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ABSTRACT: This note bridges the gap between the existence and regularity classes
for the solutions of the third-grade Rivlin-Ericksen fluid equations. We obtain a
new global a priori estimate which conveys the precise regularity conditions that
lead to the existence of a global in time regular solution.
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1. Introduction

Many models governing the motion of incompressible viscoelastic fluids
are best described as systems of nonlinear parabolic-hyperbolic PDE’s. Typ-
ically, existence results for this type of systems can only be obtained locally
in time, or else globally, while assuming that the given data are sufficiently
small, see e.g. [1,2,4,5,7,9-11,14]. For some models, the situation is bet-
ter in a two-dimensional setting and solvability can be proved globally in
time for any sufficiently regular set of data, cf. [3,5]. Quite recently it was
shown, without any smallness assumptions on the data, that the equations
of third-grade Rivlin-Ericksen fluids admit global solutions if the initial fluid
velocity belongs to H?(R"), n = 2,3, see [3]. In the two-dimensional case,
this regularity is enough to show uniqueness but in the 3-D case there is a
gap between the existence and the uniqueness classes.

In this article, we will study the regularity of a global in time solution of
the third-grade fluid equations in 3-D. Our analysis is based on a new global
a priori estimate which allows for the study of the precise regularity condi-
tions that lead to the existence of a global regular solution. Consequently,
we obtain a regularity class, different from the existence class, but within
which the uniqueness is also valid. Let us stress that although the existence
of more regular (even classical) solutions for these equations has been studied
previously, cf. [2,14], these results, which are all only true under restrictive
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smallness (and regularity) conditions on the data or on the material con-
stants, were obtained directly within the regularity and uniqueness classes.
Hence, they can only be results “in the small”.

Finally, it is interesting to note that the term which makes it possible to
show global existence in 3-D for third-grade fluids (and not for the second-
grade fluid equations in which this term is missing) is the same which La-
dyzhenskaya added to the Navier-Stokes equations in order to prove global
in time existence, cf. [12].

The paper is organized as follows: in section 2 we present the model and
introduce some notation; section 3 gathers the basic a prior:i estimates for
the solution of the problem; section 4 contains a uniqueness result; the main
section 5 bridges the gap between the existence and regularity classes through
the establishment of a new a prior: estimate.

2. The equations

In an incompressible Rivlin-Ericksen fluid of grade three the extra-stress
tensor is given by (see [13])

Ti = nAL(V) + 1 As(v) + a2A3(v) + Br AJV)ALY) (1)

where v is the fluid velocity, A;(v) and As(v) denote the first two Rivlin-
Ericksen tensors

Ai(v)=Vv+ (V)T

2)
9 (
AQ(V) = <§ + V- V) A, (V) + A1<V)VV + (VV)TAl(V) ,
and n, aq, s and 3 stand for material constants. In fact, the constitutive
relation (1) is a degenerate form of a more general Rivlin-Ericksen fluid of
grade three defined by

Tp =nA1 + a1As + asA? + B1A3 + Bo( A1 Ay + AsAy) + B3(tr AD)A,

and obtained by assuming, in view of thermodynamics, that 3; = [ = 0
(see [8]).

A third-grade fluid is compatible with thermodynamics if the material con-
stants in (1) satisfy the conditions (cf. [8]):
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The constitutive law (1) includes as special cases the fluids of second-grade
(8 = 0), and the Newtonian fluids (8 = a; = as = 0). In particular,
the second-grade fluids are consistent with thermodynamics if the material
constants satisfy (cf. [6]):

7720, 04120, Oél+042:o- (4)

The constitutive relation (1), together with the equations of motion, leads
to the following system of equations that governs the motion of an incom-
pressible viscoelastic Rivlin-Ericksen fluid of grade three:

(2 (v — a1 Av) —vAv — BV - (JA(V)|*A(v)) + Vp

ot
= v -V(v—oAv) + V- -N(v) +f in R?®x (0,7)

V-v=0 in R®x (0,7)

L v(z,0) = vo(x) reRS.

Here we have set A(v) = Aj(v). Moreover, all the material constants are
divided by the constant density p (v = n/p denotes the kinematical viscosity
coefficient), and

N(v) = Oél(VV)TA(V) + (o + ) A%(v).

3. Basic a prior: estimates

Our main result is based on a new, global a prior: estimate for the third-
order spatial derivatives of the solution. Hence, for the sake of completeness,
we gather in this section a few basic a priori estimates for the lower order
derivatives that will be useful in the sequel and briefly recall how they can
be derived. Let us start by recalling the existence result proven in [3].

Theorem 3.1. Assume that £ € L%, ([0, 00); L*(R?)) and that vy € H* (R?),
with V - vo = 0. There ezists a solution v € C, ([0,T); H*(R?)), which is
global in time (i.e., the solution exists for all T > 0), satisfying equations (5)

in the sense of distributions.

The result follows from an a priori estimate for the L?(R3)-norm of v —a; Av
and from a subsequent application of the Galerkin method.
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We next describe how to obtain the basic a priori estimates. Multiplying
(5); with v, integrating over R3, performing several integrations by parts,
and using the fact that V - v = 0, one obtains

1d

B
3di

MEde [ Vv +u/ VP et [ JAW) e
R3 R3

:—@1+&2 AQ(V):A(V)CZ$+/ f-vdr,
2 R3 R3
where A : B = A;;B;; denotes the usual double scalar product between two

second-order tensors. Using Holder’s and Young’s inequalities, we get

d
( |v|2d:1:+oz1/ |VV\2d:E>+2V/ |VV\2d:E+ﬁ/ AW dz (6)

dt
2
S‘&1+&2| ( /\VV|2d$—|—/ |V|2dx> 05—152/ If|? da
201 a1 + a2]? Jrs

and, hence, Gronwall’s inequality yields the first a priori estimate

T T

3

esssup (VI + o[ V¥I3) 420 [ IVVIde+y [ 1AW ()
0<t<T 0 0

a1 + asl? }{ 5 5 201 3 /T 5 }
< expd ————T A + o1 ||Vv 4+ —F fil5odt p .
P{ Ban H 0H0,2 1” 0”0,2 |&1+&2|2 . H Ho,z

Next, let us (formally) multiply equation (5); by —Av, integrate over R?,
and again integrate by parts. This results in

1d
2dt

( IVv|*de + a; |V2v|2daﬁ) +v | |V dr (8)
R3 RS RS

+5 [ AMP VAW Pdo + D> [ A oA da

<lar+asf [ [VAWPIAK >|dx+—/ AW [VAW)P da

-I—/ V[ |A(V)||VA(V)|dx + |(f,AV) | .
RS

Using Holder’s and Young’s inequalities, one can absorb part of the terms on
the right-hand side of (8) to the other side. This leads to
d

— ( Vv dr + oy \V2v|2dx> +v | |V (9)
dt R3 R3 R3
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N

[ [ AMEIVAWPdr+253 [ (AW 0,A0) do

4 4 1
< — (4 |og + o)+ af) / IVivide + — / v dx + / If| dx
6 R3 6 R3 V Jrs

and one obtains, from Gronwall’s inequality, the second a prior: estimate

T
esssup (I9¥[s + oa|VoVIRS) + v [ I9vIad (10)

0<t<T

T
+ g/o /R3 |A(V)]?|IVAV)|? dz dt

384 4
on{(22 1) ).
1
2 2 2 4 ! 2 1 ! 2
(19wl + ol Valda + 5 [ Ilfade s [ eIZade) |

after using the first estimate to control the term involving ||v||§ .

4. A uniqueness result

Here we show that an additional regularity assumption is enough to obtain
uniqueness.

Theorem 4.1. Let vy, vy € Cf, ([07 T); HZ(R?’)), be two solutions of equations
(5). Moreover, assume that vi € L' (0,T;W?3(R®)). Then vi(t) = va(t)
a.e. in R? for all t > 0.

Proof. Subtracting equation (5); written for the two solutions v; and vo,
multiplying the resulting equation by w = v; — vo, and integrating over R?
provides the identity

1d
—— (|W|2—|—oa1\Vw\2)dx—|—V/ IVw|? dx (11)
2dt Jps R3
0 [ IAGDPANY) ~ [Av2) PA(v2) : Alw) de
R3
= w- Vv, -wdr — 4 w - VA(vy): A(w)dx
R3 R3

—ay /R3 (A*(w) : A(v1) + A(v2)A(w) : Vw) da
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-2 [ (A2 - A%w) s AW de
It follows that
L2 i+ aalVwiRa) + v IVwE, 12)
+ [ (AGDP = A)P) dr 45 . T ] IAGIE(AWDE + AW do
2t car|wllos [VAV) oz [|A(W)]loz
+2 [ AR (AP +1ADP) o+ e PR o,
where we have used Holder’s and Young’s inequalities. Hence, one obtains
% % (Iwlgs + el VwiG,) < c <||V1\|272 +max{l, a1 }[[V*vilos
+(\oz1|oj— Iaz\)2) (w2, + en||[VW2s,)
10

which, in view of Gronwall’s inequality, yields the result.

5. A bridge between existence and regularity
We are now ready to prove our main result providing a regularity class for
the weak solution.

Theorem 5.1. Let f € L? (O,T; HI(R?’)) and vo € H? (R3). Moreover,
assume that there exists a weak solution v € Cy ([0,T); H*(R?)) to problem
(5) such that v € L*(0,T; W*3(R?)). Then v € L™ (0,T; H*(R?)), for all
T >0.

Proof. The following calculations are formal but can be easily justified by
a density argument. The idea is to test the equation

Oh(Vv—aAv)+ (v-V)v—-—vAv—-3V. (\A(V)|2 A(v))

— f VptasV-A(v) +an V- (v VAW + (V)T A(v) + A(v)vV)
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with A?v, perform integration by parts (typically twice), and estimate the
resulting terms using the usual inequalities. First, one easily sees that

1d 2
2 2 .
R38tv Ade_id_ ‘V V‘ dx ;
1 d
—ag AV - A’vdr = o Vv :VAvdr = —— |V3V|2 dx ;
R3 R3 2 d

—1// Av-ANvdzr=v | Vv:VA>vdr = 1// !V?’v!z dx ;
R3 R3

RB

/ f -A’vde = — O fi OLAv; dx
R3 R3

/ (V . V) V'AQV dr = / 8lvj8j8kvi8k8m dr— 8kvj8jv¢6k818wi dr = Il .
R3 R3 R3

The next term is

— 3 Bv. (‘A(V)|2A(V)> - A’vdz

= 5 [ AW AW A (8%) da
_ g [0 (IAW)E A5(v)) Ay (Duhv) da
p

= B { |A(V)|2 Aij<8kalV>Aij (OkOv) dx
R?)

+ /R?) (akal |A(V)‘2> Aij(V)AZ‘j (0x0v) da

+2 /R 3 (ak |A(v)\2> Ay (Ov) Ay (DD dac} |

which can be rewritten in the form

{/ AW [V2AW)[ do + - /’VQ\A )|2‘2dx}—12

- N (5 /AT
L= 6 [ <8k\A(V)\ ) ((%2) da
+é (8;@ \A(V)|2> Aij(Orv) A (Orv) da

2 Jgs

with
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The nonlinear term multiplied by as takes the form

Qg V-A%(v) A*vdr = —% A%(v) : A (A%) da
R3 R3

= — Q9 {/ A@k(@@mV)A/ﬁ(V) Aij (8;8mv) dx
R3

—l‘/ Aik(ﬁlv)Akj(c‘?mv) Aij (816mv) daj}
R3
F= ]37

and a similar reasoning shows that

o / V- (V VA(WV) + (Vv)"A(v) + A(V)VV) - A?vdx
RS

o

- _?{/Rgv-VA(v) D A (A%) do+

a1

-2 { / Ani(v) O1Aij (V) Aij (OrOmv) dx
R3

A%(v) : A (A%) de‘}
R3

+ 8k8mvl 8;Al-j (V) Aij (8k8mv) dx }

R?)

— {/ Aik(alamV)Akj(V) AU (8;8mv) dx
R3

+/ Aik(ﬁlv)Akj((?mv) Aij (Gﬁmv) dx} = ]4 ,
R3

again because div v = 0. This finally gives

4 ( ‘Vzvf daz+a1/ ‘V?’vf da:) —|—2V/ |V3v|2 dx
dt R3 R3 R3

o { [ AP AP g |

= -2 6ku 8kAvl d$—2[1 +2[2+2[3+2[4.
R3

v |A(v)]2‘2 dx} (13)

The right-hand side in (13) can be bounded from above by

2 IVEll, VAVIo2 +28 [VIAWP| IVAMllgs IV2A0)
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8 [ VAP IVA® o IVAMllys + 219V ]oz 92V
+2 VYR 4 1Vl + (2]as + 0zl + )
(1AM [V2AM)| [l + 2192V o3 IFAM)los ) VAW o,

where we have taken into account that |A(v)| < 2|Vv|. In view of Young’s
and Sobolev’s inequalities, we get the estimates

1 2 2
2|V Elpa VAV, < > IV £l +v Hv?’VHOQ )

BIVAMlos (2] IAWFE] IV°AW)]0
AW, IVAM o )

5
< 2| AP, + e8IV IR IR

IV¥llo2 IVHIG4 + 1VVIG4 VPV ]o2

<c(14IVvIR, ) IVIR, +cIVvlRs;

@lar + sl + ) (1AW [FAW)]],

()los ) V2AW) o

2
< SIA@I VAW, + (v + 22

+(lon + sl + @) [V3¥llo ) [ V¥R

+2||

where we have also recalled that |a; + ag| < 24 /v (cf. (3)), and used the
interpolation inequality

4
IVlloa < Vg 17V -
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In view of these estimates, we obtain, from (13), the inequality

d

VB + aal P IR) 4 IVIE, + 5 1AM VA2,
+ 2 am]
4 0,2

1
< | VERy + ellVVIEy + e (Cnaran 8) + [VVIE,
+ B+ DIVVIE ) IVAIE,.

where C(v, a1, a9,8) = c(1 +v + %% + (Jog + as| + a1)?). From Gronwall’s
inequality it then follows that

T
esssup (I9%vI3s + s VVIR) + [ I9vIR
0<t<T 0

T

T
< exp {C(z/, ay,ag, 5)T +/ IVVvlizdt+ (8+1) / [V?v]|§ 5 dt } :
0 0

1 T T
(Iv2all e Fvollsy + 5 [ 198 ds e [ Ivvizade)

which concludes the proof in view of the first two a priori estimates (7) and
(10).
|
We can obtain further regularity by testing equation (5); with —A3v and
performing again some integrations by parts. We obtain the inequality

d
= (V52 + aal[VVIG2) +2v(VivGe + 5/[RS\A(V)I2\V3A(V) |* d

L B | VAP | do
2 s

< c/ (IV V||V + [V [VP]) da + 2 [(VPF, Viv)|
R3
+C(an, o) / (1AM [VPAM)P + (V2] [V39] [Viv]) da
RB

+c(f) /R AW VAW VFAW)[[VPA(V)| + [VA(V)[* [V2A(V)[ da,
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from which one easily concludes, using the previous estimates, that
v e L™ (O,T; H4(]R3)) : for all T > 0.
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