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MORITA EQUIVALENCE OF MANY-SORTED ALGEBRAIC
THEORIES

JIŘÍ ADÁMEK, MANUELA SOBRAL AND LURDES SOUSA

Abstract: Algebraic theories are called Morita equivalent provided that the corre-
sponding categories of algebras are equivalent. Generalizing Dukarm’s result
from one-sorted theories to general algebraic theories, we prove that all theories
Morita equivalent to a theory T are obtained as idempotent modifications of T .
This is analogous to the classical result of Morita: all rings Morita equivalent to a
ring R are obtained as idempotent modifications of matrix rings of R.

1. Introduction

The classical results of Kiiti Morita characterizing equivalence of categories
of modules, see [9], have been generalized to one-sorted algebraic theories in
several articles. The aim of the present paper is to generalize one of the basic
characterizations to many-sorted theories, and to illustrate the situation on
concrete examples.

Let us first recall the classical results concerning

R-Mod

the category of left R-modules for a given ring R. Two rings R and S
are called Morita equivalent if the corresponding categories R-Mod and S-
Mod are equivalent. (For distinction we speak about categorical equivalence

whenever the equivalences of categories in the usual sense is discussed.) K.
Morita provided two types of characterizations:

Type 1: Rings R and S are Morita equivalent iff there exist an R-S-
bimodule M and an S-R-bimodule M ′ such that

M ⊗ M ′ ∼= S and M ′ ⊗ M ∼= R .
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Partial financial assistance by Centro de Matemática da Universidade de Coimbra/FCT and
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This result was fully generalized by F. Borceux and E. Vitale [4] to Lawvere’s
algebraic theories as follows: given algebraic theories T and S, by a T -
S-bimodel M is meant a model of T in the category of S-algebras. Two
algebraic theories T and S are Morita equivalent, i.e., their categories of
algebras are (categorically) equivalent, iff there exist an T -S-bimodel M and
an S-T -bimodel M ′ such that

M ⊗ M ′ ∼= S and M ′ ⊗ M ∼= T

where ∼= means natural isomorphism and ⊗ is the tensor product correspond-
ing to Hom(M,−) and Hom(M ′,−), respectively (i.e., the functors obtained
by composing models with M (or M ′)).

Type 2: Two constructions on a ring R are specified yielding a Morita
equivalent ring. Then it is proved that every Morita equivalent ring can be
obtained from R by applying successively the two constructions.

(a) Matrix Ring R[n]. This is the ring of all n × n matrices over R with
the usual addition, multiplication, and unit matrix. This ring R[n] is always
Morita equivalent to R.

(b) Idempotent Modification uRu. Let u be an idempotent element of R,
uu = u, and let uRu be the ring of all elements of the form uxu (i.e., all
elements x ∈ R with x = uxu). The addition and multiplication of uRu is
that of R, and u is the multiplicative unit. This ring uRu is Morita equivalent
to R whenever u is pseudoinvertible, i.e., eum = 1 for some elements e and
m of R.

K. Morita proved that two rings R and S are Morita equivalent iff S is
isomorphic to the ring uR[n]u for some pseudoinvertible n× n matrix u over
R.

This result was generalized to one-sorted algebraic theories T (i.e., cate-
gories having as objects natural numbers and such that every object n is a
product 1 × 1 × · · · × 1) by J. J. Dukarm [5] as follows: he again introduced
two constructions yielding from a given one-sorted theory a Morita equivalent
theory:

(a) Matrix Theory T [n]. This is the full subcategory of T on all objects kn
(k ∈ N).

(b) Idempotent Modification uT u. Given an idempotent u : 1 → 1, i.e.,
u · u = u, we denote by

uk = u × u × · · · × u : k → k
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the corresponding idempotents of T , and we call u pseudoinvertible if there
is k ≥ 1 such that

eukm = id

for some morphisms 1
m
−→ k

e
−→ 1 of T .

We denote, for every pseudoinvertible idempotent u, by uT u the theory
of all those morphisms f : n → m of T which fulfil f = umfun. The
composition is as in T and the identity morphisms are un.

J. J. Dukarm proved, again, that whenever T and S are one-sorted alge-
braic theories then they are Morita equivalent iff S is categorically equivalent
to the theory uT [n]u for some n and some pseudoinvertible idempotent u of
T [n].

We are going to generalize this to algebraic theories (i.e., small categories
with finite products) without the assumption that they are one-sorted. The
two constructions (a) and (b) above are put together by considering idempo-
tent modifications uT u where u is an S-tuple of idempotents which is, in a
technical sense defined below, pseudoinvertible. Then all Morita equivalent
theories are precisely those idempotent modifications.

2. Morita Equivalence of Algebraic Theories

Notation 2.1. For an algebraic theory T , i.e., a small category with finite
products, we denote by

AlgT

the category of algebras, i.e., the full subcategory of SetT formed by all
functors preserving finite products.

Two algebraic theories T and S are called Morita equivalent provided that
the categories AlgT and Alg S are categorically equivalent.

Remark 2.2. (a) We call a category idempotent-complete provided that ev-
ery idempotent in it splits. Recall that every category K has an idempotent

completion L (called Cauchy completion in [3]), i.e., L is an idempotent-
complete category containing K as a full subcategory such that every object
of L is obtained as a splitting of an idempotent of K.

(b) For two small categories T and S the presheaf categories SetT and
SetS are categorically equivalent iff T and S have the same idempotent
completion, see [3], 6.5.11. If follows that Morita equivalence of algebraic
theories is nothing else than the categorical equivalence of their idempotent
completions. We provide a more concrete characterization below.
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(c) Recall from [1] the concept of a sifted colimit. For the proof below all
the reader has to know about sifted colimits is the following:

(i) If a category D has finite coproducts then every diagram with domain
D is sifted.

(ii) A strongly finitely presentable object is an object whose hom-functor
preserves sifted colimits. In categories AlgT of algebras strongly
finitely presentable objects are precisely the retracts of the “free alge-
bras”

Y B : T → Set for B ∈ T

where Y : T op → AlgT is the Yoneda embedding and B an arbitrary
object of T .

Definition 2.3. A collection of idempotent morphisms

us : Bs → Bs (s ∈ S)

of an algebraic theory T is called pseudoinvertible provided that for every
object T ∈ T there exists a finite family s1, . . . , sn ∈ S and morphisms

T
m
−→ Bs1

× · · · × Bsn

e
−→ T

such that the square

Bs1
× · · · × Bsn

us1
×···×usn

// Bs1
× · · · × Bsn

e
��

T

m

OO

T

commutes.

Remark 2.4. A theory T is called R-sorted provided that a collection
(Tr)r∈R of objects of T is given such that every object of T is (isomorphic to)
a product of objects of the collection. For verification of pseudoinvertibility
of a collection u = (us)s∈S of idempotents it is sufficient to find m and e above
for all the objects T = Tr, r ∈ R. In particular, in case of one-sorted theories
Definition 2.3 coincides with the pseudoinvertibility in the Introduction.

Notation 2.5. Let u = (us)s∈S be a pseudoinvertible collection of idempo-
tents us : Bs → Bs of T . We denote by

uT u
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the algebraic theory whose objects are all finite words s1 . . . sn over the al-
phabet S (including the empty word) and whose morphisms from s1 . . . sn to
t1 . . . tk are precisely those morphisms f : Bs1

× · · · × Bsn
→ Bt1 × · · · × Btk

of T for which the following square

Bs1
× · · · × Bsn

f
//

us1
×···×usn

��

Bt1 × · · · × Btk

Bs1
× · · · × Bsn f

// Bt1 × · · · × Btk

ut1
×···×utk

OO
(2.1)

commutes. The composition in uT u is that of T , and the identity morphism
of s1 . . . sn is us1

× · · · × usn
.

Remark 2.6. (1) If S = {s} has just one element, i.e., a single endomorphism
u : B → B is given, then uT u of 2.5 differs from uT u of Introduction only in
calling the objects words s . . . s (of length k) rather than the corresponding
natural numbers k.

(2) The matrix theory T [n] of Introduction has the obvious S-sorted gen-
eralization: given a collection D = {Bs; s ∈ S} of objects of T , we consider
the full subcategory T [D] of T on all finite products of these objects. This
is a special case of uT u: choose us = idBs

, for s ∈ S. Pseudoinvertibility
means here that all objects are retracts of products Bs1

× · · · × Bsn
.

Theorem 2.7. Let T be an algebraic theory. Then an S-sorted algebraic

theory S is Morita equivalent to T iff it is categorically equivalent to uT u
for some pseudoinvertible collection u = (us)s∈S of idempotents in T .

Proof.

(1) Sufficiency: let

us : Bs → Bs (s ∈ S)

be a pseudoinvertible collection of idempotents. Denote by

Y : T op → Alg T

the Yoneda embedding. Since Alg T is complete, the idempotent Y us has a
splitting

Y Bs

εs //
As

µs

oo
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in Alg T : let µs be an equalizer of Y us and id, and εs the unique morphism
with

µsεs = Y us and εsµs = id in Alg T . (2.2)

Denote by

T 〈u〉 ⊆ (Alg T )op (2.3)

the full subcategory of the dual of Alg T on all objects which are, in (Alg T )op,
finite products of the algebras As (s ∈ S).

(1a) We prove that T and T 〈u〉 are Morita equivalent. The closure C of
T 〈u〉 under retracts in the (idempotent-complete) category (Alg T )op is an
idempotent completion of T 〈u〉. It is sufficient to prove that

Y Bs ∈ C

for every s ∈ S: in fact, we then have Y T ∈ C for every T ∈ T because T is
a retract of a finite product Bs1

× · · ·×Bsn
(use m and e = e(us1

× · · ·×usn
)

in Definition 2.3). Therefore, Y op[T ] is contained in C. Moreover, since As

is a retract of Y Bs (use (2.2) above), we conclude that C is an idempotent
completion of Y op[T ] ∼= T , thus, T and T 〈u〉 are Morita equivalent.

For the proof of Y Bs ∈ C apply Definition 2.3 to T = Bs and consider the
following morphisms of Alg T :

ẽ ≡ Y Bs
Y e
−→ Y Bs1

+ · · · + Y Bsn

εs1
+···+εsn

−−−−−−→ As1
+ · · · + Asn

and

m̃ ≡ As1
+ · · · + Asn

µs1
+···+µsn

−−−−−−→ Y Bs1
+ · · · + Y Bsn

Y m
−−→ Y Bs .

Since (2.2) implies m̃ẽ = Y m·Y (us1
×· · ·×usn

)·Y e = Y (e·us1
×· · ·×usn

·m) =
id, we see that Y Bs is a retract of As1

× . . . Asn
in (Alg T )op, thus, it lies in

C.
(1b) We prove next that T 〈u〉 is categorically equivalent to uT u – thus, by

(1a), uT u is Morita equivalent to T .
Define a functor

E : uT u → T 〈u〉

on objects by

E(s1 . . . sn) = As1
× · · · × Asn

and on morphisms f : s1 . . . sn → t1 . . . tk (which, recall, are special mor-
phisms f : Bs1

× · · · × Bsn
→ Bt1 × · · · × Btk of T ) by the commutativity of
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the following square in Alg T :

As1
+ · · · + Asn

At1 + · · · + Atk

Ef
oo

µt1
+···+µtk

��

Y Bs1
+ · · · + Y Bsn

= Y (Bs1
× · · · × Bsn

)

εs1
+···+εsn

OO

Y (Bt1 × · · · × Btk) = Y Bt1 + · · · + Y BtkY f
oo

(2.4)
It is easy to verify that E is well-defined, let us prove that it is an equivalence
functor.

E is faithful because Y is faithful, and we have

Y f = Y (us1
× · · · × usn

) · Y f · Y (ut1 × · · · × utk) see (2.1)

= (µs1
+ · · · + µsn

)(εs1
+ · · · + εsn

)

· Y f · (µt1 + · · · + µtk)(εt1 + · · · + εtk) see (2.2)

= (µs1
+ · · · + µsn

) · Ef · (εt1 + · · · + εtk) see (2.4).

Since in the last composite the first morphism is a split epimoprhism and the
last one a split monomoprhism, the faithfulness of E implies that of Y .

E is full because Y is full: given h : At1 + · · · + Atk → As1
+ · · · + Asn

in
Alg T , we have f : Bs1

× · · · × Bsn
→ Bt1 × . . . Btk in T with

Y f = (µs1
+ · · · + µsn

) · h · (εt1 + · · · + εtk) . (2.5)

From (2.2) we conclude that

Y f = Y [(ut1 × · · · × utk)f(us1
× · · · × usn

)] ,

hence f is a morphism of uT u (recall that Y is faithful). From (2.2), (2.4)
and (2.5) we conclude Ef = h.

Since E is surjective on objects it is an equivalence functor.
(2) Necessity: given an algebraic theory S whose objects are finite products

of Cs (s ∈ S) and given an equivalence functor

F : Alg S → Alg T

we find a pseudoinvertible collection u = (us)s∈S of idempotents with S cat-
egorically equivalent to uT u. Denote the corresponding Yoneda embeddings
by YT : T op → Alg T and YS : Sop → Alg S. The T -algebras

As = F (YSCs) (s ∈ S)
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are strongly finitely presentable (since YSCs are, see 2.2(c)). Thus, each As

is a retract of some YT Bs for Bs ∈ T . Choose homomorphisms

YT Bs

εs //
As

µs

oo with εsµs = id (in Alg T ) .

Then the idempotent µsεs has the form YT us for a unique idempotent us :
Bs → Bs of T op. And the codomain restriction of (F · YS)op : S → (Alg T )op

yields an equivalence functor between S and T 〈u〉, see (2.3) above. As in
(1b), we deduce that uT u is categorically equivalent to T 〈u〉. It remains to
show that u is pseudoinvertible.

For every object T ∈ T we will prove that YT T is a retract of an object of
(T 〈u〉)op in Alg T , i.e., that there exist homomorphisms e : As1

+ · · ·+ Asn
→

YT T and m : YT T → As1
+ · · ·+Asn

with e ·m = id in Alg T . This will prove
the pseudoinvertibility: we have unique morphisms m and e in T with

YT e = YT T
m
−→ As1

+ · · · + Asn

µs1
+···+µsn

−−−−−−→ YT (Bs1
× · · · × Bsn

)

and

YT m = YT (Bs1
× · · · × Bsn

)
εs1

+···+εsn

−−−−−−→ As1
+ · · · + Asn

e
−→ YT T .

The desired square in 2.3 follows from the fact that YT is faithful:

YT T

m
��

YT [e(us1
×···×usn

)m]=id
// YT T

As1
+ · · · + Asn

µs1
+···+µsn

��

id

**VVVVVVVVVVVVVVVVVV

As1
+ · · · +Asn

e

OO

YT Bs1
+ · · · +YT Bsn εs1

+···+εsn

// As1
+ · · · + Asn

id
44hhhhhhhhhhhhhhhhhh

µs1
+···+µsn

// YT Bs1
+ · · · +YT Bsn

εs1
+···+εsn

OO

To prove that YT T is a retract of an object of (T 〈u〉)op, observe that since the
algebras YSCs (s ∈ S) are dense in Alg S, it follows that As (s ∈ S) are dense
in Alg T . And so is their closure (T 〈u〉)op under finite coproducts. Therefore,
YT T is a canonical colimit of the diagram D of all homomorphisms A → YT T
with A ∈ (T 〈u〉)op. The domain of this diagram, i.e., the comma-category
(T 〈u〉)op

/
YT T has finite coproducts (being closed under them in Alg T

/
YT T ),

thus, the diagram is sifted, see Remark 2.2(c); since YT T is strongly finitely
presentable, it follows that one of the colimit morphisms of D is a split
epimorphism.
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3. Examples

Example 3.1. Modules. For one-sorted theories K. Morita covered the whole
spectrum: there exist no other one-sorted theories of R-Mod than those
canonically derived from Morita equivalent rings.

More detailed:

(i) Each Rn (n ∈ N) has a natural structure of left R-module. The full
subcategory

TR = {Rn ; n ∈ N}

of (R-Mod)op is a one-sorted algebraic theory of R-Mod.
(ii) Consequently, for every ring S Morita equivalent to R, we have an

algebraic theory TS of R-Mod.
(iii) The above are, up to categorical equivalence, all one-sorted algebraic

theories of R-Mod. In fact, let T be a one-sorted algebraic theory
with objects n (n ∈ N) and with an equivalence functor

E : AlgT → R-Mod .

Then T is equivalent to TS for a ring S Morita equivalent to R: in-
deed, following [6], AlgT is equivalent to S-Mod, with S = T (1, 1).
Moreover, the composition of the Yoneda embedding Y : T op → AlgT
with the equivalence AlgT → S-Mod sends an object n to T (n, 1)
which, by additivity, is isomorphic to T (1, 1)n = Sn. This shows that
T is equivalent to TS, with S Morita equivalent to R.

Remark 3.2. There are, of course, many more algebraic theories of R-Mod

which are not one-sorted. For example, in Ab = Z-Mod the theory T ′

generated by Z and Z2 = Z/2Z is certainly Morita equivalent to TZ, but it
is not categorically equivalent to TS for any Morita equivalent ring S (e.g.,
T ′ contains an object with a finite hom).

Example 3.3. All algebraic theories of Set. The one-sorted theories are
well-known to be just the theories

T [n] (n = 1, 2, 3, . . . )

where T ⊆ Setop is the full subcategory on all natural numbers, and T [n] is
the matrix theory, i.e., the full subcategory of T on 0, n, 2n, . . . . And they
are, obviously, pairwise categorically non-equivalent.
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We now describe all many-sorted theories: they are precisely the matrix
theories T [D], see 2.6(2), for finite sets

D ⊆ N

which are sum-irreducible, i.e., no number of D is a sum of more than one
member of D. Recall that

T [D]

is the dual of the full subcategory of Set on all finite sums of members of
D. Then we know that T [D] is an algebraic theory of Set. We are going to
prove that these are precisely all of them:

(a) Every algebraic theory T ′ is categorically equivalent to T [D] for some
finite sum-irreducible D ⊆ N. In fact, consider a pseudoinvertible collection
us : Bs → Bs (s ∈ S) of idempotents in T with T ′ categorically equivalent
to uT u, where us has precisely rs fixed points. Without loss of generality we
can assume us 6= id∅ for every s, i.e., rs ≥ 1. Let K be the subsemigroup
of the additive semigroup N generated by {rs}s∈S. (That is, K is the set of
all numbers of fixed points of the morphisms us1

× · · · × usn
in Setop.) Then

uT u is categorically equivalent to K as a full subcategory of Setop. Recall
that every subsemigroup K of the additive semigroup of natural numbers is
finitely generated (see [10]). Therefore, if D is a minimum set of generators
of K, then D is finite, sum-irreducible and K is categorically equivalent to
T [D].

(b) The theories T [D] are pairwise nonequivalent categories. In fact, every
element n ∈ D defines an object n of T [D] which is product-indecomposable
and has nn endomorphisms – this determines D categorically.

Example 3.4. M -sets. For monoids M the question of Morita equivalence
(that is, given a monoid M ′ when are M -Set and M ′-Set equivalent cate-
gories) was studied by B. Banaschewski [2] and V. Knauer [7] . The main
result is formally very similar to that of K. Morita: let us say that an idem-
potent u ∈ M is pseudoinvertible if there exist e, m ∈ M with eum = 1. It
follows that the monoid

uMu = {umu : m ∈ M}

whose unit is u and multiplication is as in M is Morita equivalent to M . And
these are all monoids Morita equivalent to M , up to isomorphism.

Unlike Example 3.1, this does not describe all one-sorted theories of M -Set.
In fact, if M = {1} is the trivial one-element monoid, then M -Set = Set
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has infinitely many pairwise non-equivalent theories, as we saw in Example
3.3, although there are no nontrivial monoids Morita equivalent to {1}.

Remark 3.5. We saw above that all algebraic theories of Set are finitely-
sorted (i.e., have finitely many objects whose finite products form all ob-
jects). This is not true for M -sets, in general. In fact, whenever M is a
commutative monoid with uncountably many idempotents, then the “stan-
dard” algebraic theory T (dual to the category of all free M -sets on finitely
many generators) has an idempotent completion T ′ which has uncountably
many pairwise non-isomorphic objects. (Obviously, every idempotent m of
M yields an idempotent endomorphism m · − : M → M in T , and the split-
tings of these endomorphisms produce pairwise non-isomoprhic objects Am

of T ′: indeed, whenever Am is isomorphisc to An, then for every element x
of M we see that m · x = x iff n · x = x. By choosing x = n and x = m we
conclude m = n.) Consequently, T ′ is an algebraic theory of M -sets which
is not finitely-sorted.
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