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THE ALGEBRAIC PROBLEM OF THE EXACT POLE
ASSIGNMENT BY STATIC OUTPUT FEEDBACK IN

LINEAR SYSTEMS
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Abstract: Let A, B and C be matrices of sizes n×n, n×m and p×n respectively,
with entries from an arbitrary field K. Let L be a proper finite normal and separable
extension field of K.

In this paper we present a new method based on results of Moore [25] and Fletcher
[11] giving sufficient conditions (in the case where the Galois group GL/Kof L over
K is cyclic) in order to guarantee an affirmative answer to the pole assignment by
output feedback problem (PAOFP):

If (A,B) is controllable and (C,A) is observable, does there exist a
matrix K ∈ Km×p such that

det(A−BKC − λI) =
n∏

i=1

(λi − λ) (1)

for every n distinct elements λ1, . . . , λn of L that are the roots of
some polynomial with coefficients from K?

Keywords: linear systems, static output control feedback, pole assignment, arbi-
trary field.
AMS Subject Classification (1991): 11G25, 11G35, 12F10, 93B52, 93B55.

1. Introduction
In this work we shall consider a linear time-invariant multivariable system

x(k+1) = Ax(k) + Bu(k) (2)

y(k) = Cx(k) (3)

in which A, B and C are matrices with entries from a field K and appropriate
sizes and x(·), u(·) and y(·) are functions defined on the nonnegative integers
and with values in Kn, Km and Kp respectively. Throughout this report x(k),
u(k) and y(k) will be denoted by x, u and y respectively.

The PAOFP is studied when rankB = m and rankC = p. As the cases
where m = n or p = n can be solved using the state feedback problem we
will suppose m < n and p < n.
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This question has received much attention since, studying the generic
PAOFP, Kimura obtained a result and an inequality that we will refer in
the next chapter.

In the generic case (defined using Zariski’s topology) and for K = R and
L = C, Hermann and Martin [17] obtained the necessary and sufficient condi-
tion mp ≥ n for the PAOFP to have an affirmative answer although allowing
K to have complex entries. That condition is only necessary in the case of a
real K (Willems and Hesserlink [34], Eremenko and Gabrielov [9] and [10]).
The condition is quite obvious using the pole placement map.

Wang [32] proved (using the notion of Grassmannian) that mp > n is
sufficient for the generic PAOFP.

By a compensator we mean a preliminary linear transformation after which
the output is sent to the input.

When the compensator is another linear system we have the dynamic
PAOFP. For this problem we refer the works of Brasch and Pearson [3],
Rosenthal and Wang [28], Roca and Zaballa [26] and Cabral, Silva and Za-
balla [6]. In the two references involving Zaballa output injection and state
feedback are both used.

In a survey of Syrmos, Abdallah, Dorato and Grigoriadis [30] the reader
can obtain information on the exact and on the generic PAOFP.

In the second section we describe the exact static pole assignment by output
feedback problem (PAOFP) and give some (known) results about it. This
problem appears when the compensator is just a constant matrix.

In section three we study the exact static PAOFP based on papers of Moore
[25] and Fletcher [11]. We also generalize results obtained by Fletcher and
Magni [12], [13] and [22] when K = R and L = C. We will find sufficient
conditions under which the PAOFP has an affirmative answer, when the
Galois group of a proper finite normal and separable extension L of K is
cyclic. This case is quite important because for example it is well known
that the Galois group of a finite field is cyclic.

The pole assignment by state feedback problem (PASFP) is the particular
case of the PAOFP when C is the identity matrix In. It has been studied
by several authors. We refer Brunovsky [5], Brockett [4], Rosenbrock [27],
Wohnam [36] and Zaballa [38] who studied the question even when (A, B) is
not controllable.

The proofs of some results on the PASFP that are used in our work, can
be found for example in Barnett [1] or Gonçalves [14] and [15].
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The cases of the PAOFP that can not be solved with the PASFP will be
treated in an algorithmic way.

2. Pole assignment by output feedback
Let A, B and C be matrices of sizes n×n, n×m and p×n respectively

with entries from a field K. Let L be a proper finite normal and separable
extension field of K and let D denote the set of n−tuples of distinct elements
of L which are the roots of some polynomial with coefficients in K.

The set of such polynomials will be denoted by K[λ].

Definition 2.1. Let R(B) denote the range of B. Then

(1) The pair (A, B) is controllable if there is no non-trivial AT -invariant
subspace of kerBT .

(2) (C, A) is observable if there is no non-trivial A-invariant subspace of
kerC.

Considering x(·), u(·) and y(·) as functions defined on the nonnegative in-
tegers and with values in Ln, Lm and Lp respectively we can easily prove the
following necessary and sufficient conditions for controllability and observ-
ability.

Theorem 2.2. Let R(B) denote the range of B and let

<A,R(B)> :=
n−1∑
i=0

AiR(B).

Then (A, B) is controllable if and only if < A,R(B) > = Ln and (C, A) is
observable if and only if (AT , CT ) is controllable.

In the previous case, controllability can be described by other conditions.

Theorem 2.3. The following statements are equivalent:

a) (A, B) is controllable.
b) rank [B|AB| . . . |An−1B] = n, with [B|AB| . . . |An−1B] being an n×nm

matrix whose first m columns are the columns of B, the next m columns
are the columns of AB, and so on.

c) There is no proper A-invariant subspace containing R(B).
d) rank [A− αI|B] = n, for every α in the spectrum σ(A) of A.
e) Let α be an element of L. Then the only vector x satisfying xTA = αxT

and xTB = 0 is the null vector.
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The following four assumptions will apply throughout this section.

Assumption 2.4. The sum of the numbers of inputs and outputs exceeds the
number of states, that is

m + p > n. (4)

Assumption 2.5. The triple (A, B, C) is complete in the sense that (A, B)
is controllable and (C, A) is observable.

Assumption 2.6. x(·), u(·) and y(·) are functions defined on the nonnega-
tive integers and with values in Ln, Lm and Lp respectively.

Assumption 2.7. rankB = m and rankC = p.

Remark 2.8. The fourth assumption is a technical one and as noted by
several authors as Fletcher and Magni [13] or Mondié, Zagalak and Kučera
[24] it can be done without any loss of generality.

When we want to know if for the system given by (2) and (3) there exists
an output feedback control law equation

u = −Ky (5)

such that K has entries from K and the spectrum of the plant matrix A −
BKC of the closed loop system governed by (2) and (5) can be arbitrarily
assigned in D, we have the pole assignment by output feedback problem
(PAOFP).

PAOFP Does there exist an m× p matrix K with entries from K
such that

det(A−BKC − λI) =
n∏

i=1

(λi − λ) (6)

for every n-tuple (λ1, . . . , λn)∈D ?

Kimura [18] obtained for K = R and L = C the following result.

Theorem 2.9. For every n − tuple (λ1, . . . , λn) in D and for i = 1, . . . , n,
there exist elements γi in an arbitrary neighborhood of λi such that the spec-
trum of the matrix A−BKC is {γ1, . . . , γn} for some real matrix K.
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In the same paper Kimura introduced inequality (4) and gave an example to
prove that Theorem 2.9 may fail if the system does not satisfy that inequality.
Then, if the system does not satisfy (4), the answer to the PAOFP is negative.

The next theorem was proved by Fletcher and Magni [13].

Theorem 2.10. If {λ1, . . . , λn} is a set of distinct complex numbers then
there exists a (possibly complex) matrix K such that λ1, . . . , λn are the eigen-
values of A−BKC.

Remark 2.11. The algorithmic proof of Theorem 2.10 does not depend on
the characteristic properties of C.

An example in Kimura [18] shows that, even if {λ1, . . . , λn} is closed under
conjugation, the matrix K of Theorem 2.10 can have some non real entries.
Then

Theorem 2.12. The PAOFP has negative answer in the absence of further
conditions.

In this work we give sufficient conditions in order that the PAOFP has an
affirmative answer.

The last result of this section was proved by Fletcher and Magni [12], [13],
[22]. It gives a set of necessary and sufficient conditions for the solvability
of the exact PAOFP when K = R and L = C. In order to describe those
conditions we need to define the following subspaces.

Definition 2.13. Let α be an element of L. Then

S(α) := {s∈Ln : (A− αI)s∈R(B)}
T (α) := {t∈Ln : t = (A− αI)y, for some y ∈ kerC}

B0 :=
⋂

α∈L
S(α)

C0 :=
∑
α∈L

T (α)

m0 := dim (B0)

n− p0 := dim (C0).

Theorem 2.14. The PAOFP has an affirmative answer for K = R and
L = C if and only if the following three conditions do not hold simultaneously:
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a) n = m + p− 1, with m and p even.
b) The set {λ1, . . . , λn} has one and only one real element denoted by α.
c) Either C0 = S(α) or B0 = T (α).

3. Exact pole assignment by output feedback over an
arbitrary field allowing the poles to be in an extension
with a cyclic Galois group

Having in mind Remark 2.11 we may assume that for an arbitrary field
K the answer to the PAOFP is affirmative provided that K is allowed to
have entries from L. It means that if (λ1, . . . , λn) is an n− tuple of distinct
elements of D there exists a matrix K (possibly with entries from L) such
that λ1, . . . , λn are the eigenvalues of A−BKC.

Our aim in this chapter is to give sufficient conditions for the matrix K to
exist and to have all its entries from K.

3.1. Fields and Galois Theory. We need some basic results on fields and
on Galois theory. They are proved in basic text books like Birkhoff and
MacLane [2] and Lang [19].

Remark 3.1. Any extension N of a field F may be considered as a vector
space over F . If the vector space has a finite dimension the field N is math-
called a finite extension of F and its dimension is known as the degree of the
extension. This dimension will be denoted by [ N : F ].

Definition 3.2. A finite extension N of a field F is said to be normal if every
polynomial p(x) irreducible over F which has one root over N has all its roots
in N.

Theorem 3.3. Every finite, normal, and separable extension of F is the root
field of a separable polynomial.

In our case L is then the root field of some separable polynomial.

Definition 3.4. The Galois group GL/K is the set of automorphisms u of L
such that u ∈ GL/K =⇒ u(α) = α, ∀α∈K.

Remark 3.5. By Artin’s Theorem, K = {α ∈ L : u(α) = α, ∀u ∈ GL/K}.

Theorem 3.6. If g1, . . . , gq are the elements of GL/K then there exists an

element β ∈ L such that g1(β), . . . , gq(β) form a basis of L over K.
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Corollary 3.7. [L : K] is the order of the Galois group GL/K.

Definition 3.8. If ∀ i ∈ {1, . . . , n} ∀u∈GL/K ∃ j∈{1, . . . , n} : u(βi) = βj

then the set {β1, . . . , βn} is closed under the action of GL/K.

Remark 3.9. The set {λ1, . . . , λn} is closed under the action of GL/K since

λ1, . . . , λn are the roots of a polynomial in K[λ].

3.2. The subspaces S(α), T (α), B0 and C0. In Definition 2.13 we intro-
duced the subspaces S(α), T (α), B0 and C0 for α ∈ L.

Remark 3.10. Moore [25] proved that S(λi) are the subspaces where we can
choose the right eigenvectors of A − BKC corresponding to the eigenvalues
λi. By duality, [T (λi)]

⊥ is the subspace where the left eigenvectors can be
chosen.

The following lemma has an easy proof so we will omit it.

Lemma 3.11. If (A,B) is controllable then dim S(α) = m for all α∈L.
If (C, A) is observable then dim T (α) = n− p for all α∈L.

Lemma 3.12. Let (α, µ) be any pair of elements of L. Then

a) B0 = S(α) ∩ S(µ).
b) C0 = T (α) + T (µ).
c) B0 = {b ∈ R(B) : Ab ∈ R(B)} = R(B) ∩ S(α).
d) C0 = kerC + AkerC = kerC + T (α).
e) dimB0 ≥ 2m−n and dim C0 ≤ 2(n−p) so either B0 6= {0} or C0 6= Ln.

The proof of the previous lemma in the case K = R and L = C can be
found in [11]. It is very easy to verify that it is field independent.

In e) we need controllability and observability.

Lemma 3.13. If for some i ∈ {1, . . . , n} we have S(λi) ⊆ R(B) then
R(B) = Ln.

Proof : If there exists i such that S(λi) ⊆ R(B) then, by Lemma 3.12 c), we
can conclude that B0 = R(B).

As B0 is A-invariant and (A, B) is controllable, then, by c) of Theorem 2.3,
R(B) = Ln.

In the case of Lemma 3.13, since (A, B) is supposed to be controllable,
then it is well known from the pole assignment by state feedback theory (see
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for example [1] and [14]) that there is a matrix F with entries from K and
such that {λ1, . . . , λn} is the set of eigenvalues of A−BF .

Since the spectrum of A−BKC is the same as that of AT −CTKTBT we
may assume that p ≥ m.

If for some i we have S(λi) ⊆ R(B), it follows from the previous lemma
that p = m = n.

Then the PAOFP has affirmative answer with K = FC−1.
Because of this discussion we make the following assumption that will apply

throughout the remaining chapter.

Assumption 3.14. There is no integer i (i = 1, . . . , n) such that S(λi) is a
subset of R(B).

3.3. The Warren and Eckberg structure for S(α). In this section we
briefly describe the structure of S(α) based on Warren and Eckberg [33].

Theorem 3.15. In the controllable system described by the pair (A, B) there
exist indices νi, i=1, . . . ,m such that

a) 0 < ν1 ≤ . . . ≤ νm

b) ν1 + . . . + νm = n

Theorem 3.16. There is a basis {s10, . . . , s1,ν1−1, . . . , sm0, . . . , sm,νm−1} of Ln

with all the vectors in Kn such that

a) s1,ν1−1, s2,ν2−1, . . . , sm,νm−1 is a basis of R(B);
b) if α ∈ L and if, for any i ∈ {1, . . . ,m}, si(α) is defined as follows

si(α) := si0 + αsi1 + . . . + ανi−1si,νi−1

then {s1(α), . . . , sm(α)} is a basis of S(α).

Theorem 3.17. Let α 6= 0 be an element of L.
If M := {i : si(α) = si0} then A := {si(α) : i ∈M} is a basis of B0

Corollary 3.18.

m0 =
∑
i∈M

νi = #M.

Fletcher [11] proved the following useful result.

Lemma 3.19. Let V be a proper subspace of Ln, of dimension k say, and let
I be an integer such that ν1 + . . . + νI > k.

Then there are fewer than νI values of α for which S(α) ⊆ V.
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The previous lemma has an obvious consequence.

Corollary 3.20. Let V be a proper subspace of Ln. Then there are at most
n−m values of α for which S(α) ⊆ V.

3.4. Sufficient conditions for an affirmative answer to the PAOFP.
We will study the PAOFP in the case GL/K is a cyclic group with generator

g and order [L : K].
We suppose that Assumptions 2.4, 2.5, 2.6 and 2.7 apply throughout this

chapter.
First case: The PAOFP when K ∈ Lm×p

Having in mind Remark 2.11 we can conclude that

Theorem 3.21. The PAOFP has an affirmative answer if K is allowed to
have elements from L.

The key step of Fletcher and Magni’s proof (see [13]) is the following lemma

Lemma 3.22. Let si ∈ S(λi) ( i = 1, . . . , r ) be vectors such that

s1, . . . , sr are linearly independent (7)

dim(R(B) + span {s1, . . . , sr}}) = min{n,m + r} (8)

{span {s1, . . . , sr}} ∩ C0 = {0}. (9)

Let Q be an n × (n − r) matrix satisfying QTQ = In−r and QTsi = 0
(i = 1, . . . , r).

Let P be a (p− r)× p matrix such that with rankP = p− r and PCsi = 0
(i = 1, . . . , r).

Then there is a matrix Kr ∈ Lm×p such that

a) (A−BKrC)si = λisi (i = 1, . . . , r).
b) (QT (A−BKrC)Q, QTB, PCQ) is a complete triple.

c) QT (A−BKrC)Q ∈ L(n−r)×(n−r), rankQTB = min{n− r, m} and
rankPCQ = p− r.

Remark 3.23. From now on P and Q will denote matrices as defined in the
previous lemma.

From the proof of Fletcher and Magni we point out some facts.

Remark 3.24. Using, if necessary, AT , CT , BT , then from c) of Lemma 3.12
and Assumption 2.4, we conclude that C0 6= Ln.
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Having in mind Assumption 3.14 there exists s1 ∈ S(λ1)− (C0 ∪R(B)).
Therefore, at least for r = 1, (7), (8) and (9) can be satisfied.

Remark 3.25. The algorithm remains valid if (9) is replaced by the following
two conditions:

span{s1, . . . , sr} ∩ kerC = {0} (10)

span{s1, . . . , sr} ∩ T (β) = {0}. (11)

In (11) β is considered in an algebraic closure of L.

Remark 3.26. We note now the way conditions (7), (8), (9), (10) and (11)
act in the algorithm.

• rankQTB = min{n− r, m} is proved using (7) and (8).
• From (7) and (10) we can prove that (A − BKrC)si = λisi (i =

1, . . . , r), rankPCQ = p−r and (QT (A−BKrC)Q, QT ) is controllable.
• The proof of the existence of Kr satisfying a) is based on

si ∈ S(λi) ⇒ (A− λiI)si = Bwi

(10) ⇒ Csi 6= 0, i = 1, . . . , r

∃Kr : KrCsi = wi, i = 1, . . . , r.

• The observability of (PCQ, QT (A−BKrC)Q) is proved using (7) and
(11).

• Obviously using (7) and (9) we can conclude that (A−BKrC)si = λisi

(i = 1, . . . , r), and (QT (A−BKrC)Q,QTB, PCQ) is a complete triple.

Remark 3.27. If, by induction, we suppose that there exists an m × (p −
r) matrix L such that λr+1, . . . , λn are the (left) eigenvalues of QT (A −
BKrCQ)−QTBLPCQ then σ(A−B(Kr + LP )C) = {λ1, . . . , λn}.

This is the last step to complete the proof of Theorem 3.21.

Second case: The PAOFP when K ∈ Km×p

In order to guarantee that the algorithm leads to a matrix K ∈ Km×p we
need the following result.

Theorem 3.28. If the vectors si ∈ S(λi) (i = 1, . . . , n) obtained from the
successive application of Lemma 3.22 can be chosen to satisfy

λj = gt(λi) ⇒ sj = gt(si) (12)

then K ∈ Km×p.
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Proof : From (7) we prove that for all i ∈ {1, . . . , n}
g(A−BKC)g(si) = g(λi)g(si)

(A−BKC)g(si) = g(λi)g(si).

Then [(A−BKC)− g−1(A−BKC)]si = 0 and, as {s1, . . . , sn} is a basis of
Ln, we can conclude that A−BKC = A−Bg(K)C.

Then, by Assumption 2.7, K = g(K) and from Remark 3.5, K has all its
entries from K.

Let λj1, . . . , λjr
be any orbit. We suppose, without loss of generality, that

ji = i (i = 1, . . . , r) and λi+1 = gi(λ1) (i = 0, . . . , r − 1).

Remark 3.29. The reduced order system is controllable, observable and sat-
isfies an inequality corresponding to (4).

As in Remark 3.27 we can conclude from Fletcher and Magni’s proof of
Theorem 3.21 (see [13]) that if, in the reduced system, L is the feedback
matrix for one orbit λr+1, . . . , λr1

then {λ1, . . . , λr1
} ⊆ σ(A−B(Kr +LP )C).

Then in each step of the algorithm we need to make sure that the vectors
can be chosen in such a way that the condition of the previous theorem is
satisfied.

The detailed proof of that possibility can be seen in Magni [23]. We will
refer again to this question in Remark 3.54.

3.4.1. The existence of vectors satisfying (7) and (8). Suppose that the
vectors si ∈ S(λi) (i = 1, . . . , r) are linearly independent. Then

Lemma 3.30.

dim(R(B) + span {s1, . . . , sr}) = m + r ⇒ rankQTB = m. (13)

Proof : As [B|s1| . . . |sr] has rank m+r then R(B)∩(span {s1, . . . , sr} = {0}.
It is easy to prove that kerQT = span {s1, . . . , sr}. Then rankQTB =

m.

Remark 3.31. In the previous lemma it is obvious that m ≤ n− r.

Next assumption will apply from now on.

Assumption 3.32. #K ≥ [L : K].

We will need the following result that will be used to prove some results in
this chapter and it justifies why we made the previous assumption.
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Lemma 3.33. If #K ≥ [L : K] and if t+1 doesn’t exceed the order of GL/K
then for every polynomial P (X1, . . . , Xt+1) satisfying:

T.1 the degree in each variable is at most 1,
T.2 the coefficient of the monomial X1X2 . . . Xt is non null,
T.3 the degree of the polynomial is t,
T.4 the constant term is null,

there is α ∈ L such that P (α, g(α), . . . , gt(α)) 6= 0.

Proof : Let us suppose that ∀α ∈ L, P (α, . . . , , gt(α)) = 0 with P a polyno-
mial satisfying T.1, T.2, T.3 and T.4.

Then, for all α ∈ K, P (α, . . . , gt(α)) = Pt(α) with Pt a t-degree polynomial.
As K has at least t + 1 elements we arrive to the following contradiction:

the t-degree polynomial Pt has at least t + 1 different roots.

The following important lemma generalizes a result proved by Magni
[21] but our proof is quite different from the one he produced.

Lemma 3.34. Let V and W be subspaces of Ln satisfying

g(V) = V . (14)

dim(V +
t−1∑
i=0

gi(W)) ≥ dimV + t, ∀t ≤ t̄. (15)

Then there exists a vector w ∈ W such that w, g(w), . . . , gt̄−1(w) are linearly
independent and V ∩ span {w, g(w), . . . , gt̄−1(w)} = {0}.

Proof : From Speiser’s Galois Descent Theorem (see [35]), we can prove that

there exists a basis {e1, . . . , ek} of W + g(W) + . . . + g[L:K]−1(W) such that
ei ∈ Kn for all i in {1, . . . , k}.

Let {x1, . . . , xl} be a basis of V . From (14) and Speiser’s Galois Descent
Theorem, we can suppose that xi ∈ Kn for all i in {1, . . . , l}.

Renumbering if necessary it is easy to prove that there is an integer k1 such

that {x1, . . . , xl, e1, . . . , ek1
} is a basis of V +W + g(W) + . . . + g[L:K]−1(W).

Then 1 ≤ k1 ≤ k and there exists x ∈ W such that V ∩ span {x} = {0}.
Let t̄1 be the least integer such that gt̄1(x) ∈ V+span {x, g(x), . . . , gt̄1−1(x)}.
If t̄1 ≥ t̄ the proof comes to an end. Let us then suppose that 1 ≤ t̄1 < t̄.
gt̄1(W) is not a subset of V+span {x, g(x), . . . , gt̄1−1(x)} because otherwise

gi(W) ⊆ V + span {x, g(x), . . . , gt̄1−1(x)} (0 ≤ i ≤ t̄1)
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and dim(V +W + g(W) + . . . + gt̄1(W)) < dimV + (t̄1 + 1),

contradicting (15).
Let y be a vector of W such that gt̄1(y) /∈ V + span {x, g(x), . . . , gt̄1−1(x)}.
The vectors x1, . . . , xl, θx+y, . . . , gt̄1(θx+y) can be represented in the basis

{x1, . . . , xl, e1, . . . , ek1
} as the columns of the matrix

Q(θ) :=

[
Il×l (A(θ))l×(t̄1+1)
0k1×l (B(θ))k1×(t̄1+1)

]

with (A(θ))l×(t̄1+1) :=

 θα11 + β11 . . . gt̄1(θ)α1,t̄1+1 + β1,t̄1+1
...

...
θαl1 + βl1 . . . gt̄1(θ)αl,t̄1+1 + βl,t̄1+1


and(B(θ))k1×(t̄1+1) :=

 θγ11 + δ11 . . . gt̄1(θγ11 + δ11)
...

...
θγk11 + δk11 . . . gt̄1(θγk11 + δk11)

 .

As the vectors x1, . . . , xl, x, . . . , gt̄1−1(x), gt̄1(y) are linearly independent we
can suppose without loss of generality that the following (t̄1 + 1) × (t̄1 + 1)
minor is non null∣∣∣∣∣∣

γ11 . . . gt̄1−1(γ11) gt̄1(δ11)
...

...
...

γt̄1+1,1 . . . gt̄1−1(γt̄1+1,1) gt̄1(δt̄1+1,1)

∣∣∣∣∣∣ 6= 0. (16)

If x1, . . . , xl, y, g(y), . . . , gt̄1(y) are linearly independent, then the the proof
comes trivially to an end.

Let us assume that x1, . . . , xl, y, g(y), . . . , gt̄1(y) are linearly dependent.
Then from (3.10) we can conclude that∣∣∣∣∣∣

θγ11 + δ11 . . . gt̄1(θγ11 + δ11)
...

...
θγt̄1+1,1 + δt̄1+1,1 . . . gt̄1(θγt̄1+1,1 + δt̄1+1,1)

∣∣∣∣∣∣ = P (θ, g(θ), . . . , gt̄1(θ))

with P (X1, . . . , Xt̄1+1) a polynomial in t̄1 + 1 variables satisfying conditions
T.1, T.2, T.3 and T.4 of Lemma 3.33.

Then there exists θ ∈ L such that x1, . . . , xl, θx + y, . . . , gt̄1(θx + y) are
linearly independent vectors.

If w := θx+y then w ∈ W and w, g(w), . . . , gt̄1(w) are linearly independent
vectors satisfying V ∩ span {w, g(w), . . . , gt̄1(w)} = {0}.
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The following result is an immediate consequence of lemmas 3.12, 3.30 and
3.34.

Corollary 3.35. If

dim(R(B) +
t∑

i=1

S(λi)) ≥ m + t, ∀t ≤ r (17)

then there exists s ∈ S(λ1) such that si := gi−1(s) (i = 1, . . . , r) are linearly
independent vectors satisfying (R(B) + span {s1, . . . , sr}) = m + r.

Furthermore, the rank of QTB is m.

The next lemma is very important in the pole assignment by state feedback
problem (see [14]) and it generalizes to an arbitrary field a result obtained
by Fletcher and Magni [13]. It will be necessary in this chapter namely in
the proof of Lemma 3.37.

Lemma 3.36. Let λ0, . . . , λk be distinct elements of L satisfying

S(λ0) ⊆ S(λ1) + . . . + S(λk).

Then S(λ1) + . . . + S(λk) = Ln.

Proof : If S(λ1)⊆R(B) then from Lemma 3.13 we prove that B0 = R(B) =
Ln and obviously S(λ1) + . . . + S(λk) = Ln.

If S(λ1) 6⊆ R(B) let x1 be an element of S(λ1) not belonging to R(B). In
this case it is easy to prove that dim(S(λ1) + . . . + S(λk)) ≥ 2 and we can
suppose that there exists x2 ∈ S(λ1) + . . . + S(λk) such that x1 and x2 are
linearly independent vectors.

Let {x1, . . . , xn} be a basis of Ln. If {x1
∗, . . . , xn

∗} denotes the canoni-

mathcal isomorphic image in Ln of the dual basis, we have (x1)
∗Tx1 = 1.

Then (A− λ1I)x1 = Bv1 and for K = v1x1
∗ we have (A−BK)x1 = λ1x1.

If Q∗ := [x2
∗| . . . |xn

∗] it is trivial to prove that

(Q∗)TP = In−1, (Q∗)Tx1 = 0, x1
∗TP = 0, and [P ∗|x1

∗]T [P |x1] = In.

As (A, B) is controllable then (A−BK,B) and ((Q∗)T (A−BK)P, (Q∗)TB)
are also controllable.

Let Ā and B̄ denote (Q∗)T (A−BK)P and (Q∗)TB respectively.
If for every element α of L we define S̄(α) := {x∈Ln : [(Ā− αI)x]∈R(B̄)}

then
S̄(α) = (Q∗)T (S(α)), ∀α 6=λ1 and S̄(λ1) ⊇ (Q∗)T (S(λ1)),
with “⊇” replaced by “=” if and only if n = m.
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All we need now is to prove that dim{S(λ1) + . . . + S(λk)} = n.
From the different equalities introduced for B0 and having in mind that x2 is

an element of S(λ1) + . . . + S(λk) it is easy, arguing by induction on the num-

ber of columns of P , to conclude that dim{(Q∗)T (S(λ1) + . . . + S(λk))} =
n− 1.

Let {x1, z2, . . . , zs+1} be a basis of S(λ1) + . . . + S(λk). Then zi+1 = Pyi +
αix1, with yi∈Ln−1 and αi ∈ L (i = 1, . . . , s).

{(Q∗)TPy1, . . . , (Q
∗)TPys} contains a basis of (Q∗)T (S(λ1) + . . . + S(λk)).

Then s ≥ n− 1 and obviously n = s + 1.
Therefore dim{S(λ1) + . . . + S(λk)} = n and S(λ1) + . . . + S(λk) = Ln as

required.

Lemma 3.37. Let µ0, µ1, . . . , µs be s + 1 distinct elements of L satisfying

S(µ0) ⊆ R(B) +
s∑

i=1

S(µi).

Then

R(B) +
s∑

i=1

S(µi) = Ln.

Proof : If for some integer i we have S(µi) ⊆ R(B) then, arguing as in the
proof of Lemma 3.36, this lemma can be easily proved.

Let us suppose that S(µi) 6⊆ R(B).
Then there exists a vector x1 in S(µi) that does not belong to R(B).
If

dim

(
s∑

i=1

S(µi)

)
≥ m + 2

then, if the the columns of the matrix M := [B|x1| . . . |xn−m] form a basis
of Ln and x2 ∈ S(µ1) + . . . + S(µs), we can define the n × (n − 1) matrix
Q := [B|x2| . . . |xn−m] and we can prove the lemma arguing as in the proof
of Lemma 3.36.

All we have to do now is to prove the lemma, supposing that

dim

(
R(B) +

s∑
i=1

S(µi)

)
= m + 1.

In this case we can suppose s = 1.
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Let {y1, . . . , ym, b} be a basis of R(B) + S(µ1). We can suppose that
yi ∈ S(µ1) (i = 1, . . . ,m), yi ∈ B0 (i = 1, . . . ,m− 1) and b ∈ R(B).

Again from Lemma 3.36 it is easy to prove that span {S(λ), λ ∈ L} = Ln.
Then there exists µ ∈ L such that Ab ∈ S(µ).

As A(R(B)+S(µ)) ⊆ R(B)+S(µ) and (A, B) is controllable, thenR(B)+
S(µ) = Ln and n = m + 1. The proof is now complete.

Remark 3.38. In the previous lemma, Assumption 3.14 does not need to be
assumed.

Lemma 3.39. If (17) does not hold for some integer t (1 ≤ t ≤ r) let
t0 := min {t : 1 ≤ t ≤ r and (17) does not hold}. Then n = m + t0 − 1.

Proof : From Lemma 3.37, we have(
S(λt0) ⊆ R(B) +

t0−1∑
i=1

S(λi)

)
⇒

(
R(B) +

t0−1∑
i=1

S(λi) = Ln

)
.

The following inequalities are obvious

m + t0 − 1 ≤ dim

(
R(B) +

t0−1∑
i=1

S(λi)

)

≤ dim

(
R(B) +

t0∑
i=1

S(λi)

)
< m + t0.

Then n = m + t0 − 1.

Now we begin the study of the case suggested by Lemma 3.39.
We introduce our main assumption that will lead to the sufficient con-

ditions to the PAOFP to have an affirmative answer.

Assumption 3.40. m + p > n + [L : K]− 1.

Remark 3.41. For all that will be proved in this section 3.4.1, the condition
m + p ≥ n + [L : K]− 1 would be sufficient.

Remark 3.42. In the case L = C and K = R Fletcher and Magni [12], [13],
[22] proved (see Theorem 2.14) that m + p > n + 1 is a sufficient condition
to the PAOFP to have an affirmative answer.
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Going on with the study of the case suggested by Lemma 3.39, we have
two subcases.

subcase 1: m < r
In this case [L : K] + p > n + [L : K]− 1 then p = n and C is invertible.
By the pole assignment by state feedback results (see [14]) there exists

F such that σ(A − BF ) = {λ1, . . . , λn} and (with K = FC−1) we have
σ(A−BKC) = {λ1, . . . , λn}.

subcase 2: m ≥ [L : K]
In this case we have the following result.

Lemma 3.43. If (17) does not hold for some integer t ≤ r then there is
s ∈ S(λ1) such that

a) s, g(s), . . . , gr−1(s) are linearly independent;
b) dim [span {s, g(s), . . . , gr−1(s)}+R(B)] = n.

Proof : By Theorem 3.17 we know that if B0 = {0} then νi > 1, i = 1. . . . ,m.
Let dimB0 = a ≥ 1. From Assumption 3.14 we conclude that a < m.

Let νi = 1, i = 1 . . . , dimB0. Then

(1) S(λ1) = span{s10, . . . , sa0, sa+1(λ1), . . . , sm(λ1)
(2) νi > 1,∀i ∈ {a + 1, . . . ,m}
(3) {s10, . . . , sa0, sa+1,0 +λ1sa+1,1 + . . . +λ1

νa+1−2sa+1,νa+1−2, . . . , sm0 +

λ1sm1 + . . . +λ1
νm−2sm,νm−2, sa+1,νa+1−1, . . . , sm,νm−1} is a basis of the

subspace S(λ1) +R(B) because
(a) The vectors are linearly independent.
(b) All the vectors belong to S(λ1) + R(B) (note that s10, . . . , sa0

belong to S(λ1) ∩ R(B) and sa+1,νa+1−1, . . . , sm,νm−1 are vectors
from R(B)− S(λ1)).

(c) The number of vectors is

a + (m− a) + (m− a) = dim{S(λ1) +R(B)}.
Let w(λ1) := s10 + λ1s20 + . . . + λ1

a−1sa0 + λ1
asa+1,νa+1−1 + . . . +

λ1
m−1sm,νm−1 + wa+1(λ1) + wa+2(λ1) + . . . + wm(λ1), with wa+1(λ1) :=

λ1
m(sa+1,0+λ1sa+1,1+ . . .+λ1

νa+1−2sa+1,νa+1−2) and (for a+2 ≤ j ≤ m)

wj(λ1) := λ1
m+

∑j−1
i=a+1 νi−(j−a−1)(sj0 + λ1sj1 + . . . + λ1

νj−2sj,νj−2).

As
m∑

i=a+1

νi > m− a− 1 + 1
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then for β := deg w(λ) it is obvious that

β = m+
m∑

i=a+1

νi− (m−a−1)−2 > m+(m−a−1+1)−m+a−1 = m−1.

Then we have β ≥ m ≥ r.
For i = 1, . . . , r it is easy to prove that

w(λi) = gi−1(w(λ1)) ∈ S(λi) +R(B).

As β ≥ r and

[w(λ1)| . . . |w(λr)] = MN

with M the matrix

[s10| . . . |sa0|sa+1,νa+1−1| . . . |sm,νm−1|sa+1,0| . . . |sa+1,νa+1−2| . . . |sm0| . . . |sm,νm−2]

and N the Van der Monde matrix

N =


1 1 . . . 1
λ1 g(λ1) . . . gr−1(λ1)
...

...
...

...

λ1
β (g(λ1))

β . . . (gr−1(λ1))
β


then w(λ1), . . . , w(λr) are linearly independent.

Let us now prove that dim[span{w(λ1), . . . , w(λr)}+R(B)] = n.
We have already noted that s10, . . . , sa0, sa+1,νa+1−1, . . . , sm,νm−1 are vectors

of the subspace R(B).
With all the remaining µ elements of the Warren and Eckberg basis for Ln

we compose each of the following vectors z(λi) := λi
−m(w(λ1) + . . . + w(λr)

(i = 1, . . . , r).
Every vector z(λi) is an element of span{w(λ1), . . . , w(λr)}+R(B).
It is easy to prove that

µ =
m∑

i=a+1

νi − (m− a + 1) + 1 =
m∑

i=1

νi −
a∑

i=1

νi − (m− a)

= n− a− (m− a) = m + t0 − 1−m = t0 − 1 < r.

Then [z(λ1)| . . . |z(λµ)] = M1N1 with

M1 = [sa+1,0| . . . |sa+1,νa+1−2| . . . |sm0| . . . |sm,νm−2]
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and

N1 =


1 1 . . . 1
λ1 g(λ1) . . . gµ−1(λ1)
...

...
...

...
λ1

µ−1 (g(λ1))
µ−1 . . . (gµ−1(λ1))

µ−1

 .

As N1 is a Van der Monde invertible matrix then

sa+1,0, . . . , sa+1,νa+1−2, . . . , sm0, . . . , sm,νm−2

are vectors of the subspace span{w(λ1), . . . , w(λr)}+R(B).
If we set s := w(λ1) the proof comes to an end.

Corollary 3.44. If (17) does not hold for some integer t ≤ r if m ≥ [L : K]
and if s ∈ S(λ1) is as defined in the previous lemma, then for si := gi−1(s)
(i = 1, . . . , r), the rank of the matrix QTB is n− r.

Proof : The proof is easily deduced from the following obvious equalities
n− r = rankQT = rank (QT [B|s|g(s)| . . . |gr−1(s)]) = rank (QTB).

Remark 3.45. In the Corollary 3.44 it is obvious that n− r ≤ m.

The results obtained so far in this section prove the following important
theorem.

Theorem 3.46. There exists a vector s ∈ S(λ1) such that

a) s, g(s), . . . , gr−1(s) are linearly independent.
b) For an n× (n−r) matrix Q satisfying QTQ = In−r and QT (gi(s)) = 0

(i = 0, . . . , r − 1), the rank of QTB is min(m,n− r).

Remark 3.47. All what is said about the first subcase not only applies to
the case suggested by Lemma 3.39. Then we make the following assumption
that will apply throughout all the remaining chapter.

Assumption 3.48. m ≥ [L : K].

3.4.2. The existence of vectors satisfying (7) and (9). The following result
has an easy proof that we will omit.

Lemma 3.49. g(kerC) = kerC and g(C0) = C0.

In the proof of the next result, by using, if necessary, (AT , CT , BT ), we will
suppose, without any loss of generality, that m−m0 ≥ p− p0.
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Theorem 3.50. If m + p > n + [L : K]− 1 then

dim

(
t∑

i=1

S(λi) + C0

)
≥ t + dim C0, ∀t ≤ r.

Proof : From Remark 3.24 there exists s ∈ (S(λ1)− C0).
Let us suppose that for k < r we have

dim

(
k∑

i=1

S(λi) + C0

)
≥ k + dim C0 = k + n− p0.

Then

dim

(
k+1∑
i=1

S(λi) + C0

)
≥ (k + 1) + dim C0 = k + 1 + n− p0.

The worst case happens if

dim

(
k∑

i=1

S(λi) + C0

)
= k + n− p0 and S(λk+1) ⊆

k∑
i=1

S(λi) + C0.

In this case we have the following relations:

S(λk+1) + S(λk) ⊆
k∑

i=1

S(λi) + C0

dim [S(λk+1) + S(λk)] = m + m−m0 ≤ k + n− p0

m−m0 ≤ k + n− p0 −m + p− p0

(m−m0)− (p− p0) ≤ k + n−m− p < [L : K] + n−m− p.

The proof is now complete because we arrived to the contradiction (m −
m0)− (p− p0) ≤ [L : K]− 1 + n−m− p < 0.

Corollary 3.51. If m + p > n + [L : K]− 1 then there exists s ∈ S(λ1) such
that s, g(s), . . . , gr−1(s) verify (7) and (9).

Proof : The corollary can be easily proved using lemmas 3.34 and 3.49 and
Theorem 3.50.

Theorem 3.52. If m + p ≥ n + [L : K]− 1 then

dim

(
t∑

i=1

S(λi) + kerC

)
≥ t + dim ( kerC ) = t + n− p, ∀t ≤ r.



EXACT POLE ASSIGNMENT BY STATIC OUTPUT FEEDBACK 21

Proof : Let us begin our inductive proof by showing that

dim (S(λ1) + kerC ) ≥ 1 + dim ( kerC ) = 1 + n− p.

If dim (S(λ1) + kerC ) = dim ( kerC ) then S(λ1) ⊆ kerC and m ≤ n − p.
This is a contradiction with Assumption 2.4.

Then dim (S(λ1) + kerC ) ≥ 1 + dim ( kerC ) = 1 + n− p.
Let

dim

(
l∑

i=1

S(λi) + ker C

)
≥ l + dim ( kerC ) = l + n− p l < r ≤ [L : K] .

If dim

(
l∑

i=1

S(λi) + kerC

)
> l + dim ( kerC )

or

S(λl+1) ⊆|

(
l∑

i=1

S(λi) + kerC

)

then dim

(
l+1∑
i=1

S(λi) + kerC

)
≥ l + 1 + dim ( kerC ) = l + 1 + n− p.

This allows us to suppose

dim

(
l∑

i=1

S(λi) + kerC

)
= l + dim ( kerC )

and

S(λl+1) ⊆

(
l∑

i=1

S(λi) + kerC

)
.

Therefore we have

S(λl+1) + S(λl) ⊆

(
l∑

i=1

S(λi) + kerC

)
m + m−m0 ≤ l + n− p

m−m0 ≤ l + n− p−m < r + n− p−m ≤ [L : K] + n− p−m

m−m0 ≤ n + [L : K]− 1− p−m ≤ 0.

From the last relation we conclude that m = m0 and B0 = S(α), ∀α ∈ L.
The proof is now over because using Lemma 3.12 we have S(λi) = B0 ⊆

R(B), i = 1, . . . , n and this is a contradiction with Assumption 3.14.
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From lemmas 3.34 and 3.49 and Theorem 3.52 we have

Corollary 3.53. If m + p ≥ n + [L : K]− 1 then there exists s ∈ S(λ1) such
that s, g(s), . . . , gr−1(s) verify (7) and (10).

Remark 3.54. Now we point out some notes on conditions (7), (8), (9), (10)
and (11) with si = gi−1(s) for some s ∈ S(λ1).

• Conditions (7) and (8) hold if m + p ≥ n + [L : K]− 1.
• Conditions (7) and (10) hold if m + p ≥ n + [L : K]− 1.
• Conditions (7) and (9) hold if m + p > n + [L : K]− 1.
• If the PAOFP has not an affirmative answer in the case where m+p =

n+[L : K]−1 the problem will be condition (11) and, by Remark 3.26,
the observability of (PCQ, QT (A−BKrC)Q) is not guaranteed.

• As noted in Remark 3.24, we may suppose that C0 6= Ln.
If for all λi ∈ {λr+1, . . . , λn} we have S(λi) ⊆ C0, then, from Corol-

lary 3.20, we conclude that n − r ≤ n − m. But this, according to
Assumption 3.48, would lead to r = m = [L : K].

Then, by Assumption 3.40, p = n and C is invertible.
Therefore the state feedback matrix F ∈ Km×n satisfying σ(A −

BF ) = {λ1, . . . , λn} (see Gonçalves [14] and [15]) could be used to
construct K = FC−1 ∈ Km×p such that σ(A−BKC) = {λ1, . . . , λn}.
This would solve the PAOFP.

3.4.3. The existence of vectors satisfying (7), (8) and (9). To prove that
there exists a vector s ∈ S(λ1) verifying (7), (8) and (9) we need some
results from algebraic geometry.

We will use an approach based on Goodwin and Fletcher [16] and on the
chapter 16 of van der Waerden [31]. The set of polynomials in i variables
with coefficients in K will be denoted by K[x1, . . . , xi].

Definition 3.55. A variety V in Kn is the set of common zeros of a finite set
of polynomials Φ1, . . . , Φk (in K[x1, . . . , xn]), i.e., the set of vectors w ∈ Kn

such that w = (w1, w2, . . . , wn) and Φi(w1, . . . , wn) = 0, for i = 1, . . . , k.

Definition 3.56. A property P0 on Kn is generic if it fails on and only on a
proper variety in Kn.

Definition 3.57. A K-variety V in Ln is the set of vectors w ∈ Ln such

that (w, g(w), . . . , g[L:K]−1(w)) is in the set of common zeros of a finite set
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of polynomials Ξ1, . . . , Ξk (in K[x1, . . . , xn[L:K]]), i.e., the set of vectors w =

(w1, w2, . . . , wn) such that for i = 1, . . . , k,

Φi(w1, . . . , wn, g(w1), . . . , g(wn), . . . , g
[L:K]−1(w1), . . . g

[L:K]−1(wn))
T = 0.

If the variety is proper, the lowest degree of all non identimathcally null
polynomials will be denoted by d(V ).

Definition 3.58. A property P0 on Ln is generic if it fails on and only on a
proper variety in Ln.

The next result is due to Marques de Sá.

Lemma 3.59. Let L1, . . . , Ln be infinite subsets of K.
If the polynomial f(x1, . . . , xn) vanishes for every element of L1× . . .×Ln,

then f is the null polynomial.

Proof : We can write f as f = φ0 + φ1x1 + . . . + φtx
t
1, where

φi ∈ K[x2, . . . , xn], i = 0, . . . , t.

For cj ∈ Lj (j = 2, . . . , n), the polynomial f(x1, c2, . . . , cn) vanishes for an
infinity of values of x1. Then this polynomial, in one variable, is null, that
is, φi(c2, . . . , cn) (i = 0, . . . , t) are null. This proves the lemma in the case
n = 1.

For n ≥ 2 and i = 0, . . . , t, then φi(x2, . . . , xn) vanishes for every element
of L1 × . . . × Ln. By induction on n, φi (i = 0, . . . , t) are null polynomials.
Then f is the null polynomial.

The following result is an obvious consequence of the previous lemma.

Corollary 3.60. If K is infinite and the polynomial f(x1, . . . , xi) is null for
every element of Kn, then f is the null polynomial.

Lemma 3.61. If K is infinite and P1 and P2 are generic properties on Ln,
then there exists w ∈ Ln such that P1 and P2 hold at w.

Proof : Let Ξ11, . . . , Ξki1 be the defining polynomials of the varieties where Pi

fails (i ∈ {1, 2}).
By Theorem 3.6 there exists β ∈ L such that {β, g(β), . . . , g[L:K]−1(β)} is

a basis of L over K.
For each i ∈ {1, 2} define a property P ′

i on Kn [L:K] such that P ′
i holds at

(x0, . . . , x[L:K]−1) ∈ Kn [L:K]
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if and only if Pi holds at

βx0 + g(β)x1 + . . . + g[L:K]−1(β) x[L:K]−1 ∈ Ln.

We will show that P ′
1 and P ′

2 are generic.

For i ∈ {1, 2}, suppose that P ′
i fails at (x0, . . . , x[L:K]−1) ∈ Kn [L:K], i.e., if

and only if Pi fails at w := βx0 + g(β)x1 + . . . + g[L:K]−1(β) x[L:K]−1 which

happens if and only if Ξji(w, g(w), . . . , g[L:K]−1(w) = 0, for j = 1, . . . , ki.

The previous condition is equivalent to Ψji(w, g(w), . . . , g[L:K]−1(w)) = 0,
with Ψji(X) ∈ K[X] and j = 1, . . . , k′i.

This proves that each P ′
i fails on and only on a variety in Kn [L:K].

All these varieties are proper because otherwise the corresponding Pi would
not be generic.

This proves that P ′
i are generic.

Suppose now that for all w := βx0 + g(β)x1 + . . . + g[L:K]−1(β) x[L:K]−1

at least one of the Pi fails.

This means that for all (x0, . . . , x[L:K]−1) ∈ Kn [L:K] at least one of the P ′
i

fails. Then every product Ψj1Ψk2 vanishes for all points in Kn [L:K].
Using Lemma 3.59, we can conclude that Ψj1Ψk2 is the null polynomial for

every j = 1, . . . , k′i and k = 1, . . . , k′2.
If Ψj1 is the null polynomial for every j = 1, . . . , k′1, then Φl1 are the null

polynomial for every l = 1, . . . , k1. But this contradicts the fact that P1 is
generic.

If there exists j ∈ {1, . . . , k1} such that Ψj1 is not the null polynomial, then
every polynomial Ψk2 (k = 1, . . . , k′2) is the null polynomial. This contradicts
the fact that P2 is generic.

Therefore there exists w ∈ Ln such that P1 and P2 hold at w.

If K is finite then the union of two proper varieties in Ln can be the whole
space Ln. This is a problem in the last part of the proof of the previous
lemma.

Instead of using results about bounds for the number of points on varieties
over finite fields which involve the dimension and the degree of irreducible
varieties (see for example Lang and Weil [20] or Cafure and Matera [8]), we
solve the question with the following two results.
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The following lemma is refered by Cafure and Matera [7] and has been
proved by Schmidt [29].

Lemma 3.62. Let f(x1, . . . , xl) ∈ K[x1, . . . , xl] be a non identimathcally null
polynomial with degree d and let N(f) be the number of elements of the set
{(α1, . . . , αl) |f(α1, . . . , αl) = 0)}.

Then N(f) ≤ dql−1 with q the number of elements of K.

Lemma 3.63. Let P1 and P2 be generic properties on Ln failing respectively
on the varieties V1 and V2.

If K is finite and has more than (d(V1)+d(V2)) elements then there exists
w ∈ Ln such that P1 and P2 hold at w.

Proof : As in the proof of Lemma 3.61 we can show that P ′
i are generic.

The other part of the proof has to be done in a different way.
Let Ψj11 be a minimal degree non identimathcally null polynomial defining

the variety V1.
Let Ψj22 be defined in a similar way.

Let us suppose that Ψj11Ψj22 vanishes for all elements of Kn[L:K]. By

Lemma 3.62, N(Ψj11Ψj22) ≤ (d(V1) + d(V2))q
n[L:K]−1. Then we would have

qn[L:K] = N(Ψj11Ψj22) ≤ (d(V1) + d(V2))q
n[L:K]−1, arriving to q ≤ (d(V1) +

d(V2)) which is a contradiction

Therefore Ψj11Ψj22 does not vanish for all elements of Kn[L:K].

In this way we conclude that V1 ∪ V2 6= Kn[L:K] and the proof is complete.

Lemma 3.64. Let P1 and P2 be generic properties on Ln and S be a subspace
such that for each i ∈ {1, 2} there exists a vector si ∈ S such that Pi holds
at si. Then there exists a vector s ∈ S such that P1 and P2 hold at s.

Proof : Let dim S = k.
Then there is a bijective map M from Lk to S. The proof is easy if for

each i ∈ {1, 2} we define a property P̃i such that P̃i holds at t ∈ Lk if and
only if Pi holds at M(t) ∈ S.

Using the notations of Lemma 3.34, we can define a property P on Ln

such that P holds at w ∈ Ln if and only if w, g(w), . . . , gt̄−1(w) are linearly
independent and V ∩ span {w, g(w), . . . , gt̄−1(w)} = {0}.

From the proof of Lemma 3.34 it is easy to deduce that the P is generic.
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As corollaries 3.35 and 3.51 are proved based on Lemma 3.34 the following
two results have obvious proofs.

Lemma 3.65. The property P3 on Ln defined as that property which holds
at s ∈ Ln if and only if (7) an (8) hold for s, is generic.

Lemma 3.66. The property P4 on Ln defined as that property which holds
at s ∈ Ln if and only if (7) and (9) hold for s, is generic.

From lemmas 3.64, 3.65, 3.66 and Assumption 3.32 we can conclude the
following result.

Lemma 3.67. If

• K is finite, p < n, m < n, m + p > n + [L : K] − 1 and #K >
max{d(V3) + d(V4), [L : K]} or

• K is not finite, p < n, m < n and m + p > n + [L : K]− 1

then there exists a vector s ∈ S(λ1) satisfying (7), (8) and (9).

3.5. Main results. From all the previous discussion mainly lemmas 3.22
and 3.67 and Theorem 3.28, we conclude the following results.

case 1: if p < n, m < n and K is finite

Theorem 3.68. Let P3 and P4 be the properties defined in lemmas 3.19 and
3.20 failing respectively on the varieties V3 and V4.

If m+ p > n+ [L : K]− 1 and K is finite and has more than max{d(V3)+
d(V4), [L : K]} elements, then the PAOFP has an affirmative answer.

Remark 3.69. Obviously d(Vi) ≤ o(α) ≤ [L : K] with i ∈ {3, 4} and o(α)
the length of the greatest orbit of the elements λ1, . . . , λn. This allows other
bounds instead of max{d(V3) + d(V4), [L : K]}.

case 2: if p < n, m < n and K is not finite

Theorem 3.70. If m+p > n+[L : K]−1 then the PAOFP has an affirmative
answer.

case 3: if p = n or m = n
If p = n or m = n then the pole assignment by state feedback can be

used to solve the PAOFP and (see Gonçalves [14] or [15]) and we need no
restriction on the number of elements of K.
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