < ([ fllrochlualc) and [(fu)s = (fu)o] < [ ll1ockluylees):

Hence
4
|Bia(S)] < Clf l1oc(diamS)|S1Y2 ullas) | S2 Y Jwil.
i=1
and the result follows along the same lines as in the case (75).

Remark 6. If in Theorem 7 we take vy null on the boundary 0Q0y then we
obtain (74) with Sy bounded by

(D (diamA)![fullfpaa) "l Prvmlh:
AeTgh

As a preparation for the estimate of the boundary contributions to the
global error we provide an estimate that is the key for the gain of an additional
power of h'/? of supraconvergence.

Let Qs ¢ =1,..., N+ 1, be a consecutive numbering of the points in 0Qy
with Qni1 = Q1. Denote by ¥, the line segment joining the points )y and
Qr+1 and by oy its length.

Lemma 2. Holds the following
N
(Z i (Qeir) — vu(Q))'Y? < C||Pyvplli, vi € Wh. (82)
=1

Proof: The assertion follows from the following chain of inequalities

N N Qer1 Qut1 o
S lon@en) — (@) = Y [ [ Pl = I gy g
=1 =1 ¢ ¢

o—T

< //PHUH(5)—PHUH(T)2dUdT

o—T

o0 092
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| Prvillig.00 < CllPavmlli.

The last estimate is a well-known trace inequality for functions in H'((Q).
m
The following result has an important role on the estimation of
< (du)n, + (ew)ny — ((du)ns + (ew)ny)w,vg >n

which arises in (31) and also on the estimation of

< RH¢_¢HJUH >H

which arises in (31) when in (8) ¥y is replaced by Ry.
The points in 9Qy define a partition of 9. We denote by T} the collection
of all line segments from this partition.

Proposition 2. Let ) € H*(09) and let by be define by (16). Then, for all
vy € Wy,

| < Rty — v, om >m | S O (Y B ey + ISP 19 1 52))® | Prros 1.
YeTh
(83)

Proof: Let g1/ be the midpoint of the line segment ¥, joining the points
Q¢ and (Qy.1. Then we obtain by a summation by parts and a reordering of
terms

N o o Qrt1/2
< Ry —Yy,vg >g= Z (41—-1-%(@0 — / / Y(o) dU) ol

(=1 2 C2#1/2
i < )+ w Quet) [ wto da) o +2%
=1 ¢
+ Z ( —py1) — /QM/Q@D(J) do + /Qe+1 Y(o) do‘) M.
: ¢ Qey1/2 2

An estimate of the error of the trapezoidal rule and the rectangle rule, re-
spectively, yields

| < Ry — Yu,vg >p | (84)
N

<C D (ot rwolve + vepa ] + oell ¥ ) lve — veral) -
=1
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Since
N
> odve +ven? < CllPrvaliz0) < CllPrvall}
=1
the asserted estimate follows from (84) by an application of Schwarz’ inequal-
ity for sums and integrals taking Lemma 2 into account.
=
Finally in order to get an estimate to (31), attending to Theorems 2-7 we
should estimate
RSH = Rastl + Rbstl —’_ Rcstl + Rdstl + Restl7
R... = R + R, +R. +R; +R

exe Ceze exe €exe)

< (Ry(du) —(du)p)n.+ (Ru(eu) — (ew) g )ny — (qu) g + Ry (au), vy >p (85)
and

aeme

where Bu is defined by (3) and (v)p represents the grid function defined by
(16).

Assuming that u € H3(f2) is such that the partial derivatives of first and
second order are in L?(9€)), applying Lemma 2 we obtain for Ry the estimate

N

Rl < (Y ZPllullfs,) Q) lvn(Qesn) — v (Qo)*)

SeTh =1

< CY [ZPllullfw) 2 Pavis-
YeTh

For R.,. assuming that u € H(2) N W2’OO(UA€T§M,2A) we have

[Reve| < O (diamA)!|ul3psa) "l Prros s

AeTy
(86)
+ CC Y (diamD)?|Allulfyama) I Proall -
AeT?
From (86) we conclude if Z |A| = O(H,pqp) then
AeTg"

[Revel < OHY 2| Prrvnll-

max
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Let us consider the boundary terms (85). Applying Proposition 2 we get
| < (Ru(du) = (du)g)n. + (Ru(eu) — (eu)n)ny + Ru(au) — (aw)n, ve >u |

< CY 1ZP Ul Fags) + lluyllFeesy) + 151yl F20m) 2| Prrol -
YeTh
(87)
If ¢ p7 is defined by (16) then attending to (3) we have < (Bu)g—¢g, vy >p=
0. Otherwise, if 1y = Ryt an estimate to < (Bu)y — ¥y, vy >p is obtained
using Proposition 2.
In the following proposition we summarize the previous considerations and,
attending that the estimates were obtained for s € {2,3}, by interpolation,
the estimates also hold for s € [2, 3].

Proposition 3. Let the grids Qp, H € A, satisfy condition (Geom). Assume
that the homogeneous variational problem 4, i.e with g = 0 and ¥ = 0 has
only the null solution. Then the discretized problem (8) has a unique solution
ug for H € A with Hy,g, sufficiently small. Moreover for s € [2, 3],
(1) if the solution u of (1) and (2) lies in H;(Q2) then
(a) if Q is a union of rectangles then

|1 Prr(Ripu — wpr)lly < C( ) (diamA)** Yl

%Jsfl(A))l/Q < Canax Hul

H3(Q) >
AeTy
(88)
(b) if Q has at least an oblique side and u € HS(Q)HWQ’OO(UAE,ZN—I;I)I,ZA)
then
1P (Rpu —um)lli < Eqyplu, up) + Epon ) (u, up) (89)
with
Ernp(usun) = O Y (diamA)**V|ul|Fa))"? < CHy i llull o)
AeTy
and
Exgip(usuy) = CC Y (diamA)?|Al|ulffyze(a)

AeTg?

< CHpax( Z ’A‘)lmnuHW?m(Tgbl)a
AeTM
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(2) if the solution w of (1) and (3) lies in H*() where ) represents a
union of rectangles and
(a) if Yy is defined by (16) then

|1 Pr(Rau —up)|ly < &y (uw, un) + Epp o (u, up) (90)
with

Enur () = C( Y (diamA)*~Vul3pa)"? < CHoillull o)

AETH
and
Eryr(wun) = OO 1EP(luel sy + luyllFas) + 12wy ll72)"?
730 (Us Uy Uellzz(z) T UyllL2(z) YayllLa(s)
YeTh

< CHYZ (luall2o0) + luyllz2o0) + Hapelltay |l 200))
(b) if g = Ry then
[P (Rau —um)l < Eqpr(u, un) + Egp o (w, un) + Egp (V) (91)

with
Ern (1) = COY ISP 2wy + 1110 [725))
YeTh
< C(HZ N 200 + HiaellV" | 12(00))-
=
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