
Pr�e-Publia�~oes do Departamento de Matem�atiaUniversidade de CoimbraPreprint Number 05{07DEVELOPMENT OF FINITE DIFFERENCE SCHEMESNEAR AN INFLOW BOUNDARYERC�ILIA SOUSAAbstrat: Numerial shemes for a onvetion-di�usion problem de�ned on thewhole real line have been derived by Morton and Sobey [1℄ using the exat evolutionoperator through one time step. In this paper we derive new numerial shemes byusing the exat evolution operator for a onvetion-di�usion problem de�ned onthe half-line. We obtain a third order method that requires the use of a numerialboundary ondition whih is also derived using the same evolution operator. Wedetermine whether there are advantages from the point of view of stability andauray in using these new shemes, when ompared with similar methods obtainedfor the whole line. We onlude that the third order sheme provides gains in termsof stability and although it does not improve the pratial auray of existingmethods faraway from the inow boundary, it does improve the auray next tothe inow boundary.Keywords: �nite di�erenes, onvetion-di�usion, stability, auray.1. IntrodutionThe mehanism of onvetion di�usion appears in many physial appli-ations and aurate modeling of the interation between onvetive anddi�usive proesses an be a diÆult task. Although the majority of physialexperiments are performed in the presene of boundaries if we onsider theapproximation of the unsteady onvetion-di�usion problem, we an observethat muh of the literature is onerned with hoies for the whole real line.It is very ommon that the approximate solutions we derive for the wholeline present some diÆulties when we need to deal with the presene of aphysial boundary. This diÆulty is more obvious if we are interested insimulations next to the boundary and at short times. Even if they performeÆiently far away from the physial boundary, next to it they an have apoor performane. In this paper, we present new �nite di�erene shemesderived taking into aount the existene of an inow physial boundary.Finite di�erene shemes typially onsist of replaement of the individualderivative terms in the partial di�erential equation by a set of disretisedapproximations (see e.g. Smith [2℄). However, reently di�erent tehniquesReeived April 27, 2005. 1



2 E. SOUSAwere suggested for deriving �nite di�erenes for the unsteady onvetion-di�usion equation (see e.g. Morton and Sobey [1℄ and Xu et al [3℄). Inthe next setion, we use the framework desribed in Morton and Sobey [1℄ toobtain �nite di�erene shemes taking into aount the presene of a physialboundary.Related with the onvergene of a �nite di�erene sheme we enounterquestions about stability and auray and the presene of a boundary mostlikely will a�et stability and auray of the overall numerial sheme. In thethird setion we study the stability and auray of the numerial shemesand in the fourth setion, to analyse the performane of the third ordersheme, we present two test problems.2. The �nite di�erene shemesConsider the one-dimensional problem of onvetion with onstant veloityV in the positive x diretion and onstant di�usion D > 0:�u�t + V �u�x = D�2u�x2 ; t > 0; x > 0; (1)with the initial ondition u(x; 0) = f(x); x � 0; (2)and subjet to the boundary onditionsu(x; t)! 0; x!1 and u(0; t) = g(t); t � 0. (3)The exat solution of the system (1), (2) and (3) an be found using Laplaetransforms in t:u(x; t) = 1p� Z t0 g(t� �)G�(x; �)d�+ 1p� Z +1V t�x2pDt f(x� V t+ 2pDt�)e��2d�� 1p� Z +1V t+x2pDt f(�x� V t+ 2pDt�)eV x=De��2d� (4)where the funtion G�(x; �) is given byG�(x; �) = x2pD� 2=3e�(x�V �)2=4D� . (5)



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 3Applying the result to evolution over one time step, we write,u(x; tn +�t) = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p�Z +1V�t�x2pD�tu(x� V�t+ 2pD�t�; tn)e��2d�� 1p�Z +1V�t+x2pD�tu(�x� V�t+ 2pD�t�; tn)eV x=De��2d�. (6)
The exat solution for this model problem di�ers from the solution of aonvetion-di�usion problem on the whole real line. This is the fundamentalsolution we shall use, to derive approximation shemes by allowing a loal so-lution to evolve and then restriting the evolved solution to an approximationspae.We an rewrite the evolution operator over one time step, given by (6), interms of a Green's funtion:u(x; tn +�t) = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p� Z +10 u(�; tn)G1(x; �;�t)d�; (7)where G1(x; �; �) = e�(��x�V �)2=4D�2pD� [1� e�x=D�℄:To derive �nite di�erene approximations we substitute a loal polynomialapproximation to u(�; tn) in (7), and then arry out the integration of aglobal polynomial. Suppose we have approximations Un := fUnj g to thevalues u(xj; tn) at the mesh pointsxj = j�x; j = 0; 1; 2; : : : :We assoiate with eah point xj a loal interpolating polynomial throughUnj and the values at a ertain number of neighbouring points. Denoting eahsuh polynomial by pj(x;Un), we generate �nite di�erene shemes fromUn+1j = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�



4 E. SOUSA+ 1p� Z +10 pj(�;Un)G1(xj; �; �t)d�: (8)The approximation sheme whih we obtain omes from approximating Unnear xj by a polynomial pj(x;Un), of degree R,pj(x;Un) = RXr=0 bjr(x� xj)r:Then Un+1j = 1p� Z �t0 g(tn +�t� �)G�(x; �)d�+ 1p�Z +1��j2p� pj(xj � V�t+ 2pD�t�;Un)e��2d�� 1p�Z +1�+j2p� pj(�xj � V�t+ 2pD�t�;Un)ej�=�e��2d�, (9)
where � = V�t�x and � = D�t�x2 :First, for larity, we assume that the left boundary ondition is zero, thatis, g(t) = 0. Then the �rst integral in (9) is zero and we an write afterintegration of the polynomial form,Un+1j = bj0[12Erf(� � j2p� )� 12e�j=�Erf(� + j2p� )℄+bj1[�V�t12Erf(� � j2p� ) + (2xj + V�t)12e�j=�Erf(� + j2p� )℄+bj2[(V 2(�t)2 + 2D�t)12Erf(� � j2p� )�((2xj + V�t)2 + 2D�t)12e�j=�Erf(� + j2p� ) + 2pD�tp� xje�(��j)2=4�℄+bj3[�(V 3(�t)3 + 6V D(�t)2)12Erf(� � j2p� )



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 5+(2xj + V�t)((2xj + V�t)2 + 6D�t)12e�j=�Erf(� + j2p� )�2(2V�t+ 3xj)pD�tp� xje�(��j)2=4�℄ + : : : ;where Erf(x) is the omplementary error funtion Erf(x) = 2p� Z 1x e�t2dt.Within this general framework we an now obtain �nite di�erene shemesby interpolation on a uniform mesh. We use the usual entral, bakward andseond di�erene operators to evaluate the oeÆients bjr; r = 0; 1; 2; : : : interms of the nodal values Un,�0Uj = Uj+1 � Uj�12 ; ��Uj = Uj�Uj�1; and Æ2Uj = Uj+1�2Uj+Uj�1:We present two new numerial shemes using a quadrati interpolant and aubi interpolant, obtaining in that way the shemes that we all the Modi�edLax-Wendro� sheme and the Modi�ed Quikest sheme. Other methods ofhigher order ould be obtained by using higher order interpolants.Using the quadrati interpolant of Unj�1, Unj and Unj+1 we have the approx-imation formula for Un+1j , j � 1Un+1j = a(j)[1� ��0 + (�22 + �)Æ2℄Unj + b(j)�0Unj + (j)Æ2Unj ; (10)where a(j) = 12Erf(� � j2p� )� 12e�j=�Erf(� + j2p� )b(j) = je�j=�Erf(� + j2p� )(j) = �j(j + �)e�j=�Erf(� + j2p� ) + Z(j)where Z(j) = p�p�je�(��j)2=4�. We all this sheme the Modi�ed Lax-Wendro�sheme sine for a(j) = 1, b(j) = 0 and (j) = 0, we obtain the Lax-Wendro� sheme [4℄, [5℄.Although we will onentrate our attention on the sheme that follows,whih is obtained using a ubi term, we have shown above, for ompleteness,the derivation of the Modi�ed Lax-Wendro� sheme.



6 E. SOUSAIf pj(x;Un) is extended to inlude a ubi term, using the interpolationpoints Unj�2, Unj�1, Unj and Unj+1 then the approximation formula for j � 2beomesUn+1j = a(j)[1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2��℄Unj+b(j)�0Unj + (j)Æ2Unj + d(j)Æ2��Unj ; (11)whered(j) = �16b(j) + 16e(j)e(j) = (4j3 + 2j2� + j�2 + 6j�)e�j=�Erf(� + j2p� )� 2(2� + 3j)Z(j):We all this sheme the Modi�ed Quikest sheme sine in (11), for a(j) = 1,b(j) = 0, (j) = 0 and d(j) = 0 we obtain the Quikest sheme [6℄.To obtain the sheme (11) we interpolate at two points upwind but we donot have these points for interpolation around the �rst point of the mesh.Here, therefore, we need to onsider a numerial boundary ondition at the�rst mesh point. At this point we perform a ubi interpolation of the pointsUn0 , Un1 , Un2 , Un3 , namelyUn+11 = a(1)[1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2�+℄Un1+b(1)�0Un1 + (1)Æ2Un1 + d(1)Æ2�+Un1 ; (12)where �+ is the forward di�erene operator de�ned by �+Unj = Unj+1 � Unj .When j !1 we haveErf�� � j2p� �! 1; Erf�� + j2p� �! 0; Z(j)! 0;and a(j)! 1 b(j)! 0 (j)! 0 d(j)! 0:Therefore, these new shemes are onsiderably di�erent from the Lax-Wendro�sheme and Quikest sheme at the �rst points of the mesh, but are onlyslightly di�erent at the other mesh points. In the next setion we disuss thestability and auray of the new shemes.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 73. Stability and aurayTo analyse the stability of the new shemes we annot use the von Neumannstability analysis sine the oeÆients are not linear, although under generalonditions (see Rihtmyer and Morton [7℄) it an be proved that for linear,non-onstant oeÆient problems a loal von Neumann analysis will providea neessary ondition for stability. The more natural option in this ase is touse the spetrum and matrix analysis based on the observation of the normand spetrum behaviour of the iterative matrix. Also the matrix methodprovides information on the inuene of boundary onditions.Conerning auray, to alulate the loal trunation error we annotapply the modi�ed equation as desribed in Warming and Hyett [8℄, sine wehave non-linear terms. On the other hand we an derive formal trunationerror estimates in the same way as suggested in Morton and Sobey [1℄ byapplying the Peano kernel theorem (see Powell [9℄).3.1. Stability analysis of the new shemes. The expliit methods wedisuss an be written in the form of a matrix iteration. Assume that thenodal points are Unj ; j = 0; : : : ; N and that the outow boundary is suh thatUnN = 0; 8n: (13)The hoie of this outow boundary is motivated by the fat that we assumethat the exat solution goes to zero when x goes to in�nity.Introduing the vetor Un = fUn0 ; Un1 ; : : : ; UnN�1gT , all the shemes may bewritten as matrix equationsUn+1 = AUn + vn; n = 0; 1; 2; : : : : (14)where A is an N�N matrix and depends on the sheme used and vn appearswhen the inow boundary ondition is not zero.Any errors En in a alulation based on (14) will grow aording toEn+1 = AEn; n = 0; 1; 2; : : : : (15)where En = un � Un with un, Un the exat and numerial solutions of (14),respetively, at t = n�t.Given A 2 IRN�N denote the spetral radius of A by �(A) and the L2-normof the matrix A by jjAjj. We reall thatjjAjj = �(A) if A 2 IRN�N is normal:
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Figure 1. Stability region for the Modi�ed Lax-Wendro� sheme: �(A) =1 (�) and jjAjj = 1 (� � �).It is well known that for any A 2 IRN�NAm ! 0 as m!1 if and only if �(A) < 1;and that �(A) � jjAjj:A simple riterion for regulating the error growth governed by (15) is givenby �(A) � 1: (16)When the matrix A is not normal the spetral radius gives no indiationof the magnitude of En for �nite n. In this ase a ondition of the form�(A) < 1 guarantees eventual deay of the solution, but does not ontrol theintermediate growth of the solution.A more severe ondition for regulating error growth follows from (15). Ifthe matrix norm, jjAjj, is onsistent with the vetor norm, jjEjj, thenjjEn+1jj � jjAjjjjEnjj; n = 0; 1; 2; : : : ;and the ondition jjAjj � 1; (17)is suÆient to ensure that the error annot grow with n.From (15) we have En = AnE0; n = 1; 2; : : : : (18)



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 9The expression (18) shows that in order for all En to remain bounded andthe sheme (14) to remain stable the in�nite set of operators An has to beuniformly bounded for all n, �t and �x.Our stability analysis onsists essentially in applying the suÆient ondi-tion for stability jjAjj � 1 with the neessary stability ondition �(A) � 1.We will plot the regions using MATLAB and for the matrix size N = 30.The stability region for the sheme derived using a quadrati polynomialapproximation, whih we alled the Modi�ed Lax-Wendro� sheme, is givenby �gure 1. Comparing �gure 1 with Lax-Wendro� von Neumann stabilityregion, we observe that the stability region is the same, assuming it to bethe region where jjAjj � 1. In this ase we do not have an advantage interms of stability by hoosing the Modi�ed Lax-Wendro� sheme instead ofthe Lax-Wendro� sheme.

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

µ

ν

||A|| ≤ 1 

ρ(A)  ≥ 1 

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

µ

ν

(a) (b)Figure 2. Stability region for the Modi�ed Quikest sheme with the nu-merial boundary ondition (12): (a)�(A) = 1 (�) and jjAjj = 1 (� � �); (b)jjAjj = 1 (���) and pratial von Neumann stability for the Quikest sheme(�)Consider the sheme (11), derived using a ubi polynomial approximationand alled Modi�ed Quikest sheme assoiated with the numerial boundaryondition (12). The stability region is given by the region plotted in �gure2. Additionally, we plot in �gure 2b the pratial von Neumann stabilityregion for the Quikest sheme. This allows us to see in what way it relateswith the region jjAjj � 1, where A is the iterative matrix of the Modi�edQuikest sheme with the numerial boundary ondition (12). The region for



10 E. SOUSAsmall � where jjAjj � 1 and �(A) � 1, plotted in the left orner of �gure 2aand �gure 2b is a region of pratial stability. This was heked by runningnumerial experiments on this region.It is important to remember that jjAjj � 1 is a suÆient ondition forstability but not a neessary one. In fat, experimentally the new shemeseems to be stable in all the von Neumann region displayed in �gure 2b.To onlude, we observe there are advantages in terms of stability in us-ing the Modi�ed Quikest sheme assoiated with the suggested numerialboundary ondition, sine we do not have the usual penalties in stability asso-iated with the presene of a numerial boundary ondition (see for instaneSousa and Sobey [10℄).3.2. Auray of the new shemes. We an derive trunation error es-timates in the same way as suggested in Morton and Sobey [1℄ by applyingthe Peano kernel theorem (see Powell [9℄). We onsider the error ommittedin one time step.Theorem: For the sheme derived using the quadrati interpolant, theModi�ed Lax-Wendro�, we have�tTjxj = 16�x3uxxxg2j (�; �) + O(�x4ux4); (19)where g2j (�; �) = �(1� �2 � 6�)a(j)� b(j) + e(j):For the Modi�ed Quikest sheme, obtained using a ubi interpolant, theexat error for xj; j � 2 is given by the umbersome expression�tTjxj = 124�x4uxxxxg3j (�; �) + O(�x5ux5); (20)withg3j (�; �) = (12�2 � 2�� 12��(1� �) + �(1� �2)(2� �))a(j)�2b(j)(12�� + 2�3 + 2j� + 1 + 2j3)+2(j)(1 + 6j2) + 2(1� 2j)e(j) + 2Z(j)(3�2+ j2 + 10�):Proof: The details of the proof an be seen in Appendix A. �



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 11When j ! 1 then a(j) = 1; b(j) = (j) = e(j) = 0 and the expressions(19) and (20) are the trunation errors obtained for the Lax-Wendro� shemeand Quikest sheme respetively. Consequently, for eah sheme, near theboundary we shall have a di�erent trunation error whih nevertheless doesnot have an inferior order.These results indiate that the new shemes have similarities in terms ofauray with the Lax-Wendro� and Quikest shemes respetively.It is well know that numerial boundary onditions do interfere with thestability region of the sheme. This raises the question whether by usingthe Quikest sheme, instead of the Modi�ed Quikest sheme, with thenumerial boundary ondition (12), we would still have gains in stability.We hek this possibility in the next setion.3.3. Stability of mixed shemes. It was seen in Sousa and Sobey [10℄ thatthe hoie of numerial boundary onditions may strongly a�et the stabilityof a Quikest sheme even if the auray is not a�eted.
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Figure 3. Stability region for Quikest sheme with the numerial bound-ary ondition (12);When j ! 1 the Modi�ed Quikest sheme is idential to the Quikestsheme. It is in the �rst points of the sheme that a onsiderable di�erenemay our and this seems to a�et strongly the stability. This fat motivatesus to onsider the use of the Quikest sheme together with the numerialboundary ondition (12) in situations where we are interested in long timebehaviour of solutions.



12 E. SOUSAWe plot, in �gure 3, the region jjAjj � 1, where A is the iteration matrix forthe Quikest sheme assoiated with the numerial boundary onditions (12).We observe that we reover the von Neumann stability region lost when usingdi�erent numerial boundary onditions with the Quikest sheme studied inSousa and Sobey [10℄.4. Test ProblemsIn this setion we onsider two test problems to ompare the performanesbetween the Modi�ed Quikest sheme and the Quikest sheme. On the �rsttest problem, the solution is dominated by the inow boundary onditionwhereas on the seond test problem is dominated by the initial ondition.For our tests we assume V = 0:1 and D = 0:001.4.1. Test problem: initial ondition f(x) = 0. To measure auray ofthe di�erent shemes we have onsidered a test problem with initial datau(x; 0) = 0; x � 0; u(0; t) = C0:The analytial solution is given byu(x; t) = C02 �Erf�x� V t2pDt �+ eV xD Erf�x+ V t2pDt �� : (21)
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Figure 4. Exat solution (21) for C0 = 100, V = 0:1 and D = 0:001 at x = 0:075In the next examples we onsiderC0 = 100. The exat solution at x = 0:075is displayed in �gure 4.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 13For this test problem we have g(t) 6= 0 and we an not onsider the �rstintegral of (9) zero. This integral is now given byC0p� Z �t0 G�(x; �)d�where G� is de�ned by (5). We evaluate this integral using Gaussian quad-rature formulas [11℄ and add it to the right side of (11).Our main onern, as mentioned before, is with the Modi�ed Quikestsheme obtained using a ubi interpolation.Let us onsider the error funtion de�ned aserror(t) = U(t)� u(t);where U(t) is the approximate solution and u(t) is the exat solution.As we re�ne the spae step we observe , see �gure 5, that the error dimin-ishes as expeted for both shemes, the Modi�ed Quikest sheme and theQuikest sheme. Although they share the same order of auray, the newsheme seems to have the advantage of a smaller error, next to the inowboundary. In �gure 5 we have used � = 0:03 and �t = 4:5�10�4�x = 0:0015and �t = 2:25 � 10�4 �x = 7:5 � 10�4 respetively. The part of the errorafter t = 2 tends to keep a onstant error as t inreases, sine both shemesshow to be dissipative very near the inow boundary.
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(a) (b)Figure 5. Error for Modi�ed Quikest (�) and for Quikest (� � �) atx = 0:075: (a) �x = 1:5� 10�3 (b) �x = 7:5� 10�4As x beomes bigger the two shemes beome more similar. This is thereason to suggest the new sheme for problems where we are interested insmall values of spae, small values of time or as a mixed sheme as pointed



14 E. SOUSAout in setion 3. In �gure 6 we plot the errors when we take x = 0:15 andx = 0:3 for �x = 0:0015. The error funtions approah onsiderably as xinreases and additionally they tend to zero as time beomes larger.
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(a) (b)Figure 6. Error for Modi�ed Quikest (�) and for Quikest (� � �) at�x = 0:0015: (a) x = 0:15; (b) x = 0:3Furthermore, we an also observe that as we re�ne the spae step and notthe time step the fat that the stability region of the new sheme is largerallows us to get onvergene in less time steps. For instane in �gure 7 weshow both shemes for �t = 0:006 and �x = 0:003, where the Quikestsheme with the numerial boundary onditionUn+11 = [1� ��0 + (�22 + �)Æ2 + �6(1� �2 � 6�)Æ2�+℄Un1diverges but the new sheme with the numerial boundary ondition (12)onverges.This fat is quite important onerning that next to the inow boundaryto get a better auray, in most ases, it is onvenient to re�ne the spaestep or the time step. If the stability region is larger when we re�ne the spaestep we have no need to re�ne the time step in order to be inside the stableregion as happens in many pratial situations.We also believe that more signi�ant is the inow boundary more relevantthis new sheme an be.4.2. Test problem: boundary ondition g(t) = 0. We an raise thequestion: Is it also worthwhile to use the Modi�ed Quikest sheme if theinow boundary is zero? Conerning stability it is always worthwhile.
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(a) (b)Figure 7. �t = 0:006 and �x = 0:003: (a) Modi�ed Quikest sheme (b)Quikest sheme.Let us then onsider the initial ondition and the inow boundary onditionas follows: u(x; 0) = e�x2; x � 0; u(0; t) = 0:Our reason for onsidering this initial pro�le is that it is straight forward toalulate an exat solution:u(x; t) = 12p4Dt+ 1 264e�(x� V t)24Dt+ 1 Erf � (x� V t)2pDt(4Dt+ 1)!�e�(x+ V t)24Dt+ 1 + V xD Erf (x+ V t)2pDt(4Dt+ 1)!375 : (22)
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Figure 8. Exat solution (22) for V = 0:1 and D = 0:001 at x = 0:075
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(a) (b)Figure 9. Error for Modi�ed Quikest (�) and for Quikest (� � �): (a)�x = 1:5� 10�3 (b) �x = 7:5� 10�4
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(a) (b)Figure 10. Error for Modi�ed Quikest (�) and for Quikest (� � �) at�x = 0:0015: (a) x = 0:15; (b) x = 0:3In �gure 8 we display the exat solution (22). We also plot similar resultsto �gures 5-6 in �gures 9-10. We have the same symptoms in both test prob-lems. Furthermore the size of the error is inuened by the inow boundaryondition if we are next to it.5. Conluding remarksThe new shemes are theoretially interesting beause of the general frame-work in whih they are derived. We have foused our attention on the Modi-�ed Quikest sheme whih seems to provide a substantial advantage in termsof stability and an advantage in terms of the error in the part of the domainnext to the inow boundary.



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 17The gain in stability seems strongly assoiated with the hoie of the nu-merial boundary ondition at the �rst point of the mesh. The Modi�edQuikest sheme for j ! 1 beomes idential to the Quikest sheme andonsequently for most pratial purposes it is in the �rst disretisation pointsthat we ould expet some signi�ant di�erene. The extension to the two-dimensional ase is straightforward.Referenes[1℄ Morton, K.W and I.J Sobey (1993). Disretization of a onvetion-di�usion equation. IMAJournal of Numerial Analysis 13, 141-160.[2℄ Smith, G.D. (1985). Numerial solution of partial di�erential equations: �nite di�erene meth-ods, Oxford University Press: Oxford.[3℄ Xu, H.Y., M.D. Matovi and A. Pollard (1997). Finite di�erene shemes for three-dimensionaltime-dependent onvetion-di�usion equation using full global disretization. Journal of Com-putational Physis 130, 109-122.[4℄ Lax, P.D. and B. Wendro� (1960). Systems of onservations laws. Communiations on Pureand Applied Mathematis 13, 217-237.[5℄ Lax, P.D. and B. Wendro� (1964). Di�erene shemes for hyperboli equations with high orderof auray. Communiations on Pure and Applied Mathematis 17, 381-398.[6℄ Leonard, B.P. (1979). A stable and aurate onvetive modelling proedure based on quadratiupstream interpolation. Computer Methods in Applied Mehanis and Engineering 19, 59-98.[7℄ Rihtmyer, R.D. and K.W. Morton (1967). Di�erene methods for initial-value problems. Wiley-Intersiene: New York.[8℄ Warming, F.F. and B.J. Hyett (1974). The modi�ed equation approah to the stability andauray analysis of �nite di�erene methods. Journal of Computational Physis 14, 159-179.[9℄ Powell, M.J.D. (1981). Approximation theory and method, Cambridge.[10℄ Sousa, E. and Sobey, I.J. (2002) On the inuene of numerial boundary onditions AppliedNumerial Mathematis, 41, 325-344.[11℄ Davis, P.J. and P. Rabinowitz (1975). Methods of Numerial Integration Aademi Press: NewYork.Appendix A: Error analysis for the new shemesFollowing Morton and Sobey [1℄, the trunation error is given byT n = 1�tRE(�t)(un � IpRun);where E(�t) is the evolution operator u(�; t + �t) = E(�t)u(�; t), for ourproblem in the semi line x � 0, R is the restrition operator onto the nodesand Ip is the loal approximation based on nodal values.



18 E. SOUSALet us de�ne the interpolation error Lun = un� Ipun and de�ne for a � 0,the integrals of the formEm(a;�) = Z 10 �me�(�+a)2=4� d�2p��: (23)In what follows we denote s = (x � xj)=�x and we omit the subsript n,referring only to u(x) and its evolution over one time step.Quadrati interpolationWe alulate the error at the point xj = j�x. We have, for j � 1Lu = u(x)� 12[�s+ s2℄u(xj�1)� [1� s2℄u(xj)� 12[s2 + s℄u(xj+1):Then using the Peano kernel theorem we an writeLu = Z 10 K(x; p)u(3)(p)dp;where K(x; p) = (1=2)Lx[(x�p)2+℄, Lx refers to L ating in x, and (x�p)2+ =(x � p)2 if x � p � 0, and zero otherwise. We alulate the Peano kernelfuntion K(s�x+ j�x; ��x),
K = 12�x2

8>>>>>><>>>>>>:
(s+ j � �)2+ � (j � 1� �)2(�s=2 + s2=2)�(j � �)2(1� s2)� (j + 1� �)2(s2=2 + s=2); 0 < � < j � 1;(s+ j � �)2+ � (j � �)2(1� s2)�(j + 1� �)2(s2=2 + s=2); j � 1 < � < j;(s+ j � �)2+ � (j + 1� �)2(s2=2 + s=2); j < � < j + 1;(s+ j � �)2+; � > j + 1:The loal error is given by�tT = REx Z 10 K(x; p)u(3)(p)dp = Z 10 RExK(x; p)u(3)(p)dp



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 19where we use the notation Ex to desribe E(�t) ating on x. After somemanipulation to alulate RExK(x; p)u(3)(p) we have,
RExK = 12�x2

8>>>>>>>>>><>>>>>>>>>>:
E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j � 1� �)2(�f1 + f2)=2�(j � �)2(f3 � f2)� (j + 1� �)2(f2 + f1)=2; 0 < � < j � 1;E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j � �)2(f3 � f2)� (j + 1� �)2(f2 + f1)=2; j � 1 < � < j;E2(� + � � j;�)� e�j=�E2(� + � + j;�)�(j + 1� �)2(f2 + f1)=2; j < � < j + 1;E2(� + � � j;�)� e�j=�E2(� + � + j;�); � > j + 1;where, f1 = ��a(j) + b(j) f2 = (�2 + 2�)a(j) + 2(j)f3 = a(j) f4 = �(�3 + 6��)a(j) + e(j):The exat error at xj is given by�tTjxj = �x3[Z +10 K1(�; �; �)u(3)(��x)d� + Z j+10 K2(�; �; �)u(3)(��x)d�℄:where we have introdued two funtionsK1(�; �; �) = 12[E2(�j + � + �;�)� e�j=�E2(j + � + �;�)℄;

K2(�; �; �) =
8>>>>>>><>>>>>>>:
�(f2 � f1)(j � 1� �)2=4+(f2 � f3)(j � �)2=2�(f2 + f1)(j + 1� �)2=4 0 � � < j � 1;(f2 � f3)(j � �)2=2�(f2 + f1)(j + 1� �)2=4 j � 1 � � < j;�(f2 + f1)(j + 1� � � j)2=4 j � � � j + 1:Although the exat error expression appears ompliated, it an be used toexamine the detailed struture of the error and to obtain overall bounds forthe loal error.Considering �rst the struture of the error, if we assume u 2 C1(IR) anduse a Taylor series expansion for u(3) around xj, then after some algebra,�tTjxj = 16�x3uxxxg2j (�; �) + O(�x4ux4);



20 E. SOUSAwhere g2j (�; �) = �(1� �2 � 6�)a(j)� b(j) + e(j):Seondly, we an obtain an overall bound for the loal error sinej�tTjxj j � �x3juj3;1[Z +10 jK1(�; �; �)jd� + Z j+10 jK2(�; �; �)jd�℄:Cubi interpolationWe haveLu = u(x)� 16[s� s3℄u(xj�2)� 12[�2s+ s2 + s3℄u(xj�1)�12[2 + s� 2s2 � s3℄u(xj)� 16[2s+ 3s2 + s3℄u(xj+1):The Peano kernel funtion K(x; p) for x = s�x+ j�x and p = �x� is givenby K = 16�x3 �(s+ j � �)3+ � 16(j � 2� �)3+(s� s3)�12(j � 1� �)3+(�2s+ s2 + s3)� 12(j � �)3+(2 + s� 2s2 � s3)�16(j + 1� �)3+(2s+ 3s2 + s3)� :Summarising the alulations in this ase, the exat error for xj; j � 2 isgiven by�tTjxj = �x46 [Z +10 W 21 (�; �; �)u(4)(��x)d� + Z j+10 W 22 (�; �; �)u(4)(��x)d�℄:where the funtionsW 21 (�; �; �) = [E3(�j + � + �;�)� e�j=�E3(j + � + �;�)℄;



FINITE DIFFERENCE SCHEMES NEAR AN INFLOW BOUNDARY 21
W 22 (�; �; �) =

8>>>>>>>>><>>>>>>>>>:
q1(� � j + 2)3=6+q2(� � j + 1)3=2+q3(� � j)3=2 + q4(j)(� � j � 1)3=6; 0 � � < j � 2;q2(� � j + 1)3=2 + q3(j)(� � j)3=2+q4(� � j � 1)3=6; j � 2 � � < j � 1;q3(� � j)3=2 + q4(j)(� � j � 1)3=6; j � 1 � � � j;q4(� � j � 1)3=6; j � � � j + 1:where q1 = f1 � f4;q2 = f4 + f2 � 2f1;q3 = 2f3 � f4 + f1 � 2f2;q4 = 2f1 + 3f2 + f4:If we assume u 2 C1(IR) and use a Taylor expansion for u(4) then thetrunation error is given by the umbersome expression�tTjxj = 124�x4uxxxxg3j (�; �) + � � � ;withg3j (�; �) = (12�2 � 2�� 12��(1� �) + �(1� �2)(2� �))a(j)�2b(j)(12�� + 2�3 + 2j� + 1 + 2j3)+2(j)(1 + 6j2) + 2(1� 2j)e(j) + 2Z(j)(3�2+ j2 + 10�):Er��lia SousaDepartamento de Matem�atia, Universidade de Coimbra, Portugal


