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Abstract: Let Xn, n ≥ 1, be a strictly stationary associated sequence of random
variables, with common continuous and bounded distribution function F . Using
histogram type estimators we consider the estimation of the two-dimensional distri-
bution function of (X1, Xk+1) as well as the estimation of the covariance function
of the limit empirical process induced by the sequence Xn, n ≥ 1. Assuming a
convenient decrease rate of the covariances Cov(X1, Xn+1), n ≥ 1, we derive uni-
form strong convergence rates for those estimators. The condition on the covariance
structure of the variables is satisfied either if Cov(X1, Xn+1) decreases polynomially
or if it decreases geometrically, but as we could expect, under the latter condition
we are able to establish faster convergence rates. For the two-dimensional distribu-
tion function the rate of convergence derived under a geometrical decrease of the
covariances is close to the optimal rate for independent samples.
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1. Introduction, assumptions and definitions
A sequence of random variables Xn, n ≥ 1, is said to be associated if for

any m ∈ N and any two real-valued coordinatewise nondecreasing functions
f and g it holds

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0 ,

whenever this covariance exists. This dependence concept, introduced in
Esary, Proschan and Walkup [2], occurs naturally in every framework that
depend on monotone transformations of random variables such as reliability
theory, censored or truncated sampling. The dependence notion appears also
in statistical mechanics referred as FKG inequalities.

Received April 4, 2005.
First author supported by Centro de Matemática da Universidade de Coimbra and PRODEP
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Let Zn(t) = n−1/2
∑n

i=1

(
I(−∞,t](Xi)− F (t)

)
be the empirical process in-

duced by the random variables Xn , n ≥ 1, with common continuous distri-
bution function F , where IA represents the indicator function of the set A.
For associated random variables, under suitable assumptions on their covari-
ance structure (see Louhichi [7] and Oliveira and Suquet [11, 12] for the best
known results on the covariance decrease rates for the convergence in D[0, 1],
L2[0, 1] or Lp[0, 1], respectively), Zn converges weakly to a centered Gaussian
process with covariance function

Γ(s, t) = F (s ∧ t)− F (s)F (t)

+
∞∑

k=1

(P (X1 ≤ s,Xk+1 ≤ t)− F (s)F (t)) (1)

+
∞∑

k=1

(P (X1 ≤ t,Xk+1 ≤ s)− F (s)F (t)) .

As it is well known, the asymptotic behaviour of the empirical process is of
great interest in many statistical applications. In several fields of statistics we
often find transformations of the empirical process for which it is of interest
to characterize their limit in distribution. The results about the asymptotic
behavior of the empirical process are a valuable tool to accomplish this.
Some classic examples are several goodness of fit tests statistics, such as
the Kolmogorov-Smirnov and the Cramér-von Mises ω2 test statistics, which
are, respectively, the sup-norm and the L2[0, 1] norm of the uniform empirical
process (the empirical process of U [0, 1] random variables). Another example
of application may be found in Shao and Yu [15], who are interested on
integral functionals of the empirical process and on the mean residual life
processes in reliability.

The above comments and remarks motivated the interest on the estima-
tion of the the covariance function (1). For this we will estimate the terms
appearing in the series and sum a convenient number of these estimates to
approximate Γ. We will concentrate on histogram estimators and on proving
uniform strong convergence rates.

The estimator for Fk(s, t), the distribution function of (X1, Xk+1), is defined
by

F̂k,n(s, t) =
1

n− k

n−k∑

i=1

(
I(−∞,s](Xi)I(−∞,t](Xi+k)

)
. (2)
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The asymptotic properties of this estimator were studied by Henriques and
Oliveira [4], who derived conditions on the covariance structure of the se-
quence Xn, n ≥ 1 , for the uniform almost sure consistency of this estimator
and for the convergence in distribution of the finite dimensional distributions.
Furthermore, the convergence rate of the mean square error was character-
ized. However, no rates were provided for the uniform strong convergence.

Combining the estimator F̂k,n(s, t) with the empirical distribution function
defined by F̂n(s) = n−1

∑n
j=1 I(−∞,s](Xi) , we obtain a natural estimator for

the terms ϕk(s, t) = Fk(s, t)− F (s)F (t), namely,

ϕ̂k,n(s, t) = F̂k,n(s, t)− F̂n(s)F̂n(t). (3)

The estimators for the infinite sum in the expression of Γ(s, t) and for Γ(s, t)
itself are, respectively,

an∑

k=1

ϕ̂k,n(s, t) , (4)

and

Γ̂n(s, t) = F̂n(s ∧ t)− F̂n(s)F̂n(t) +
an∑

k=1

(
ϕ̂k,n(s, t) + ϕ̂k,n(t, s)

)
. (5)

where an −→ +∞ is such that an

n −→ 0.
It is well known that the covariance structure of a sequence of associated

random variables highly determines its approximate independence (see, for
example, Newman [10] for a number of results regarding this). As a natural
consequence, when dealing with associated samples it is common to have as-
sumptions on the covariance structure of the random variables. To introduce
the assumptions to be considered in the results of this article we define

u(n) =
∞∑

j=n+1

Cov1/3(X1, Xj). (6)

Note the exponent 1/3 on our definition of u(n). In the literature on asso-
ciated variables this exponent is usually not present. Here it is convenient
to include it in the definition of u(n), as we are concerned with indicators of
the associated variables rather than in the variables themselves. The need
for this exponent is explained by the inequality (7) below.

We now introduce two general assumptions to be used throughout the
article.
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(S1) Xn, n ≥ 1, is an associated and strictly stationary sequence of
random variables having density function bounded by B0;
let B1 = 2 max(2/π2, 45B0).

(S2) Let θ > 0. There exists a constant C0 > 0 such that u(n) ≤ C0n
−θ,

for all n ≥ 1.

Remark that under (S2),

u(0) =
∞∑

j=1

Cov1/3(X1, Xj) < ∞.

In order to be able to identify explicit convergence rates for the estimators,
we consider the following assumptions on the decay rate of the covariances
of the random variables.

(G) Suppose that there exist a0 > 0 and a > 1, such that Cov(X1, Xn) =
a0a

−n.
(P) Suppose that Cov(X1, Xn) = a0n

−a, with a0 > 0 and a > 3.

Note that, under (G) assumption (S2) holds for all θ > 0, while under (P)
assumption (S2) holds for all θ ∈ (0, a/3− 1].

Under (S1) we may apply relation (21) in Newman [9] and Corollary to
Theorem 1 in Sadikova [14] to find (see Lemma 2.6 in Roussas [13] for details)

Cov
(
I(−∞,s](Xi), I(−∞,t](Xj)

) ≤ B1Cov1/3 (Xi, Xj) , s, t ∈ R, (7)

where B1 is defined in (S1).
In Henriques and Oliveira [5], the authors have already derived uniform

strong convergence rates for the estimators studied here. The method used
in [5] was based on exponential inequalities, and required a quite fast decay
of Cov(X1, Xn). In fact, the assumptions in [5] on the covariance structure
hold under a geometric decay rate of the covariances (G), but not under a
polynomial decay (P). More precisely, under (G), it was established that the
estimators F̂k,n and ϕ̂k,n are uniformly strong consistent with a convergence
rate faster than n−α, where 0 < α < 1/3 may be chosen as close to 1/3 as
desired. Furthermore, also under (G), it is shown that the estimators for the
infinite sum

∑∞
k=1 ϕk(s, t) and for Γ(s, t) converge almost surely at a rate

faster than log n
nα , where again 0 < α < 1/3 may be chosen as close to 1/3 as

desired. Here, we will improve these results in two ways. First we will be able
to characterize the rate of convergence not only under (G) but also under
(P); secondly, under (G) we will derive faster rates of convergence than those
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mentioned previously. Furthermore, for the estimation of Fk(s, t), under (G),
we obtain convergence rates which approach the best possible ones for inde-
pendent samples (see, in Section 3, the comment just before Theorem 3.3).
The starting point for the derivation of these rates is a moment inequality for
associated random variables by Shao and Yu [15]. Our method was inspired
by Masry [8], who uses moment inequalities to obtain convergence rates for
the estimation of the density and its derivatives, considering also associated
samples.

In Section 2 we will present some auxiliary results needed to establish the
above mentioned convergence rates. The moment inequality referred earlier is
included in this section. The results establishing rates of uniform strong con-
vergence are presented in Sections 3 and 4, Section 3 dealing with the estima-
tors F̂k,n(s, t) and ϕ̂k,n(s, t) and Section 4 with the estimators

∑an

k=1 ϕ̂k,n(s, t)
and Γ̂n(s, t).

2. Auxiliary results
As mentioned before, the convergence rates that will be established in this

article follow from a moment inequality, which is stated in the next lemma.
This result is a version of Theorem 4.2 of Shao and Yu [15], for bounded and
strictly stationary random variables, where we took (referring to notation of
[15]) f to be the identity function, r = ∞, θ = p−2

2 and ε = p
2 − 1.

Lemma 2.1. (Shao and Yu [15]) Let Yn, n ≥ 1, be a strictly stationary
sequence of associated random variables satisfying E(Yj) = 0 and |Yj| ≤
M < ∞, for j ∈ N. Let p > 2 and assume that there exists a constant
C1 > 0 such that, for each n ∈ N,

∞∑

j=n+1

Cov(Y1, Yj) ≤ C1 n−
p−2

2 .

Then, there exists a constant K = K(p) such that, for all n ∈ N ,

E

∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣

p

≤ K np/2


E |Y1|p +

(
max
i≤n

n∑
j=1

Cov(Yi, Yj)

)p/2

+ M p−2C1


 .

Based on the previous result we prove an inequality that will be essential
for proving our convergence rates.
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Lemma 2.2. Let k ∈ N0 be fixed and εn a sequence of positive numbers.
Suppose (S1) and (S2) are satisfied with θ = p−2

2 , for some p > 2, for the
later. Then, there exists a constant K = K(p) such that, for each n > k and
s, t ∈ R,

P
(∣∣∣F̂k,n(s, t)− Fk(s, t)

∣∣∣ > εn

)
≤ D

εp
n(n− k)p/2

,

with
D = K

(
1 + (10B1u(0))p/2 + ck

)
,

ck = B1 max
{

4C0(k + 1)θ, 3C0 + 2u(0)kθ
}

.

Proof: For each n ∈ N and fixed s, t ∈ R define

Wk,n = I(−∞,s](Xn)I(−∞,t](Xk+n)− Fk(s, t) ,

so that we can write

F̂k,n(s, t)− Fk(s, t) =
1

n− k

n−k∑
i=1

Wk,i.

Given (S1), since the Wk,n are decreasing functions of the variables Xn, the
sequence Wk,n, n ≥ 1, is associated and strictly stationary. Furthermore,
|Wk,n| ≤ 1 and E(Wk,n) = 0, for each n ≥ 1.

We want to apply Lemma 2.1 to the sequence Wk,n, n ≥ 1, so that we need
to check that there exists a positive constant C1 such that, for all m ≥ 1,

∞∑
j=m+1

Cov(Wk,1,Wk,j) ≤ C1 m−θ. (8)

Applying a classical inequality by Lebowitz [6] and (7) we obtain

Cov(Wk,1,Wk,j) ≤ B1

[
Cov1/3(X1, Xj) + Cov1/3(X1, Xk+j) +

+ Cov1/3(Xk+1, Xj) + Cov1/3(Xk+1, Xk+j)
]
.

(9)

Thus, on account of (S2), we get, for every m > k,
∞∑

j=m+1

Cov(Wk,1,Wk,j) ≤ 2B1u(m) + B1u(m + k) + B1u(m− k)

≤ 2B1C0m
−θ + B1C0(m + k)−θ + B1C0(m− k)−θ

≤ 4B1C0(m− k)−θ

≤ 4B1C0(k + 1)θm−θ ,



STRONG CONVERGENCE RATES FOR COVARIANCE ESTIMATION 7

where, for the last step we used the fact that
{(

m
m−k

)θ
,m > k

}
is a nonin-

creasing sequence in m, so bounded above by the first term.
Moreover, for any m ≤ k, we obtain from (9),

∞∑
j=m+1

Cov(Wk,1,Wk,j)

≤ 2B1u(m) + B1u(m + k) + B1

∞∑
j=m+1

Cov1/3(Xk+1, Xj)

≤ 2B1u(m) + B1u(m + k)

+B1

(
k−m+1∑

j=1

Cov1/3(X1, Xj) +
∞∑

j=2

Cov1/3(X1, Xj)

)

≤ 2B1u(m) + B1u(m + k) + 2B1u(0) .

Again using (S2) we get, for every m ≤ k,

∞∑

j=m+1

Cov(Wk,1,Wk,j) ≤ 2B1C0m
−θ + B1C0(m + k)−θ + 2B1u(0)

≤ 3B1C0m
−θ + 2B1u(0)

= (3B1C0 + 2B1u(0)mθ)m−θ

≤ (3B1C0 + 2B1u(0)kθ)m−θ .

Setting ck = B1 max{4C0(k + 1)θ, 3C0 + 2u(0)kθ}, (8) then follows with
C1 = ck.

Then, by Lemma 2.1, there exists a constant K = K(p) such that, for all
m ≥ 1,

E

∣∣∣∣∣
m∑

i=1

Wk,i

∣∣∣∣∣

p

≤ K mp/2


1 +

(
2

m∑
j=1

Cov(Wk,1,Wk,j)

)p/2

+ ck


 , (10)

given the stationarity of Wk,n, n ≥ 1 , and the fact that |Wk,n| ≤ 1 .
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On account of (9) we obtain,
m∑

j=1

Cov(Wk,1,Wk,j) ≤ 2B1

m∑
j=1

Cov1/3(X1, Xj) + B1

m∑
j=1

Cov1/3(X1, Xk+j)

+B1

m∑

j=1

Cov1/3(Xk+1, Xj)

≤ 2B1u(0) + B1

∞∑

j=k+1

Cov1/3(X1, Xj)

+B1




k∑
j=1

Cov1/3(Xk+1, Xj) +
∞∑

j=k+1

Cov1/3(Xk+1, Xj)




≤ 2B1u(0) + B1u(0) + 2B1u(0) = 5B1u(0) .

From (10) it now follows that, for all m ≥ 1,

E

∣∣∣∣∣
m∑

i=1

Wk,i

∣∣∣∣∣

p

≤ K
(

1 + (10B1u(0))p/2 + ck

)
mp/2 .

Finally, using the Markov inequality we find, for all n > k,

P
(∣∣∣F̂k,n(s, t)− Fk(s, t)

∣∣∣ ≥ εn

)
≤

(
1

εn(n− k)

)p

E

∣∣∣∣∣
n−k∑

i=1

Wk,i

∣∣∣∣∣

p

≤ D

εp
n(n− k)p/2

,

with D = K
(
1 + (10B1u(0))p/2 + ck

)
.

For the formulation of the next results we need to introduce some additional
notation. Let tn be a sequence of positive integers such that tn −→ +∞. For
each n ∈ N and each i = 1, . . . , tn, put xn,i = Q(i/tn), where Q is the quantile
function of F . Define then, for n, k ∈ N,

Dn,k = sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ ,

and

D∗
n,k = max

i,j=1,...,tn

∣∣∣F̂k,n(xn,i, xn,j)− Fk(xn,i, xn,j)
∣∣∣ .
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To prove an uniform version of the preceding lemma we will apply the
following result which is proved in Theorem 2 of Henriques and Oliveira [4].

Lemma 2.3. If the sequence Xn, n ≥ 1, satisfies (S1), then, for each n ∈ N
and each k ∈ N0,

Dn,k ≤ D∗
n,k +

2
tn

a.s. .

Lemma 2.4. Let εn and tn be two sequences of positive numbers such that
tn −→ +∞ and εntn −→ +∞, and k ∈ N0 be fixed. Suppose (S1) holds
and (S2) is satisfied with θ = p−2

2 , for some p > 2. Then, for every n large
enough,

P

(
sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ > εn

)
≤ 2p t2

n D

εp
n(n− k)p/2

,

with D defined as in Lemma 2.2.

Proof: From Lemma 2.3 and taking into account that εntn −→ +∞ we
obtain, for every n large enough,

P (Dn,k > εn) ≤ P

(
D∗

n,k +
2
tn

> εn

)

≤ P
(
D∗

n,k >
εn

2

)
+ P

(
2
tn

>
εn

2

)

≤
∑

i,j=1,...,tn

P
(∣∣∣F̂k,n(xn,i, xn,j)− Fk(xn,i, xn,j)

∣∣∣ >
εn

2

)

≤ t2
n max

i,j=1,...,tn
P

(∣∣∣F̂k,n(xn,i, xn,j)− Fk(xn,i, xn,j)
∣∣∣ >

εn

2

)
.

Now, apply Lemma 2.2 to complete the proof.

3. Uniform strong convergence rates for F̂k,n

Using Lemma 2.4 of the last section we will now obtain uniform strong
convergence rates for the estimator F̂k,n. In this section the letter C stands
for a positive constant, which may take different values at each appearance.
In each case the value of the constant is independent of n, but may depend
on k and p.
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Lemma 3.1. Let k ∈ N0 be fixed. Suppose (S1) holds and (S2) is satisfied
with θ = p−2

2 , for some p > 2 . Then we have, for every 0 < δ < p−2
2 ,

sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ = O

(
(log n)

2
p+2 n−

p−2−2δ
2p+4

)
a.s. .

Proof: Fix 0 < δ < p−2
2 and put tn = log n

εn
in order to have εn tn −→ +∞.

Now, choosing εn = (log n)
2

p+2 n−
p−2−2δ

2p+4 , we will obtain from Lemma 2.4, for
n large enough,

P

(
sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ > εn

)
≤ C

(log n)2

εp+2
n (n− k)p/2

≤ C n−(1+δ) .

The sequence on the right-hand side above being summable, the result follows
by the Borel-Cantelli Lemma.

Note that, p−2−2δ
2p+4 approaches 1/2 as p grows to ∞, so the convergence

rate established in the previous lemma can be arbitrarily close to n−1/2, if
a sufficiently large p can be chosen. As stated in the next theorem, this
is always possible under assumption (G), but not under (P). In fact, with
polynomially decreacsing covariances, in order to have a convergence rate
close to n−1/2, we need to impose a further assumption on the covariances,
namely, that this polynomial decrease is fast enough. This leads to large
values of the exponent appearing in (P).

Theorem 3.2. Let k ∈ N be fixed and suppose (S1) holds.

a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ = O

(
n−γ

)
a.s. .

b) Under (P) we have, for every 0 < γ < 1
2 − 3

a+3,

sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ = O

(
(log n)

3
3+a n−γ

)
a.s. .

Proof: To prove a), fix 0 < γ < 1/2. Now, choose p > 2 and 0 < δ < p
2 − 1

so that p−2−2δ
2p+4 > γ. As already mentioned in Section 1, under (G) the

assumption (S2) is satisfied regardless of the value of θ. In particular (S2) is
satisfied for θ = p−2

2 . From Lemma 3.1, it follows that

sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ ≤ C (log n)

2
p+2 n−

p−2−2δ
2p+4 ≤ C n−γ a.s. ,
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proving part a).
Under (P), as remarked in Section 1, assumption (S2) holds if θ ≤ a/3− 1.

According to Lemma 3.1, to obtain the best possible convergence rate, p
must be chosen as large as possible. As θ = p−2

2 ≤ a
3 − 1, it follows that we

must choose p = 2a/3 . Then, for any fixed γ ∈ (
0, 1

2 − 3
a+3

)
, part b) of the

theorem follows directly from Lemma 3.1, replacing p by 2a/3 and setting
δ = a

3 − 1− 2γ a+3
3 .

Note that with k = 0 and s = t the estimator F̂k,n(s, t) reduces to the
one-dimensional empirical distribution function F̂n(s). So, the convergence
rates of the previous theorem apply also to F̂n. However, under (P) it is
possible to obtain a slightly faster convergence rate for F̂n. In fact, under
the conditions of Lemma 2.4, with k = 0, we would obtain, for every n large
enough,

P

(
sup
s∈R

∣∣∣F̂n(s)− F (s)
∣∣∣ > εn

)
≤ 2p tn D

εp
n np/2

.

Then, following the arguments of the proofs of Lemma 3.1 and Theorem 3.2,
we would find that, for every 0 < γ < 1

2 − 9
2(2a+3) ,

sup
s∈R

∣∣∣F̂n(s)− F (s)
∣∣∣ = O

(
(log n)

3
3+2an−γ

)
a.s. .

This rate is somewhat faster than the rate given in part b) of the previous
theorem.

We note also that the convergence rate for the case of geometrically decreas-
ing covariances is arbitrarily near the optimal rate for F̂n, in the independent
setting. In fact, for independent samples, the Law of the Iterated Logarithm
implies that the best possible convergence rate for the one-dimensional em-

pirical distribution function is O
(

( log log n
n )1/2

)
, which is just slightly faster

than the rate given in the previous theorem for the case of geometrically
decreasing covariances.

The next theorem is the analogue of Theorem 3.2 for the estimator ϕ̂k,n.

Theorem 3.3. Let k ∈ N be fixed and suppose (S1) holds.

a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈R

|ϕ̂k,n(s, t)− ϕk(s, t)| = O
(
n−γ

)
a.s. .
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b) Under (P) we have, for every 0 < γ < 1
2 − 3

a+3,

sup
s,t∈R

|ϕ̂k,n(s, t)− ϕk(s, t)| = O
(

(log n)
3

3+a n−γ
)

a.s. .

Proof: As

sup
s,t∈R

|ϕ̂k,n(s, t)− ϕk(s, t)| ≤

≤ sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ + sup

s,t∈R

∣∣∣F (s)F (t)− F̂n(s)F̂n(t)
∣∣∣

≤ sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ + sup

s,t∈R
F (s)

∣∣∣F (t)− F̂n(t)
∣∣∣

+ sup
s,t∈R

F̂n(t)
∣∣∣F (s)− F̂n(s)

∣∣∣

≤ sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ + 2 sup

s∈R

∣∣∣F (s)− F̂n(s)
∣∣∣ ,

the result follows immediately from Theorem 3.2.

4. Uniform strong convergence rates for Γ̂n

In this section we will derive uniform strong convergence rates for the esti-
mators of the sum

∑∞
k=1 ϕk(s, t) and of the covariance function Γ(s, t). Anal-

ogously as in the previous section, C stands for a generic positive constant,
but now independent of k and n (it may depend only on p).

Lemma 4.1. Suppose (S1) holds and (S2) is satisfied with θ = p−2
2 , for some

p > 2. Then, for each 0 < δ < p−2
2 , if an = n

p−2−2δ

p2+3p we have

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O

(
(log n)

2
p+2 n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p)

)
a.s. .

Proof: Let 0 < δ < p−2
2 and take εn = (log n)

2
2+p n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p) and tn =

an

εn
log n. Now, write

P

(
sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t)− Fk(s, t))

∣∣∣∣∣ > εn

)

≤
an∑

k=1

P

(
sup
s,t∈R

∣∣∣F̂k,n(s, t)− Fk(s, t)
∣∣∣ >

εn

an

)
.

(11)
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Note that, as 0 < δ < p−2
2 , we have p2−p(4+2δ)+4(1+δ)

2(p2+3p) > 0 and p−2−2δ
p2+3p > 0, so

that εn −→ 0, an −→ +∞, tn −→ +∞ and εn

an
tn −→∞. Also, as p−2−2δ

p2+3p < 1,
an

n −→ 0.
From (11), applying Lemma 2.4 with εn

an
replacing εn, we conclude that

there exists a constant K = K(p) such that, for all n large enough,

P

(
sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t)− Fk(s, t))

∣∣∣∣∣ > εn

)

≤
an∑

k=1

K
(

1 + (10B1u(0))p/2 + ck

) 2pt2
na

p
n

εp
n(n− k)p/2

,

(12)

where ck = B1 max
{

4C0(k + 1)θ, 3C0 + 2u(0) kθ
}

.
Since k ≤ an, it follows that ck ≤ B1 max

{
4C0(an + 1)θ, 3C0 + 2u(0) aθ

n

} ≤
C aθ

n, so that from (12) we obtain, for n large enough,

P

(
sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t)− Fk(s, t))

∣∣∣∣∣ > εn

)

≤
an∑

k=1

K
(

1 + (10B1u(0))p/2 + C aθ
n

) 2pt2
na

p
n

εp
n(n− k)p/2

≤
an∑

k=1

C aθ
n

t2
na

p
n

εp
n(n− k)p/2

≤ C
t2
na

3p/2
n

εp
n(n− an)p/2

,

(13)

remembering that θ = p−2
2 .

By elementary manipulations it is easy to check that

−p2 − p(4 + 2δ) + 4(1 + δ)
2(p2 + 3p)

=
p− 2− 2δ

p2 + 3p
· 3p + 4

2(p + 2)
− p− 2− 2δ

2(p + 2)
, (14)

so, we may write εn = (log n)
2

p+2a
3p+4

2(p+2)
n n−

p−2−2δ
2(p+2) . Inserting this and the choice

made for tn on the right-hand side of (13) it follows that

P

(
sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t)− Fk(s, t))

∣∣∣∣∣ > εn

)
≤ C

n
p−2−2δ

2

(n− an)p/2
.
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As an

n −→ 0, we have n
p−2−2δ

2

(n−an)p/2 ∼ n−(1+δ), thus the sequence on the upper
bound above is summable. Then, from the Borel-Cantelli Lemma it follows
that

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t)− Fk(s, t))

∣∣∣∣∣ = O

(
(log n)

2
p+2 n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p)

)
a.s. . (15)

Now, we may write∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ ≤
∣∣∣∣∣

an∑

k=1

(ϕ̂k,n(s, t)− ϕk(s, t))

∣∣∣∣∣ +

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣

≤
∣∣∣∣∣

an∑

k=1

(
F̂k,n(s, t)− Fk(s, t)

)∣∣∣∣∣ + an

∣∣∣F (t)− F̂n(t)
∣∣∣ + an

∣∣∣F (s)− F̂n(s)
∣∣∣

+

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ .

Thus,

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ ≤

≤ sup
s,t∈R

∣∣∣∣∣
an∑

k=1

(
F̂k,n(s, t)− Fk(s, t)

)∣∣∣∣∣ + 2 an sup
s,t∈R

∣∣∣F (t)− F̂n(t)
∣∣∣ (16)

+ sup
s,t∈R

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ .

The convergence rate of the first term on the right-hand side above is
given in (15). From Lemma 3.1 the second term is almost surely

O
(
an (log n)

2
p+2 n−

p−2−2δ
2p+4

)
. Since 3p+4

2p+4 > 1 and taking into account (14), we

have

an (log n)
2

p+2 n−
p−2−2δ

2p+4 < a
3p+4
2p+4
n (log n)

2
p+2 n−

p−2−2δ
2p+4 = (log n)

2
p+2 n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p) .

Thus,

an sup
s,t∈R

∣∣∣F (t)− F̂n(t)
∣∣∣ = O

(
(log n)

2
p+2 n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p)

)
a.s. .
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Finally, we will check that the third term on the right-hand side of (16) is
of the same order. According to (7), we have

sup
s,t∈R

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ = sup
s,t∈R

∞∑

k=an+1

Cov
(
I(−∞,s](X1), I(−∞,t](Xk+1)

)

≤ B1

∞∑

k=an+1

Cov1/3(X1, Xk+1)

= B1 u(an) ≤ Ca
−p−2

2
n ,

since assumption (S2) is satisfied for θ = p−2
2 . Now, it is easy to check that

a
−p−2

2
n = n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p) ,

hence,

sup
s,t∈R

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ = O

(
n
−p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)
,

so the proof is concluded.

It is worth noticing that choosing, in the previous lemma,

an = (log n)−
4

p2+3p n
p−2−2δ

p2+3p , we would have obtained the slightly improved con-
vergence rate,

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O

(
(log n)

2(p−2)
p2+3p n

−p2−p(4+2δ)+4(1+δ)
2(p2+3p)

)
a.s. .

As the gain in the convergence rate is marginal, we will continue with the
choice for an as in the lemma, just remarking the slightly improved version
at the end.

Theorem 4.2. Suppose (S1) holds.

a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O
(
n−γ

)
a.s. ,

if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that
p2−p(4+2δ)+4(1+δ)

2(p2+3p) > γ.
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b) Under (P) we have, for every 0 < γ < 1
2 − 21 a−18

2a(2a+9) ,

sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O
(

(log n)
3

3+a n−γ
)

a.s. ,

if an = n
3

a−3γ.

Proof: Follow the arguments of the proof of Theorem 3.2, invoking Lemma
4.1 instead of Lemma 3.1 (for the proof of part b) take δ = a−3

3 − γ a(2a+9)
3(a−3) ).

The next result states the convergence rates for the Γ̂n.

Theorem 4.3. Suppose (S1) holds.

a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈R

∣∣∣Γ̂n(s, t)− Γ(s, t)
∣∣∣ = O

(
n−γ

)
a.s. ,

if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that
p2−p(4+2δ)+4(1+δ)

2(p2+3p) > γ.

b) Under (P) we have, for every 0 < γ < 1
2 − 21 a−18

2a(2a+9) ,

sup
s,t∈R

∣∣∣Γ̂n(s, t)− Γ(s, t)
∣∣∣ = O

(
(log n)

3
3+a n−γ

)
a.s. ,

if an = n
3

a−3γ.

Proof: First write

sup
s,t∈R

∣∣∣Γ̂n(s, t)− Γ(s, t)
∣∣∣

≤ sup
s,t∈N

∣∣∣F̂n(s ∧ t)− F (s ∧ t)
∣∣∣ + 2 sup

s∈R

∣∣∣F̂n(s)− F (s)
∣∣∣ +

+ sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t)−
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣

+ sup
s,t∈R

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(t, s)−
∞∑

k=1

ϕk(t, s)

∣∣∣∣∣ .

(17)

Thus, under (G) the result follows directly from Theorems 3.2 and 4.2.
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For the proof of part b), fix γ ∈
(

0, 1
2 − 21 a−18

2a(2a+9)

)
. Since 21 a−18

2a(2a+9) > 3
a+3 ,

obviously γ ∈ (
0, 1

2 − 3
a+3

)
. It follows then from Theorem 3.2 that the two

first terms of the right-hand side of (17) are almost surely O
(

(log n)
3

3+a n−γ
)

.

Finally, if an = n
3

a−3γ, by Theorem 4.2 the fourth and fifth terms are of the
same order.

As mentioned earlier, choosing an = (log n)−
4

p2+3p n
p−2−2δ

p2+3p we would ob-
tain a slight improvement on our convergence rates, for the case of poly-
nomially decreasing covariances. In fact, in the previous two theorems,
with this choice for an, we would obtain the same convergence rate under
(G), whereas under (P) (with p and δ as in the proof of Theorem 4.2),

both sups,t∈R |
∑an

k=1 ϕ̂k,n(s, t)−∑∞
k=1 ϕk(s, t)| and sups,t∈R

∣∣∣Γ̂n(s, t)− Γ(s, t)
∣∣∣

would be, almost surely,

O
(

(log n)
6a−18

2a2+9an−γ
)

a.s. ,

for any 0 < γ < 1
2 − 21 a−18

2a(2a+9) .
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de Matemática da Universidade de Coimbra 03-23.

[6] J. Lebowitz (1972), Bounds on the correlations and analycity properties of ferromagnetic Ising
spin systems, Comm. Math. Phys. 28, 313–321.

[7] S. Louhichi (2000), Weak convergence for empirical processes of associated sequences, Ann.
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