Pré-Publicacoes do Departamento de Matemética
Universidade de Coimbra
Preprint Number 04-36

THE HEIGHT CHARACTERISTIC AND THE GRAPH OF
TRIANGULAR MATRICES

FILIPE SANTOS

ABSTRACT: In this paper, we discuss the relation between the graph and the spec-
tral properties of a matrix, namely, algebraic multiplicity and degrees of the ele-
mentary divisors of an eigenvalue.

Hershkowitz and Schneider showed [5] that the height characteristic of a tri-
angular matrix A majorizes the dual of the sequence of differences of maximal
cardinalities of singular k-paths in the graph G(A).

Other relations, not followed by that result, can also be obtained for these two
sequences.
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1. Introduction

The study of the relation between the graph and the spectral properties
of a matrix has been of interest in the past ninety years. At first, and for
about seventy years, this study was focused mostly on nonnegative matrices,
since one of the major contributes was given by Frobenius in 1912, for those
matrices (see [6, chapter §]).

In the past fifteen years, this research was extended to general matrices.
Several papers [1, 4, 5, 8] study the relation between the height characteristic
(or equivalently, the sizes and number of the Jordan blocks associated to the
eigenvalue 0) of a matrix and its graph (see the expository paper [3] and the
references therein).

For nilpotent triangular matrices, a major result was given by Saks [§]
and Gansner [1], who showed that the height characteristic of a matrix A
majorizes the dual of the sequence of differences of maximal cardinalities of
k-paths in the graph G(A) of A, and that in the so called generic case the
height characteristic is equal to the dual sequence.

For the triangular (not necessarily nilpotent) case, Hershkowitz and Schnei-
der [5], extended those results showing that the height characteristic of A
majorizes the dual of the sequence of differences of maximal cardinalities of
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singular k-paths in G(A). They also proved that in the so called generic case
the height characteristic is equal to the dual sequence.

A further generalization was obtained by Hershkowitz [4] for general ma-
trices (where he considered nonclosable k-paths in G(A)). The fact that in
the generic case the two above mentioned sequences are equal means that
"almost” every real or complex matrix, verifies this equality, nevertheless has
we will see, this equality is not true for all matrices.

Two natural questions arise. Given a graph GG what are the possible height
characteristic of the matrix A such that G(A) = G?7 And given two sequences
n and 7, is there a matrix A such that the height characteristic of A is n, and
the sequence of differences of maximal cardinalities of nonclosable k-paths of
G(A) is 7?

The answer of the first problem does not depend only on the sequence
of differences of maximal cardinalities of nonclosable (or singular for the
triangular case) k-paths in G.

In this paper we will discuss the second problem, but for triangular ma-
trices, obtaining new relations between those two sequences (other than the
one obtained by of Hershkowitz and Schneider). We have reasons to believe
these are not the only ones.

For small order (n < 7) and nilpotent triangular matrices, the majorization
theorem plus the results presented here completely describe the relations
between the two sequences.

The first section contains notations and definitions, as well as some results
considered important for the further section. In the following section we
introduce the new relations between the sequences.

The matrices in this paper are considered to be over an arbitrary field F.
Jordan blocks and Jordan canonical forms are assumed over the algebraic
closure F of F. We deal with lower triangular matrices but, obviously we
could also consider upper triangular and so our results (with the obvious
modifications) are valid for those matrices.

Finally, we remark that even though we technically deal with the eigenvalue
0 of a matrix, these results may be applied to any eigenvalue A of a matrix
A, by studding the matrix A — \I.

2. Notation and Definitions

In this section we recall definitions and notations we will use in this paper.
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2.1. Sequences.

Notation 2.1. For a natural number n, we use the notation (n) for the set
{1,2,3,...,n}, and |C] for the cardinality of the finite set C.

Definition 2.2. Let a = (ay,q9,...,a;) be a monotone non-increasing

sequence of positive integers. The sequence o* = (af, a3, ...,a}, ), is called

dual to a, such that o] is the number of elements of o greater than or equal
to 1.

Observation 2.3.

e The sequence a* is monotone non-increasing;

o (a")" = o

e Constructing a diagram with ¢ columns of stars, such that the ;5 co-
lumn (from the left) has «; stars, then, o is equal to the number of
stars of the i row (from the top).

Definition 2.4.

e Let o and 3 be sequences of nonnegative integers with the same num-
ber of elements:

@ = (Oé170427"'705t) and ﬁ: (617527"'7515)'

We say that 0 majorizes o, and denote it by 3 > «, if we arrange
the entries of @ and [ in a decreasing order a;, > a;, > -+ > «;,,

By, > Bj, > -+ > Bj,, and

k k
Zﬁjl > Z@iz for all k€ (t)
=1 =1

with equality for k = ¢;
e Let a and [ be sequences of nonnegative integers:

a = (0417042;---7aq) and 6: (617/827"'7/88)'

For t = max{q, s}, let & and 3 be the sequences:

0 = (d17d27---7dt) and ﬁ: (617627"'7675)7
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such that ¢; = a; for i € (¢) and §; = §; for j € (s). The remaining
elements on both sequences being zero.

We say that # majorizes o, and denote it by 6 = «, if ﬁ majorizes
&, according with the previous definition.

2.2. Matrices.

In the sequel, we assume that A is an n X n matrix over an arbitrary field
F.
Notation 2.5. We denote,

e the nullity of A by n(A), which is the dimension of the nullspace of
A;

e the rank of A by rank(A), which is equal to n — n(A);

e the algebraic multiplicity of the eigenvalue zero of A, by m(A).

Notice that the number of Jordan blocks associated with the eigenvalue
zero is n(A).

Definition 2.6. The monotone non-increasing sequence,

§(A) = (&1(A),&(A), ..., Euny(A))

of sizes of the Jordan blocks associated with the eigenvalue zero (or equi-
valently, the non-increasing sequence of degrees of the elementary divisors
associated to the eigenvalue 0) is called Jordan or Segre characteristic of A.

We call index of A to the size of the greatest Jordan block associated with
the eigenvalue zero, & (A).

Definition 2.7. Let ¢ be a natural number, we denote by 7;(A) to

ni(A) = n(AY) —n(A™Y), with n(4%) =0.
The sequence n(A) = (m1(A), n2(A4), ..., 7 a)(A)), is called Weyr or height
characteristic of A.

Convention 2.8. We will use 7;, n, & and £ for n;(A), n(A), &(A) and £(A)
respectively, if no confusion arise.

The next result, which can be found e.g. in [2, lema 2], establish a relation
between 7 and &.
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Theorem 2.9. Let A be an n X n matrix, then n = &*.

From this result, and using the properties (2.3) of the dual sequence, 7 is
a monotone non-increasing sequence and n* = &.
We have also (see e.g. proof of [2, lema 2|):

e ¢ is the largest natural number, such that ne, > 0;
o n(A") = m(A) for every natural number i > &;;
o n(A7) < m(A) for every natural number j € (& — 1),

2.3. Graphs.

Definition 2.10. A direct graph is a pair G = (V, E), such that V is a
nonempty finite set, and £ C V x V.

An element v; of V is called vertex of GG, and an element (v;,v;) of E is
called arc in G from v; to v;.

The number of vertices of G is denoted by |G]|.

Definition 2.11. Let G = (V, E) be a graph:

e A path P in G is a sequence of pair wise distinct vertices (vy, ve, ..., Un),
such that (v;,v;41) is an arc in G for every i € (m — 1);

e Every sequence that consists of one vertex is a path;

e A cycle C'in G is a sequence of pair wise distinct vertices (vy, v, . .., V)
except for v; = vy, such that m > 2, and (v;,v;41) is an arc in G, for
every 1 € (m — 1);

e A cycle (v,v) in G is called a loop. If (v,v) is not a cycle in G then v
is called a loopless or a singular vertex;

e T'wo paths in GG are said to be disjoint if they have no common vertex.

For further information on this subject see [7].

Definition 2.12. The graph G(A) = (V, E) of an n x n matrix A = [a;;] is,
such that V' = (n), and (¢, j) € E if and only if a;; # 0.

Hershkowitz and Schneider introduced the following sequence in [5] related
to a graph.
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Definition 2.13. Let G be a graph, S its set of singular vertices, and k a
natural number. A singular k-path in G is a subset of S that can be covered
by k or fewer pair wise disjoint paths in G.

Notation 2.14.Let GG be a graph, S its set of singular vertices, and k a
natural number:

e We denote by pi(G) the maximum cardinality of a singular k-path;

e Let ¢ be the minimal number of pair wise disjoint paths needed to
cover S. Note that p;(G) = |S|, and p;—1(G) < |S|. We put m(G) =
Pe(G) — pr-1(G), where k € (t), and py(G) = 0;

e We denote by 7(G), the sequence (m1(G), m2(G), . .., m(G)).

The sequence 7(G) is monotone non-increasing [5, Theorem(5.8)].

Convention 2.15. We will use p;, m; and 7 for p;(G), m(G) and 7(G)
respectively, if no confusion arise.

Example 2.16 Let G be a graph and
n(G) ={n(A) : A is a matrix such that G(A) = G}.
Let G; and G2 be two graphs with vertices (4):
e
30—=01 SO—=01
G, G,

Notice that 7(G1) = 7(G3) = (2,2). As for the matrix:

— O O
— - O O

00
00
00|
00
)

G(A) =Gy and n(A) = (3,1).
However, for every matrix B such that G(B) = Gs:
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* % O O
* O OO
SO OO

0
0
O Y
0

(where * represent the nonzero entries) n(B) = (2,2). We conclude that
7(G1) = 7(G2) does not mean 1(G1) = n(Gs).

The following theorem was obtained by Hershkowitz and Schneider [5, The-
orem(5.11)].

Theorem 2.17 Let A be a triangular n x n matrix over a field F', and G(A)
its graph. Then, 7*(G(A)) < n(A), and the index of A is less then or equal

to P1-

3. Other Relations Between 11 and 7w

In this section we study other relations between the sequences n and m,
which does not follow from (2.17).

Definition 3.1. Let A = [a;;] be an n x n matrix. We define the balance of
the position (i, j) of A, to be j —i.

Remark 3.2. Let k be a natural number, and A an n X n matrix. The
positions that have balance equal to:

e zero are the ones in the main diagonal;
e k are the ones in the k sub-diagonal above the main diagonal;
e —k are the ones in the k sub-diagonal below the main diagonal.

Moreover, the sum of the balance of all the positions in a generalized dia-
gonal of A is equal to zero, since every row and every column appear just
once.

Reordering the elements in that sum we obtain:

(14+2+34+---4+n)—(1+2+---+n)=0.

Let A = [a;j] be an n x n lower triangular matrix, if (4, j) is an arc in G(A),
then ¢ > j.
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Theorem 3.3. Let A be an n x n lower triangular matrix. We have
rank(A) > m — 1.

Proof. Let P = (by4r,bp,4r—1,...,b2,b1) be a path in G(A) that covers
m = p1 singular vertices and the smallest number of vertices with loop:

SUNIS . O S oo
P+ T bpz + 7 -1 btz-+1 btZ btZ 1 b2 b]

We have by, > by 4p—1 > -+ > by > Dy.

Call {b,,by,,..., b, } the vertices of P that have a loop in G(A).

Let us study the submatrix of A with rows by, b3, ..., by 4, and columns
bi,ba, ..., by, sr1.

All the elements in its main diagonal are nonzero, since they correspond
to the arcs in P. The elements above the main diagonal, are equal to zero,
except to the ones in the positions (¢; — 1,¢;), that correspond to the loops
(by,, bs;) in G(A), for every j € (r). Notice that the balance of the positions
of those elements in the submatrix is equal to one.

Let us proof that for this submatrix, the main diagonal is the only genera-
lized diagonal without zero elements. Suppose there is another generalized
diagonal without zero elements. Such diagonal must have an element above
the main diagonal. Let ¢; be the smallest natural number such that (t;—1,t¢,)
is a position in the diagonal.

Let us see what are the possible values of w; of the (¢;,w;) entry of the
diagonal.

Such wy can not be greater than ¢;+1, because the balance of that position
is greater than one.

Since t; is already a position in the columns of the diagonal, then wy # t;.

Also, wy # t; — 1, otherwise (by,41,b,-1) is an arc in G(A):

This way, there is a path in G(A) that covers p; singular vertices and r — 1
vertices with loop. Absurd.
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So we have the following possibilities:

e w; < t; — 2, then the sum of the balance of the two positions is
negative:

(wy =)+ — (@ —1) <-2+1=-1;

o w; = t; + 1, then b;, 4 is also a vertex with loop in G/(A).

Let us show that the second case will end up with a negative balance. Note
that the element in the position (¢;,¢; + 1) is nonzero.

Let us see what are the possible values of wy of the (¢;+ 1, ws) entry of the
diagonal.

Like in the previous case, wy can not be greater than t; 4+ 2, because the
balance of that position is greater than one.

Also, wy # t; and wy # t; + 1.

Furthermore, wy # t; — 1, otherwise (b, 42,bs,—1) is an arc in G(A):

£Q O,

biob b b,

J J J J

This way, there is a path in G(A) that covers p; singular vertices and r — 2
vertices with loop. Absurd.
So we have the following possibilities:

o wy < t; — 2, then the sum of the balance of the three positions is
negative:

(wo—(t;+1))+(t+1—4)+ (-t —1) < ((t—2)—(;+1)+1+1 = —1;

® wy = t; + 2, then b; 45 is also a vertex with loop in G/(A).

Let us show again that the second possibility leads us to a negative balance.

As there is a finite number of vertices with loop in G(A), after repeating
this process a certain number of times, we are forced to choose a position
which is not above the main diagonal.

So, the sum of the balance of the positions, obtained in this procedure, is
negative.
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The only way to "stabilize” the negative balance, is by assuming there is
another nonzero element above the main diagonal. Let ¢; be the smallest
natural number such that (¢; — 1,¢}) is one of those entries.

But, like on the previous case, this leads us to a negative balance, and once
more, we have to assume there is another element above the main diagonal,
and so successively.

We get to a point, in which there are no more nonzero entries above the
main diagonal, so, is not possible to "stabilize” the balance.

In conclusion, there is no other generalized diagonal with all elements
nonzero. So, the (p; +7 — 1) X (p; + 7 — 1) submatrix is nonsingular. Then
rank(A) >pr+r—1>m — 1. ]

Note that the above proof show that if k is the number of vertices in the
path that covers, p; singular vertices and the smallest number of vertices
with loop, then rank(A) >k — 1.

Corollary 3.4. Let A be an n X n lower triangular matrix, then n; <
n —m + 1.

Proof. By definition, 1 = n(A) = n — rank(A). u

Example 3.5. Let A be an 8 X 8 nilpotent lower triangular matrix such that
the sequence 7 related to G(A) is (5,2,1), then 7* = (3,2,1,1,1). By the
previous result the sequence 1 cannot be (5,3) because n; <8 -5+ 1 = 4.

Nevertheless 7* and (5, 3) are in condition of (2.17). This shows that (3.4)
does not follow from (2.17).

Lemma 3.6. Let A be an n x n lower triangular matrix and vy, vy singular
vertices in G(A). If G(A) has only one path (vy,v,v9) for a vertex v € (n)
then (v1,vs) is an arc in G(A?).

Proof. Let A* = [¢;j]. Since vy, vy are singular vertices and A = [a;] is a
lower triangular matrix then

n
CU1,112 - § : avlﬂf av,v2 :
v=1

V1 >V>Vo
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Notice that the element a,, , a,,, in that sum is nonzero if and only if
(v1,v,v9) is a path in G(A). Since there is only one path in those conditions,
then c,, 4, 1s nonzero. n

Lemma 3.7. Let A be an n X n lower triangular matrix, m a natural
number and P a path in G(A) that covers m; singular vertices. Suppose there
are paths P, = (vg,v1,v9, ..., U, Uny1) and Po = (vg, b1, ba, ..., by, Upy1) of
singular vertices in G(A), such that P, is a path in P and b; ¢ P for every
i € (m). For every natural numbers j and k such that j <k, (b;,v;) is not

an arc in G(A).

Proof. The graph G(A) has two paths of singular vertices:

UO U] Uk é/vm—#l
bl bk bm

Suppose that (b, v;) is an arc for a natural number j < k.
The path P, = (vg,v1,v2, ...,V -, U, Une1) in P, can be replaced by

(U()a bla b?a R 7bk‘7 Uiy Uil oo s Uy o v o5 U,y Um—i—l)-
This way, we obtain a path in G(A) that covers more than m singular
vertices. Absurd. |

Notice that for an n x n lower triangular matrix A, such that G(A) has r
vertices with loop (which means that the main diagonal of A has r nonzero
entries), n(A") = m(A) =n — r for every i > &;.

Theorem 3.8. Let A be an n X n lower triangular matrix. Suppose there
is a set D, of my + 3 consecutive singular vertices, in a path P that covers m
singular vertices, such that if v is a vertex with loop then he is either greater
or smaller than every element of D. In this conditions 7 has more than two
elements.

Proof. Let j = my and D = {v,v1,v2,...,041,0j42} such that vg > v; >
Vg >+ > Vjq1 > Vjt2-

Since the singular vertices in D are consecutive in P and without any vertex
with loop between them, then P, = (v, v1, v, ..., vj41,Vj12) is a path in P.
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UO U] UZ Uf? /04 Uj+1 Uj+2

Let us show that there is an arc (¢1,%) in G(A?) such that if v is a vertex
with loop then he is either greater or smaller than both #; and ts.

Suppose that such arc does not exist.

By (3.6) there is an alternative path (vg, b1, ve) for (vy,vi,vs), otherwise
(vg, v2) Will be an arc in G(A?).

Since b; # vy and vy > by > vy, then by is singular and not a vertex in P.

Vo Y Uy Uy Uy Virr Y
b

Notice that if v is a vertex with loop then he is either greater or smaller
than every element of D U {b;}.

Again by (3.6) there is an alternative path (b1, by, v3) for (b1, ve, v3), other-
wise (b1, v3) will be an arc in G(A?).

By (3.7) (b1,v1) is not an arc in G(A), so by # v;. Since by # vy and
vg > by > w3, then by is singular and not a vertex in P.

/UO /UJ /UQ /US’ /U4 Uj+1 Uj+2
b,

Once more, if v is a vertex with loop then he is either greater or smaller
than every element of D U {by,bs}.

Consecutively, by (3.6) there is an alternative path (bg, bxi1, vgyo) for
(bk, V1, Vp+2) where k € {2,3,..., 7}, otherwise (by, vk42) will be an arc in
G(A?).

Since b1 # Vkt1, Vo > b1 > vpeo and by (3.7), (bg,v;) is not an arc in
G(A) for i <k, then b is singular and not a vertex in P.

Each new vertex b1 is between vy and v 9 so if v is a vertex with loop
then he is either greater or smaller than every element of DU{by, bo, ..., bri1}.
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. —=0—=0—=0

\/// ﬁoé/”

b

This way, G(A) has two disjoint paths (P and (b1, bs,...,b;j,b;41)), that
covers (m1) + (j + 1) singular vertices.

By definition p, is the maximum number of singular vertices that can be
covered by two disjoint paths, so

To=pr—p1 > [(m)+ G+ —m=j+1=m+1.
Absurd, so there is an arc (t1,t3) in G(A?) such that if v is a vertex with
loop then he is either greater or smaller than both ¢, and ¢,.
Let {l1,ls,...,l,} be the vertices with loop in G(A) and suppose that:
<< - <l <tyte<lipg <---<l.
The matrix A? has, at least, 7 nonzero elements in the main diagonal, and
one nonzero entry in the position (¢1,t2).

Columns: ] A 7 VU 7> SRR # I SR MR ()

Row: i1 (7 ... x 0 . 0 )
Row: [, (7?7 ... 7 ... % 0 . 0 )
Row: t; (7 ? ? x 7...7 0 0 )
Row: [;.1 ( 7 ? ? ? x 0 0 )
Row: [, (7?7 ... 7 ...72 ...72 ... 7 ... % 0...0)

where (x) represent the nonzero entrances. In this way A? has r + 1 linear
independent rows.

We conclude that rank(A?%) > r, then n(A?) < n — r. Which means that
&1 > 2, so n has more than two elements. |

The next example, will show the influence of the position of the vertices
with loop relatively to the number of elements of 7.

Example 3.9. Let A be an 7 x 7 lower triangular matrix, such that G(A)
has one loop, and 7 = (5, 1):
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(1) Suppose that the vertex with loop is 2. Notice that G(A) has a path
that covers 5 singular vertices, such that, at least, the first four of
them are greater than the only vertex with loop. Since ms = 1 then,
by the previous result, n has more than two elements.

(2) Suppose that the vertex with loop is 3. Let us consider A to be the
matrix:

00 0 00 0 O
1 0 0 00 0 0
01 1 00 0 0
A=10-1-100 0 0
00 1 10 0 0
00 1 10 0 0
00 0 01-10
Since G(A) is
O
) N oo
7 ' 2 1
5
we have in fact ™ = (5,1).
Also
0 0 0 000 O]
0 0 0 0000
1 1 1 0000
A= -1 -1 -10000
0O 0 0 0000
0O 0 0 0000
0O 0 0 0000

Notice that n(A) = 3 and so n(A?) = 6.
In this case, n = (3,3) has only two elements.

If Ais an n X n nilpotent lower triangular matrix, then n(A*) = m(A) = n
for i > &. So A" =0 for i > &.



HEIGHT CHARACTERISTIC AND GRAPHS 15

Corollary 3.10. Let A be an n x n nilpotent lower triangular matrix. If
m > W9 + 3 then 1 has more than two elements.

Proof. Since G(A) has no loops and 7 > 79 + 3 then there is a path P; with
9 + 3 singular vertices in the path P that covers m; singular vertices. Like in
the proof of (3.8), we can show that G(A?) has an arc (t1,ts) and so A% # 0.

We conclude that n has more than two elements. |

Example 3.11. Let A be an 8 x 8 nilpotent lower triangular matrix such
that the sequence 7 related to G(A) is (5,2,1) then 7* = (3,2,1,1,1).

By the previous result the sequence n cannot be (4,4).

Nevertheless 7w and (4,4) are in condition of (2.17) and (3.4). This shows
that (3.10) does not follow from those results.

Theorem 3.12. Let A be an n x n lower triangular matrix and G(A) its
graph with r vertices with loop such that r > 1. If ;;y > (r + 1)(m + 2) + 1,
then 1 has more than two elements.

Proof. Let P be a path in G(A) that covers m singular vertices.

Let us show that there is a set D of my 4+ 3 consecutive singular vertices in
P, such that if v is a vertex with loop then he is either greater or smaller
than every element of D.

It is sufficient to prove the above statement for m = (r 4+ 1)(me + 2) + 1.
We use induction on 7.

e Caser =1
In this case, m = 2(m2+2)+ 1. Suppose that the first m5+ 3 singular
vertices in P are not greater than the only vertex with loop, say vertex
[. Then, at most, the first my 4+ 2 singular vertices in P verify that
property.
So the last 2(my + 2) + 1 — (m9 4+ 2) = mo + 3 singular vertices in P,
are smaller than [;
e Suppose the above statement true for r = k let us prove it for r = k+1.
If the greatest vertex with loop, say vertex [, is smaller than the
first w9 4 3 vertices of P then the remaining vertices with loop would
also verify that property.
Therefore, at most, the first m 4 2 singular vertices in P are greater
than [.
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It remains, the last
(k+2)(m+2)+1—(m+2)=(k+1)(m+2)+1

singular vertices in P, that are smaller than /.

We need to compare the last (k + 1)(mo + 2) + 1 singular vertices of
P, with the remaining k vertices with loop.

In this case the hypothesis of induction allows us to conclude that
there is a set D of my + 3 consecutive singular vertices in P, such that
if v is a vertex with loop then he is either greater or smaller than every
element of D.

We conclude by (3.8), that  has more than two elements. u

Example 3.13. Let A be an 17 x 17 lower triangular matrix such that
G(A) has one vertex with loop and the sequence 7 = (9,2,2,2,1) then 7* =
(5,4,1,1,1,1,1,1,1).

By the previous result the sequence 7 cannot be (8,8) since
(r+1)(m+2)+1=01+1)24+2)+1=9.

Nevertheless m and (8,8) are in condition of (2.17) and (3.4). This shows
that (3.12) does not follow from those results.

We have checked that for nilpotent lower triangular matrices of order less
than 8, the results (2.17), (3.4) and (3.10) completely describe all the relations
between 1 and w. This means that, given two sequences 1 and 7 that verify
those relations, then there is a nilpotent triangular matrix A such that n(A) =
n and 7(G(A)) = 7.

However for order 8 and if n = (4,4) and 7 = (4,2,1,1) it can be shown
that does not exist a matrix A with n(A) =n and 7(G(A)) = 7, although 7
and 7 verify (2.17), (3.4) and (3.10).

So these are not all the relations that can be obtained.

The author would like to thank Professor Antonio Leal Duarte for reading
the first written version of this manuscript and for making various sugges-
tions to improve it. Some of the results presented in this article where first
obtained on the author’s Master Thesis.
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