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t: Numeri
al s
hemes for a 
onve
tion-di�usion problem de�ned on thewhole real line have been derived by Morton and Sobey [1℄ using the exa
t evolutionoperator through one time step. In this paper we derive new numeri
al s
hemes byusing the exa
t evolution operator for a 
onve
tion-di�usion problem de�ned onthe half-line. We obtain a third order method that requires the use of a numeri
alboundary 
ondition whi
h is also derived using the same evolution operator. Wedetermine whether there are advantages from the point of view of stability anda

ura
y in using these new s
hemes, when 
ompared with similar methods obtainedfor the whole line. We 
on
lude that the third order s
heme provides gains in termsof stability and although it does not improve the pra
ti
al a

ura
y of existingmethods faraway from the in
ow boundary, it does improve the a

ura
y next tothe in
ow boundary.Keywords: �nite di�eren
es, 
onve
tion-di�usion, stability, a

ura
y.1. Introdu
tionThe me
hanism of 
onve
tion di�usion appears in many physi
al appli-
ations and a

urate modeling of the intera
tion between 
onve
tive anddi�usive pro
esses 
an be a diÆ
ult task. Although the majority of physi
alexperiments are performed in the presen
e of boundaries if we 
onsider theapproximation of the unsteady 
onve
tion-di�usion problem, we 
an observethat mu
h of the literature is 
on
erned with 
hoi
es for the whole real line.It is very 
ommon that the approximate solutions we derive for the wholeline present some diÆ
ulties when we need to deal with the presen
e of aphysi
al boundary. This diÆ
ulty is more obvious if we are interested insimulations next to the boundary and at short times. Even if they performeÆ
iently far away from the physi
al boundary, next to it they 
an have apoor performan
e. In this paper, we present new �nite di�eren
e s
hemesderived taking into a

ount the existen
e of an in
ow physi
al boundary.Finite di�eren
e s
hemes typi
ally 
onsist of repla
ement of the individualderivative terms in the partial di�erential equation by a set of dis
retisedapproximations (see e.g. Smith [2℄). However, re
ently di�erent te
hniquesRe
eived April 27, 2005. 1



2 E. SOUSAwere suggested for deriving �nite di�eren
es for the unsteady 
onve
tion-di�usion equation (see e.g. Morton and Sobey [1℄ and Xu et al [3℄). Inthe next se
tion, we use the framework des
ribed in Morton and Sobey [1℄ toobtain �nite di�eren
e s
hemes taking into a

ount the presen
e of a physi
alboundary.Related with the 
onvergen
e of a �nite di�eren
e s
heme we en
ounterquestions about stability and a

ura
y and the presen
e of a boundary mostlikely will a�e
t stability and a

ura
y of the overall numeri
al s
heme. In thethird se
tion we study the stability and a

ura
y of the numeri
al s
hemesand in the fourth se
tion, to analyse the performan
e of the third orders
heme, we present two test problems.2. The �nite di�eren
e s
hemesConsider the one-dimensional problem of 
onve
tion with 
onstant velo
ityV in the positive x dire
tion and 
onstant di�usion D > 0:�u�t + V �u�x = D�2u�x2 ; t > 0; x > 0; (1)with the initial 
ondition u(x; 0) = f(x); x � 0; (2)and subje
t to the boundary 
onditionsu(x; t)! 0; x!1 and u(0; t) = g(t); t � 0. (3)The exa
t solution of the system (1), (2) and (3) 
an be found using Lapla
etransforms in t:u(x; t) = 1p� Z t0 g(t� �)G�(x; �)d�+ 1p� Z +1V t�x2pDt f(x� V t+ 2pDt�)e��2d�� 1p� Z +1V t+x2pDt f(�x� V t+ 2pDt�)eV x=De��2d� (4)where the fun
tion G�(x; �) is given byG�(x; �) = x2pD� 2=3e�(x�V �)2=4D� . (5)



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 3Applying the result to evolution over one time step, we write,u(x; tn +�t) = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p�Z +1V�t�x2pD�tu(x� V�t+ 2pD�t�; tn)e��2d�� 1p�Z +1V�t+x2pD�tu(�x� V�t+ 2pD�t�; tn)eV x=De��2d�. (6)
The exa
t solution for this model problem di�ers from the solution of a
onve
tion-di�usion problem on the whole real line. This is the fundamentalsolution we shall use, to derive approximation s
hemes by allowing a lo
al so-lution to evolve and then restri
ting the evolved solution to an approximationspa
e.We 
an rewrite the evolution operator over one time step, given by (6), interms of a Green's fun
tion:u(x; tn +�t) = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p� Z +10 u(�; tn)G1(x; �;�t)d�; (7)where G1(x; �; �) = e�(��x�V �)2=4D�2pD� [1� e�x=D�℄:To derive �nite di�eren
e approximations we substitute a lo
al polynomialapproximation to u(�; tn) in (7), and then 
arry out the integration of aglobal polynomial. Suppose we have approximations Un := fUnj g to thevalues u(xj; tn) at the mesh pointsxj = j�x; j = 0; 1; 2; : : : :We asso
iate with ea
h point xj a lo
al interpolating polynomial throughUnj and the values at a 
ertain number of neighbouring points. Denoting ea
hsu
h polynomial by pj(x;Un), we generate �nite di�eren
e s
hemes fromUn+1j = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�



4 E. SOUSA+ 1p� Z +10 pj(�;Un)G1(xj; �; �t)d�: (8)The approximation s
heme whi
h we obtain 
omes from approximating Unnear xj by a polynomial pj(x;Un), of degree R,pj(x;Un) = RXr=0 bjr(x� xj)r:Then Un+1j = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p�Z +1��j2p� pj(xj � V�t+ 2pD�t�;Un)e��2d�� 1p�Z +1�+j2p� pj(�xj � V�t+ 2pD�t�;Un)ej�=�e��2d�, (9)
where � = V�t�x and � = D�t�x2 :First, for 
larity, we assume that the left boundary 
ondition is zero, thatis, g(t) = 0. Then the �rst integral in (9) is zero and we 
an write afterintegration of the polynomial form,Un+1j = bj0[12Erf
(� � j2p� )� 12e�j=�Erf
(� + j2p� )℄+bj1[�V�t12Erf
(� � j2p� ) + (2xj + V�t)12e�j=�Erf
(� + j2p� )℄+bj2[(V 2(�t)2 + 2D�t)12Erf
(� � j2p� )�((2xj + V�t)2 + 2D�t)12e�j=�Erf
(� + j2p� ) + 2pD�tp� xje�(��j)2=4�℄+bj3[�(V 3(�t)3 + 6V D(�t)2)12Erf
(� � j2p� )



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 5+(2xj + V�t)((2xj + V�t)2 + 6D�t)12e�j=�Erf
(� + j2p� )�2(2V�t+ 3xj)pD�tp� xje�(��j)2=4�℄ + : : : ;where Erf
(x) is the 
omplementary error fun
tion Erf
(x) = 2p� Z 1x e�t2dt.Within this general framework we 
an now obtain �nite di�eren
e s
hemesby interpolation on a uniform mesh. We use the usual 
entral, ba
kward andse
ond di�eren
e operators to evaluate the 
oeÆ
ients bjr; r = 0; 1; 2; : : : interms of the nodal values Un,�0Uj = Uj+1 � Uj�12 ; ��Uj = Uj�Uj�1; and Æ2Uj = Uj+1�2Uj+Uj�1:We present two new numeri
al s
hemes using a quadrati
 interpolant and a
ubi
 interpolant, obtaining in that way the s
hemes that we 
all the Modi�edLax-Wendro� s
heme and the Modi�ed Qui
kest s
heme. Other methods ofhigher order 
ould be obtained by using higher order interpolants.Using the quadrati
 interpolant of Unj�1, Unj and Unj+1 we have the approx-imation formula for Un+1j , j � 1Un+1j = a(j)[1� ��0 + (�22 + �)Æ2℄Unj + b(j)�0Unj + 
(j)Æ2Unj ; (10)where a(j) = 12Erf
(� � j2p� )� 12e�j=�Erf
(� + j2p� )b(j) = je�j=�Erf
(� + j2p� )
(j) = �j(j + �)e�j=�Erf
(� + j2p� ) + Z(j)where Z(j) = p�p�je�(��j)2=4�. We 
all this s
heme the Modi�ed Lax-Wendro�s
heme sin
e for a(j) = 1, b(j) = 0 and 
(j) = 0, we obtain the Lax-Wendro� s
heme [4℄, [5℄.Although we will 
on
entrate our attention on the s
heme that follows,whi
h is obtained using a 
ubi
 term, we have shown above, for 
ompleteness,the derivation of the Modi�ed Lax-Wendro� s
heme.



6 E. SOUSAIf pj(x;Un) is extended to in
lude a 
ubi
 term, using the interpolationpoints Unj�2, Unj�1, Unj and Unj+1 then the approximation formula for j � 2be
omesUn+1j = a(j)[1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2��℄Unj+b(j)�0Unj + 
(j)Æ2Unj + d(j)Æ2��Unj ; (11)whered(j) = �16b(j) + 16e(j)e(j) = (4j3 + 2j2� + j�2 + 6j�)e�j=�Erf
(� + j2p� )� 2(2� + 3j)Z(j):We 
all this s
heme the Modi�ed Qui
kest s
heme sin
e in (11), for a(j) = 1,b(j) = 0, 
(j) = 0 and d(j) = 0 we obtain the Qui
kest s
heme [6℄.To obtain the s
heme (11) we interpolate at two points upwind but we donot have these points for interpolation around the �rst point of the mesh.Here, therefore, we need to 
onsider a numeri
al boundary 
ondition at the�rst mesh point. At this point we perform a 
ubi
 interpolation of the pointsUn0 , Un1 , Un2 , Un3 , namelyUn+11 = a(1)[1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2�+℄Un1+b(1)�0Un1 + 
(1)Æ2Un1 + d(1)Æ2�+Un1 ; (12)where �+ is the forward di�eren
e operator de�ned by �+Unj = Unj+1 � Unj .When j !1 we haveErf
�� � j2p� �! 1; Erf
�� + j2p� �! 0; Z(j)! 0;and a(j)! 1 b(j)! 0 
(j)! 0 d(j)! 0:Therefore, these new s
hemes are 
onsiderably di�erent from the Lax-Wendro�s
heme and Qui
kest s
heme at the �rst points of the mesh, but are onlyslightly di�erent at the other mesh points. In the next se
tion we dis
uss thestability and a

ura
y of the new s
hemes.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 73. Stability and a

ura
yTo analyse the stability of the new s
hemes we 
annot use the von Neumannstability analysis sin
e the 
oeÆ
ients are not linear, although under general
onditions (see Ri
htmyer and Morton [7℄) it 
an be proved that for linear,non-
onstant 
oeÆ
ient problems a lo
al von Neumann analysis will providea ne
essary 
ondition for stability. The more natural option in this 
ase is touse the spe
trum and matrix analysis based on the observation of the normand spe
trum behaviour of the iterative matrix. Also the matrix methodprovides information on the in
uen
e of boundary 
onditions.Con
erning a

ura
y, to 
al
ulate the lo
al trun
ation error we 
annotapply the modi�ed equation as des
ribed in Warming and Hyett [8℄, sin
e wehave non-linear terms. On the other hand we 
an derive formal trun
ationerror estimates in the same way as suggested in Morton and Sobey [1℄ byapplying the Peano kernel theorem (see Powell [9℄).3.1. Stability analysis of the new s
hemes. The expli
it methods wedis
uss 
an be written in the form of a matrix iteration. Assume that thenodal points are Unj ; j = 0; : : : ; N and that the out
ow boundary is su
h thatUnN = 0; 8n: (13)The 
hoi
e of this out
ow boundary is motivated by the fa
t that we assumethat the exa
t solution goes to zero when x goes to in�nity.Introdu
ing the ve
tor Un = fUn0 ; Un1 ; : : : ; UnN�1gT , all the s
hemes may bewritten as matrix equationsUn+1 = AUn + vn; n = 0; 1; 2; : : : : (14)where A is an N�N matrix and depends on the s
heme used and vn appearswhen the in
ow boundary 
ondition is not zero.Any errors En in a 
al
ulation based on (14) will grow a

ording toEn+1 = AEn; n = 0; 1; 2; : : : : (15)where En = un � Un with un, Un the exa
t and numeri
al solutions of (14),respe
tively, at t = n�t.Given A 2 IRN�N denote the spe
tral radius of A by �(A) and the L2-normof the matrix A by jjAjj. We re
all thatjjAjj = �(A) if A 2 IRN�N is normal:
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Figure 1. Stability region for the Modi�ed Lax-Wendro� s
heme: �(A) =1 (�) and jjAjj = 1 (� � �).It is well known that for any A 2 IRN�NAm ! 0 as m!1 if and only if �(A) < 1;and that �(A) � jjAjj:A simple 
riterion for regulating the error growth governed by (15) is givenby �(A) � 1: (16)When the matrix A is not normal the spe
tral radius gives no indi
ationof the magnitude of En for �nite n. In this 
ase a 
ondition of the form�(A) < 1 guarantees eventual de
ay of the solution, but does not 
ontrol theintermediate growth of the solution.A more severe 
ondition for regulating error growth follows from (15). Ifthe matrix norm, jjAjj, is 
onsistent with the ve
tor norm, jjEjj, thenjjEn+1jj � jjAjjjjEnjj; n = 0; 1; 2; : : : ;and the 
ondition jjAjj � 1; (17)is suÆ
ient to ensure that the error 
annot grow with n.From (15) we have En = AnE0; n = 1; 2; : : : : (18)



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 9The expression (18) shows that in order for all En to remain bounded andthe s
heme (14) to remain stable the in�nite set of operators An has to beuniformly bounded for all n, �t and �x.Our stability analysis 
onsists essentially in applying the suÆ
ient 
ondi-tion for stability jjAjj � 1 with the ne
essary stability 
ondition �(A) � 1.We will plot the regions using MATLAB and for the matrix size N = 30.The stability region for the s
heme derived using a quadrati
 polynomialapproximation, whi
h we 
alled the Modi�ed Lax-Wendro� s
heme, is givenby �gure 1. Comparing �gure 1 with Lax-Wendro� von Neumann stabilityregion, we observe that the stability region is the same, assuming it to bethe region where jjAjj � 1. In this 
ase we do not have an advantage interms of stability by 
hoosing the Modi�ed Lax-Wendro� s
heme instead ofthe Lax-Wendro� s
heme.
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(a) (b)Figure 2. Stability region for the Modi�ed Qui
kest s
heme with the nu-meri
al boundary 
ondition (12): (a)�(A) = 1 (�) and jjAjj = 1 (� � �); (b)jjAjj = 1 (���) and pra
ti
al von Neumann stability for the Qui
kest s
heme(�)Consider the s
heme (11), derived using a 
ubi
 polynomial approximationand 
alled Modi�ed Qui
kest s
heme asso
iated with the numeri
al boundary
ondition (12). The stability region is given by the region plotted in �gure2. Additionally, we plot in �gure 2b the pra
ti
al von Neumann stabilityregion for the Qui
kest s
heme. This allows us to see in what way it relateswith the region jjAjj � 1, where A is the iterative matrix of the Modi�edQui
kest s
heme with the numeri
al boundary 
ondition (12). The region for



10 E. SOUSAsmall � where jjAjj � 1 and �(A) � 1, plotted in the left 
orner of �gure 2aand �gure 2b is a region of pra
ti
al stability. This was 
he
ked by runningnumeri
al experiments on this region.It is important to remember that jjAjj � 1 is a suÆ
ient 
ondition forstability but not a ne
essary one. In fa
t, experimentally the new s
hemeseems to be stable in all the von Neumann region displayed in �gure 2b.To 
on
lude, we observe there are advantages in terms of stability in us-ing the Modi�ed Qui
kest s
heme asso
iated with the suggested numeri
alboundary 
ondition, sin
e we do not have the usual penalties in stability asso-
iated with the presen
e of a numeri
al boundary 
ondition (see for instan
eSousa and Sobey [10℄).3.2. A

ura
y of the new s
hemes. We 
an derive trun
ation error es-timates in the same way as suggested in Morton and Sobey [1℄ by applyingthe Peano kernel theorem (see Powell [9℄). We 
onsider the error 
ommittedin one time step.Theorem: For the s
heme derived using the quadrati
 interpolant, theModi�ed Lax-Wendro�, we have�tTjxj = 16�x3uxxxg2j (�; �) + O(�x4ux4); (19)where g2j (�; �) = �(1� �2 � 6�)a(j)� b(j) + e(j):For the Modi�ed Qui
kest s
heme, obtained using a 
ubi
 interpolant, theexa
t error for xj; j � 2 is given by the 
umbersome expression�tTjxj = 124�x4uxxxxg3j (�; �) + O(�x5ux5); (20)withg3j (�; �) = (12�2 � 2�� 12��(1� �) + �(1� �2)(2� �))a(j)�2b(j)(12�� + 2�3 + 2j� + 1 + 2j3)+2
(j)(1 + 6j2) + 2(1� 2j)e(j) + 2Z(j)(3�2+ j2 + 10�):Proof: The details of the proof 
an be seen in Appendix A. �



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 11When j ! 1 then a(j) = 1; b(j) = 
(j) = e(j) = 0 and the expressions(19) and (20) are the trun
ation errors obtained for the Lax-Wendro� s
hemeand Qui
kest s
heme respe
tively. Consequently, for ea
h s
heme, near theboundary we shall have a di�erent trun
ation error whi
h nevertheless doesnot have an inferior order.These results indi
ate that the new s
hemes have similarities in terms ofa

ura
y with the Lax-Wendro� and Qui
kest s
hemes respe
tively.It is well know that numeri
al boundary 
onditions do interfere with thestability region of the s
heme. This raises the question whether by usingthe Qui
kest s
heme, instead of the Modi�ed Qui
kest s
heme, with thenumeri
al boundary 
ondition (12), we would still have gains in stability.We 
he
k this possibility in the next se
tion.3.3. Stability of mixed s
hemes. It was seen in Sousa and Sobey [10℄ thatthe 
hoi
e of numeri
al boundary 
onditions may strongly a�e
t the stabilityof a Qui
kest s
heme even if the a

ura
y is not a�e
ted.
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Figure 3. Stability region for Qui
kest s
heme with the numeri
al bound-ary 
ondition (12);When j ! 1 the Modi�ed Qui
kest s
heme is identi
al to the Qui
kests
heme. It is in the �rst points of the s
heme that a 
onsiderable di�eren
emay o

ur and this seems to a�e
t strongly the stability. This fa
t motivatesus to 
onsider the use of the Qui
kest s
heme together with the numeri
alboundary 
ondition (12) in situations where we are interested in long timebehaviour of solutions.



12 E. SOUSAWe plot, in �gure 3, the region jjAjj � 1, where A is the iteration matrix forthe Qui
kest s
heme asso
iated with the numeri
al boundary 
onditions (12).We observe that we re
over the von Neumann stability region lost when usingdi�erent numeri
al boundary 
onditions with the Qui
kest s
heme studied inSousa and Sobey [10℄.4. Test ProblemsIn this se
tion we 
onsider two test problems to 
ompare the performan
esbetween the Modi�ed Qui
kest s
heme and the Qui
kest s
heme. On the �rsttest problem, the solution is dominated by the in
ow boundary 
onditionwhereas on the se
ond test problem is dominated by the initial 
ondition.For our tests we assume V = 0:1 and D = 0:001.4.1. Test problem: initial 
ondition f(x) = 0. To measure a

ura
y ofthe di�erent s
hemes we have 
onsidered a test problem with initial datau(x; 0) = 0; x � 0; u(0; t) = C0:The analyti
al solution is given byu(x; t) = C02 �Erf
�x� V t2pDt �+ eV xD Erf
�x+ V t2pDt �� : (21)
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Figure 4. Exa
t solution (21) for C0 = 100, V = 0:1 and D = 0:001 at x = 0:075In the next examples we 
onsiderC0 = 100. The exa
t solution at x = 0:075is displayed in �gure 4.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 13For this test problem we have g(t) 6= 0 and we 
an not 
onsider the �rstintegral of (9) zero. This integral is now given byC0p� Z �t0 G�(x; �)d�where G� is de�ned by (5). We evaluate this integral using Gaussian quad-rature formulas [11℄ and add it to the right side of (11).Our main 
on
ern, as mentioned before, is with the Modi�ed Qui
kests
heme obtained using a 
ubi
 interpolation.Let us 
onsider the error fun
tion de�ned aserror(t) = U(t)� u(t);where U(t) is the approximate solution and u(t) is the exa
t solution.As we re�ne the spa
e step we observe , see �gure 5, that the error dimin-ishes as expe
ted for both s
hemes, the Modi�ed Qui
kest s
heme and theQui
kest s
heme. Although they share the same order of a

ura
y, the news
heme seems to have the advantage of a smaller error, next to the in
owboundary. In �gure 5 we have used � = 0:03 and �t = 4:5�10�4�x = 0:0015and �t = 2:25 � 10�4 �x = 7:5 � 10�4 respe
tively. The part of the errorafter t = 2 tends to keep a 
onstant error as t in
reases, sin
e both s
hemesshow to be dissipative very near the in
ow boundary.
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(a) (b)Figure 5. Error for Modi�ed Qui
kest (�) and for Qui
kest (� � �) atx = 0:075: (a) �x = 1:5� 10�3 (b) �x = 7:5� 10�4As x be
omes bigger the two s
hemes be
ome more similar. This is thereason to suggest the new s
heme for problems where we are interested insmall values of spa
e, small values of time or as a mixed s
heme as pointed



14 E. SOUSAout in se
tion 3. In �gure 6 we plot the errors when we take x = 0:15 andx = 0:3 for �x = 0:0015. The error fun
tions approa
h 
onsiderably as xin
reases and additionally they tend to zero as time be
omes larger.
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(a) (b)Figure 6. Error for Modi�ed Qui
kest (�) and for Qui
kest (� � �) at�x = 0:0015: (a) x = 0:15; (b) x = 0:3Furthermore, we 
an also observe that as we re�ne the spa
e step and notthe time step the fa
t that the stability region of the new s
heme is largerallows us to get 
onvergen
e in less time steps. For instan
e in �gure 7 weshow both s
hemes for �t = 0:006 and �x = 0:003, where the Qui
kests
heme with the numeri
al boundary 
onditionUn+11 = [1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2�+℄Un1diverges but the new s
heme with the numeri
al boundary 
ondition (12)
onverges.This fa
t is quite important 
on
erning that next to the in
ow boundaryto get a better a

ura
y, in most 
ases, it is 
onvenient to re�ne the spa
estep or the time step. If the stability region is larger when we re�ne the spa
estep we have no need to re�ne the time step in order to be inside the stableregion as happens in many pra
ti
al situations.We also believe that more signi�
ant is the in
ow boundary more relevantthis new s
heme 
an be.4.2. Test problem: boundary 
ondition g(t) = 0. We 
an raise thequestion: Is it also worthwhile to use the Modi�ed Qui
kest s
heme if thein
ow boundary is zero? Con
erning stability it is always worthwhile.
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(a) (b)Figure 7. �t = 0:006 and �x = 0:003: (a) Modi�ed Qui
kest s
heme (b)Qui
kest s
heme.Let us then 
onsider the initial 
ondition and the in
ow boundary 
onditionas follows: u(x; 0) = e�x2; x � 0; u(0; t) = 0:Our reason for 
onsidering this initial pro�le is that it is straight forward to
al
ulate an exa
t solution:u(x; t) = 12p4Dt+ 1 264e�(x� V t)24Dt+ 1 Erf
 � (x� V t)2pDt(4Dt+ 1)!�e�(x+ V t)24Dt+ 1 + V xD Erf
 (x+ V t)2pDt(4Dt+ 1)!375 : (22)
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Figure 8. Exa
t solution (22) for V = 0:1 and D = 0:001 at x = 0:075
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(a) (b)Figure 9. Error for Modi�ed Qui
kest (�) and for Qui
kest (� � �): (a)�x = 1:5� 10�3 (b) �x = 7:5� 10�4
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(a) (b)Figure 10. Error for Modi�ed Qui
kest (�) and for Qui
kest (� � �) at�x = 0:0015: (a) x = 0:15; (b) x = 0:3In �gure 8 we display the exa
t solution (22). We also plot similar resultsto �gures 5-6 in �gures 9-10. We have the same symptoms in both test prob-lems. Furthermore the size of the error is in
uen
ed by the in
ow boundary
ondition if we are next to it.5. Con
luding remarksThe new s
hemes are theoreti
ally interesting be
ause of the general frame-work in whi
h they are derived. We have fo
used our attention on the Modi-�ed Qui
kest s
heme whi
h seems to provide a substantial advantage in termsof stability and an advantage in terms of the error in the part of the domainnext to the in
ow boundary.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 17The gain in stability seems strongly asso
iated with the 
hoi
e of the nu-meri
al boundary 
ondition at the �rst point of the mesh. The Modi�edQui
kest s
heme for j ! 1 be
omes identi
al to the Qui
kest s
heme and
onsequently for most pra
ti
al purposes it is in the �rst dis
retisation pointsthat we 
ould expe
t some signi�
ant di�eren
e. The extension to the two-dimensional 
ase is straightforward.Referen
es[1℄ Morton, K.W and I.J Sobey (1993). Dis
retization of a 
onve
tion-di�usion equation. IMAJournal of Numeri
al Analysis 13, 141-160.[2℄ Smith, G.D. (1985). Numeri
al solution of partial di�erential equations: �nite di�eren
e meth-ods, Oxford University Press: Oxford.[3℄ Xu, H.Y., M.D. Matovi
 and A. Pollard (1997). Finite di�eren
e s
hemes for three-dimensionaltime-dependent 
onve
tion-di�usion equation using full global dis
retization. Journal of Com-putational Physi
s 130, 109-122.[4℄ Lax, P.D. and B. Wendro� (1960). Systems of 
onservations laws. Communi
ations on Pureand Applied Mathemati
s 13, 217-237.[5℄ Lax, P.D. and B. Wendro� (1964). Di�eren
e s
hemes for hyperboli
 equations with high orderof a

ura
y. Communi
ations on Pure and Applied Mathemati
s 17, 381-398.[6℄ Leonard, B.P. (1979). A stable and a

urate 
onve
tive modelling pro
edure based on quadrati
upstream interpolation. Computer Methods in Applied Me
hani
s and Engineering 19, 59-98.[7℄ Ri
htmyer, R.D. and K.W. Morton (1967). Di�eren
e methods for initial-value problems. Wiley-Inters
ien
e: New York.[8℄ Warming, F.F. and B.J. Hyett (1974). The modi�ed equation approa
h to the stability anda

ura
y analysis of �nite di�eren
e methods. Journal of Computational Physi
s 14, 159-179.[9℄ Powell, M.J.D. (1981). Approximation theory and method, Cambridge.[10℄ Sousa, E. and Sobey, I.J. (2002) On the in
uen
e of numeri
al boundary 
onditions AppliedNumeri
al Mathemati
s, 41, 325-344.[11℄ Davis, P.J. and P. Rabinowitz (1975). Methods of Numeri
al Integration A
ademi
 Press: NewYork.Appendix A: Error analysis for the new s
hemesFollowing Morton and Sobey [1℄, the trun
ation error is given byT n = 1�tRE(�t)(un � IpRun);where E(�t) is the evolution operator u(�; t + �t) = E(�t)u(�; t), for ourproblem in the semi line x � 0, R is the restri
tion operator onto the nodesand Ip is the lo
al approximation based on nodal values.



18 E. SOUSALet us de�ne the interpolation error Lun = un� Ipun and de�ne for a � 0,the integrals of the formEm(a;�) = Z 10 �me�(�+a)2=4� d�2p��: (23)In what follows we denote s = (x � xj)=�x and we omit the subs
ript n,referring only to u(x) and its evolution over one time step.Quadrati
 interpolationWe 
al
ulate the error at the point xj = j�x. We have, for j � 1Lu = u(x)� 12[�s+ s2℄u(xj�1)� [1� s2℄u(xj)� 12[s2 + s℄u(xj+1):Then using the Peano kernel theorem we 
an writeLu = Z 10 K(x; p)u(3)(p)dp;where K(x; p) = (1=2)Lx[(x�p)2+℄, Lx refers to L a
ting in x, and (x�p)2+ =(x � p)2 if x � p � 0, and zero otherwise. We 
al
ulate the Peano kernelfun
tion K(s�x+ j�x; ��x),
K = 12�x2

8>>>>>><>>>>>>:
(s+ j � �)2+ � (j � 1� �)2(�s=2 + s2=2)�(j � �)2(1� s2)� (j + 1� �)2(s2=2 + s=2); 0 < � < j � 1;(s+ j � �)2+ � (j � �)2(1� s2)�(j + 1� �)2(s2=2 + s=2); j � 1 < � < j;(s+ j � �)2+ � (j + 1� �)2(s2=2 + s=2); j < � < j + 1;(s+ j � �)2+; � > j + 1:The lo
al error is given by�tT = REx Z 10 K(x; p)u(3)(p)dp = Z 10 RExK(x; p)u(3)(p)dp



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 19where we use the notation Ex to des
ribe E(�t) a
ting on x. After somemanipulation to 
al
ulate RExK(x; p)u(3)(p) we have,
RExK = 12�x2

8>>>>>>>>>><>>>>>>>>>>:
E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j � 1� �)2(�f1 + f2)=2�(j � �)2(f3 � f2)� (j + 1� �)2(f2 + f1)=2; 0 < � < j � 1;E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j � �)2(f3 � f2)� (j + 1� �)2(f2 + f1)=2; j � 1 < � < j;E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j + 1� �)2(f2 + f1)=2; j < � < j + 1;E2(� + � � j;�)� e�j=�E2(� + � + j;�); � > j + 1;where, f1 = ��a(j) + b(j) f2 = (�2 + 2�)a(j) + 2
(j)f3 = a(j) f4 = �(�3 + 6��)a(j) + e(j):The exa
t error at xj is given by�tTjxj = �x3[Z +10 K1(�; �; �)u(3)(��x)d� + Z j+10 K2(�; �; �)u(3)(��x)d�℄:where we have introdu
ed two fun
tionsK1(�; �; �) = 12[E2(�j + � + �;�)� e�j=�E2(j + � + �;�)℄;

K2(�; �; �) =
8>>>>>>><>>>>>>>:
�(f2 � f1)(j � 1� �)2=4+(f2 � f3)(j � �)2=2�(f2 + f1)(j + 1� �)2=4 0 � � < j � 1;(f2 � f3)(j � �)2=2�(f2 + f1)(j + 1� �)2=4 j � 1 � � < j;�(f2 + f1)(j + 1� � � j)2=4 j � � � j + 1:Although the exa
t error expression appears 
ompli
ated, it 
an be used toexamine the detailed stru
ture of the error and to obtain overall bounds forthe lo
al error.Considering �rst the stru
ture of the error, if we assume u 2 C1(IR) anduse a Taylor series expansion for u(3) around xj, then after some algebra,�tTjxj = 16�x3uxxxg2j (�; �) + O(�x4ux4);



20 E. SOUSAwhere g2j (�; �) = �(1� �2 � 6�)a(j)� b(j) + e(j):Se
ondly, we 
an obtain an overall bound for the lo
al error sin
ej�tTjxj j � �x3juj3;1[Z +10 jK1(�; �; �)jd� + Z j+10 jK2(�; �; �)jd�℄:Cubi
 interpolationWe haveLu = u(x)� 16[s� s3℄u(xj�2)� 12[�2s+ s2 + s3℄u(xj�1)�12[2 + s� 2s2 � s3℄u(xj)� 16[2s+ 3s2 + s3℄u(xj+1):The Peano kernel fun
tion K(x; p) for x = s�x+ j�x and p = �x� is givenby K = 16�x3 �(s+ j � �)3+ � 16(j � 2� �)3+(s� s3)�12(j � 1� �)3+(�2s+ s2 + s3)� 12(j � �)3+(2 + s� 2s2 � s3)�16(j + 1� �)3+(2s+ 3s2 + s3)� :Summarising the 
al
ulations in this 
ase, the exa
t error for xj; j � 2 isgiven by�tTjxj = �x46 [Z +10 W 21 (�; �; �)u(4)(��x)d� + Z j+10 W 22 (�; �; �)u(4)(��x)d�℄:where the fun
tionsW 21 (�; �; �) = [E3(�j + � + �;�)� e�j=�E3(j + � + �;�)℄;
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W 22 (�; �; �) =

8>>>>>>>>><>>>>>>>>>:
q1(� � j + 2)3=6+q2(� � j + 1)3=2+q3(� � j)3=2 + q4(j)(� � j � 1)3=6; 0 � � < j � 2;q2(� � j + 1)3=2 + q3(j)(� � j)3=2+q4(� � j � 1)3=6; j � 2 � � < j � 1;q3(� � j)3=2 + q4(j)(� � j � 1)3=6; j � 1 � � � j;q4(� � j � 1)3=6; j � � � j + 1:where q1 = f1 � f4;q2 = f4 + f2 � 2f1;q3 = 2f3 � f4 + f1 � 2f2;q4 = 2f1 + 3f2 + f4:If we assume u 2 C1(IR) and use a Taylor expansion for u(4) then thetrun
ation error is given by the 
umbersome expression�tTjxj = 124�x4uxxxxg3j (�; �) + � � � ;withg3j (�; �) = (12�2 � 2�� 12��(1� �) + �(1� �2)(2� �))a(j)�2b(j)(12�� + 2�3 + 2j� + 1 + 2j3)+2
(j)(1 + 6j2) + 2(1� 2j)e(j) + 2Z(j)(3�2+ j2 + 10�):Er
��lia SousaDepartamento de Matem�ati
a, Universidade de Coimbra, Portugal


