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DEVELOPMENT OF FINITE DIFFERENCE SCHEMES
NEAR AN INFLOW BOUNDARY

ERCILIA SOUSA

ABSTRACT: Numerical schemes for a convection-diffusion problem defined on the
whole real line have been derived by Morton and Sobey [1] using the exact evolution
operator through one time step. In this paper we derive new numerical schemes by
using the exact evolution operator for a convection-diffusion problem defined on
the half-line. We obtain a third order method that requires the use of a numerical
boundary condition which is also derived using the same evolution operator. We
determine whether there are advantages from the point of view of stability and
accuracy in using these new schemes, when compared with similar methods obtained
for the whole line. We conclude that the third order scheme provides gains in terms
of stability and although it does not improve the practical accuracy of existing
methods faraway from the inflow boundary, it does improve the accuracy next to
the inflow boundary.
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1. Introduction

The mechanism of convection diffusion appears in many physical appli-
cations and accurate modeling of the interaction between convective and
diffusive processes can be a difficult task. Although the majority of physical
experiments are performed in the presence of boundaries if we consider the
approximation of the unsteady convection-diffusion problem, we can observe
that much of the literature is concerned with choices for the whole real line.

It is very common that the approximate solutions we derive for the whole
line present some difficulties when we need to deal with the presence of a
physical boundary. This difficulty is more obvious if we are interested in
simulations next to the boundary and at short times. Even if they perform
efficiently far away from the physical boundary, next to it they can have a
poor performance. In this paper, we present new finite difference schemes
derived taking into account the existence of an inflow physical boundary.

Finite difference schemes typically consist of replacement of the individual
derivative terms in the partial differential equation by a set of discretised
approximations (see e.g. Smith [2]). However, recently different techniques
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were suggested for deriving finite differences for the unsteady convection-
diffusion equation (see e.g. Morton and Sobey [1] and Xu et al [3]). In
the next section, we use the framework described in Morton and Sobey [1] to
obtain finite difference schemes taking into account the presence of a physical
boundary.

Related with the convergence of a finite difference scheme we encounter
questions about stability and accuracy and the presence of a boundary most
likely will affect stability and accuracy of the overall numerical scheme. In the
third section we study the stability and accuracy of the numerical schemes
and in the fourth section, to analyse the performance of the third order
scheme, we present two test problems.

2. The finite difference schemes

Consider the one-dimensional problem of convection with constant velocity
V in the positive x direction and constant diffusion D > 0:

ou ou 0%u

with the initial condition
u(z,0) = f(z), = >0, (2)
and subject to the boundary conditions
u(z,t) -0, z - 00 and  u(0,t) =g(t), t > 0. (3)

The exact solution of the system (1), (2) and (3) can be found using Laplace
transforms in t:

I .
u(z,t) = ﬁ/o g(t — 7)G*(z, 7)dT

1 +oo 2
+—= / f(z — Vit +2vVDté)e ¢ de¢
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v fl—z — Vit + 2V Dt€)e /P dg (4)
2v/Dt

where the function G*(z, 7) is given by

G*(l’, 7_) _ —(:L‘—VT)2/4DT- (5)
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Applying the result to evolution over one time step, we write,

At
u(z, t, + At) = % / g(t, + At — 7)G*(z, 7)dT
0

1 +o _ 2
t= |, ule = VAL 2VDAGE 1o de (6)
2V DAt
1 [*™

—— u(—z — VAL + 2V DALE t,)eV " Pe € de.

VT vate

2V DAt
The exact solution for this model problem differs from the solution of a
convection-diffusion problem on the whole real line. This is the fundamental
solution we shall use, to derive approximation schemes by allowing a local so-
lution to evolve and then restricting the evolved solution to an approximation

space.

We can rewrite the evolution operator over one time step, given by (6), in

terms of a Green’s function:

At
u(z, t, + At) = %/ gty + At — 7)G*(z, 7)dT
T Jo
1 +o00
‘I'ﬁfo u(n, tn)G1(z,n, At)dn, (7)

where
o—(n—2—=VB)*/4Dp
C;1 (55777,5) - 2\/D75
To derive finite difference approximations we substitute a local polynomial
approximation to u(n,t,) in (7), and then carry out the integration of a

global polynomial. Suppose we have approximations U" := {Uf} to the
values u(z;,t,) at the mesh points

1 - e”w/Dﬁ].

r;=jAz, j=0,1,2,....

We associate with each point z; a local interpolating polynomial through
U;' and the values at a certain number of neighbouring points. Denoting each
such polynomial by p;(z; U"), we generate finite difference schemes from

1 At
n+1 . *
Uit = _ﬁ/() g(tn + At — 7)G* (z, 7)dT
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1 +o0
+ﬁ/o pi(m; U")G1(z;,m; At)dn. (8)
The approximation scheme which we obtain comes from approximating U"
near z; by a polynomial p;(z; U"), of degree R,

R

pi(m; U =) bjn(z — ;)"

r=0
Then

1 At
n+l __ . *
o _—ﬁ/o oty + At — )G (x, 7)dr

I )
+ﬁ[/a pj(acj — VAt +2v DAtf; U”)e_f dvf (9)
v

1 [t ~ 2
_ﬁ[/+j pj(—z; — VAt + 2V DALE; U")ej'//“e_f dg,

2V

where

VAt DAt
v = AL and pu = A2

First, for clarity, we assume that the left boundary condition is zero, that
is, g(t) = 0. Then the first integral in (9) is zero and we can write after
integration of the polynomial form,

v—]

v+

1 1 .
ntl — po[=Erf — —e"I/MErf
U.] .70[2 I'C(2\/ﬁ) 26 rC(2\/ﬁ)]
1 v—7 1 . v+
[~V At Erf 2z; + VAt)=e"/"Erf
+b1[—V t2 rc(2\/ﬁ)—|—(az]—|—\/ t)2e rc(2\/ﬁ)]
1 v—J
bia[(VZ(AL)® 4+ 2DAt) = Erf
Ful(V2 (A7 + 2DA) SBrfe( 5 2)
v+ vV DAt

1
—((2z; + VAt)? + 2DAt) =e"//"Erf, 2
((2z; + VA" + t)Qe rc(2\/ﬁ)—|— N

bia[— (V3 (A1) + 6VD(At)2)%Erfc(V2 ;ff)
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v+
2/l

1 .
+(2z; + VAL (22 + VAL + GDAt)ie’”/“Erfc( )
VDAL i) 4
e 1 +...,
N

2 o
where Erfc(z) is the complementary error function Erfc(z) = — / e " dt.
T T

Within this general framework we can now obtain finite difference schemes
by interpolation on a uniform mesh. We use the usual central, backward and

—2(2V At + 3z;)

second difference operators to evaluate the coefficients b;,, r =0,1,2,... in
terms of the nodal values U”,

Uw1—U;_
Aon: Al i1 A_Uj:Uj—Uj_l, and 52Uj:Uj+1—2Uj—|-Uj_1.

2 3
We present two new numerical schemes using a quadratic interpolant and a
cubic interpolant, obtaining in that way the schemes that we call the Modified
Lax-Wendroff scheme and the Modified Quickest scheme. Other methods of
higher order could be obtained by using higher order interpolants.
Using the quadratic interpolant of U ,, U} and U}, we have the approx-
imation formula for U]’-”l, j>1

V2

Uit = a(i)[L —vAo+ (5 + w805 + b(7) AU +c(j)8°TF,  (10)

where

1 -7 1. '
a(j) = —Erfc(y ])——e”J/“Erfc(V+‘7

2 oy’ 2 2\/5)

b(j) = je”j/“Erfc(VQ\_;g)
() = —i(G +v)e i Erte(X1Ly 1 2(j)

2/

where Z(j) = %je_(”_ﬁﬂ“. We call this scheme the Modified Lax-Wendroff
7r

scheme since for a(j) = 1, b(j) = 0 and ¢(j) = 0, we obtain the Lax-
Wendroff scheme [4], [5].
Although we will concentrate our attention on the scheme that follows,

which is obtained using a cubic term, we have shown above, for completeness,
the derivation of the Modified Lax-Wendroff scheme.
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If pj(z,U") is extended to include a cubic term, using the interpolation
points Uj',, Ujt and U}, then the approximation formula for j > 2

J b >y
becomes
12
Ul = a(j)[1 - vA + (= 5+ )+ 6(1 — V% — 6p)5”A_JU!
+b(5) AU} + c(5)6°U} + d(5)§°A_UY, (11)

where

) 1. . 1 .

d(j) = —gb(J)Jrge(J)

. o -3 .2 .9 . vjlu v +]
e(j) = (457 +25°v + jv° + 6ju)e"’FErfe( N
We call this scheme the Modified Quickest scheme since in (11), for a(j) = 1,
b(3) =0, c(j) = 0 and d(j) = 0 we obtain the Quickest scheme [6].

To obtain the scheme (11) we interpolate at two points upwind but we do
not have these points for interpolation around the first point of the mesh.
Here, therefore, we need to consider a numerical boundary condition at the

first mesh point. At this point we perform a cubic interpolation of the points
Ug, Up, UF, UF, namely

) —2Q2v+35)Z(5).

Ut = a(D)[1 —vAg+ ( 5 —|— 1)6% + 6(1 —v? — 6u)0%AL 0T
+b(1) AgUT + ¢(1)8UT + d(1)6*AL U7, (12)

where A, is the forward difference operator defined by A, U}" = - U},

When 5 — oo we have

Erfc( ‘7>—>1, Erfc( +]>—>0, Z(j) — 0,
2/ 2/l

]+1

and
a() > 1 b)) =0 c(j) >0 d(j) =0

Therefore, these new schemes are considerably different from the Lax-Wendroft
scheme and Quickest scheme at the first points of the mesh, but are only
slightly different at the other mesh points. In the next section we discuss the
stability and accuracy of the new schemes.
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3. Stability and accuracy

To analyse the stability of the new schemes we cannot use the von Neumann
stability analysis since the coefficients are not linear, although under general
conditions (see Richtmyer and Morton [7]) it can be proved that for linear,
non-constant coefficient problems a local von Neumann analysis will provide
a necessary condition for stability. The more natural option in this case is to
use the spectrum and matrix analysis based on the observation of the norm
and spectrum behaviour of the iterative matrix. Also the matrix method
provides information on the influence of boundary conditions.

Concerning accuracy, to calculate the local truncation error we cannot
apply the modified equation as described in Warming and Hyett [8], since we
have non-linear terms. On the other hand we can derive formal truncation
error estimates in the same way as suggested in Morton and Sobey [1] by
applying the Peano kernel theorem (see Powell [9]).

3.1. Stability analysis of the new schemes. The explicit methods we
discuss can be written in the form of a matrix iteration. Assume that the
nodal points are U, j =0, ..., N and that the outflow boundary is such that

Uy =20, Vn. (13)

The choice of this outflow boundary is motivated by the fact that we assume
that the exact solution goes to zero when x goes to infinity.

Introducing the vector U™ = {U}, U, ..., U%_,}T, all the schemes may be
written as matrix equations
Ul = AU ++v", n=0,1,2,.... (14)

where A is an N x N matrix and depends on the scheme used and v" appears
when the inflow boundary condition is not zero.
Any errors E" in a calculation based on (14) will grow according to

E"l = AE", n=0,1,2,.... (15)

where E" = u™ — U" with u", U" the exact and numerical solutions of (14),
respectively, at ¢ = nAt.

Given A € R™" denote the spectral radius of A by p(A) and the Ly-norm
of the matrix A by ||A||. We recall that

I|A]| = p(A) if AR isnormal
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FIGURE 1. Stability region for the Modified Lax-Wendroff scheme: p(A4) =
1 (=) and [[A[| =1 (= -).

It is well known that for any A € RVY

A" -0 as m — oo ifandonlyif p(A) <1,

and that
p(A) < |IA]l.

A simple criterion for regulating the error growth governed by (15) is given
by

p(4) < 1. (16)
When the matrix A is not normal the spectral radius gives no indication
of the magnitude of E” for finite n. In this case a condition of the form
p(A) < 1 guarantees eventual decay of the solution, but does not control the
intermediate growth of the solution.

A more severe condition for regulating error growth follows from (15). If
the matrix norm, ||A||, is consistent with the vector norm, ||E||, then

|E"H] < (A E"|, n=0,1,2,...,
and the condition
1A] <1, (17)

is sufficient to ensure that the error cannot grow with n.
From (15) we have

E"=A"E’ n=1,2,.... (18)
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The expression (18) shows that in order for all £” to remain bounded and
the scheme (14) to remain stable the infinite set of operators A" has to be
uniformly bounded for all n, At and Ax.

Our stability analysis consists essentially in applying the sufficient condi-
tion for stability ||A|| < 1 with the necessary stability condition p(A) < 1.
We will plot the regions using MATLAB and for the matrix size N = 30.

The stability region for the scheme derived using a quadratic polynomial
approximation, which we called the Modified Lax-Wendroff scheme, is given
by figure 1. Comparing figure 1 with Lax-Wendroff von Neumann stability
region, we observe that the stability region is the same, assuming it to be
the region where ||A|| < 1. In this case we do not have an advantage in
terms of stability by choosing the Modified Lax-Wendroff scheme instead of
the Lax-Wendroff scheme.

15\‘ \\\ p(A) 21

TN S
05 (1Al

02 04 06 08 1 12 14 02 04 06 08 1 12 14
u u
(a) (b)
FIGURE 2. Stability region for the Modified Quickest scheme with the nu-

merical boundary condition (12): (a)p(A) =1 (=) and [|A|| =1 (= - —); (b)
||A|| =1 (= - —) and practical von Neumann stability for the Quickest scheme

(=)

Consider the scheme (11), derived using a cubic polynomial approximation
and called Modified Quickest scheme associated with the numerical boundary
condition (12). The stability region is given by the region plotted in figure
2. Additionally, we plot in figure 2b the practical von Neumann stability
region for the Quickest scheme. This allows us to see in what way it relates
with the region ||A|| < 1, where A is the iterative matrix of the Modified
Quickest scheme with the numerical boundary condition (12). The region for
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small g where ||A|| > 1 and p(A) < 1, plotted in the left corner of figure 2a
and figure 2b is a region of practical stability. This was checked by running
numerical experiments on this region.

It is important to remember that ||A|| < 1 is a sufficient condition for
stability but not a necessary one. In fact, experimentally the new scheme
seems to be stable in all the von Neumann region displayed in figure 2b.

To conclude, we observe there are advantages in terms of stability in us-
ing the Modified Quickest scheme associated with the suggested numerical
boundary condition, since we do not have the usual penalties in stability asso-
ciated with the presence of a numerical boundary condition (see for instance

Sousa and Sobey [10]).

3.2. Accuracy of the new schemes. We can derive truncation error es-
timates in the same way as suggested in Morton and Sobey [1] by applying
the Peano kernel theorem (see Powell [9]). We consider the error committed
in one time step.

Theorem: For the scheme derived using the quadratic interpolant, the
Modified Lax-Wendroff, we have

1
AtT), = EA:E?’uxmg]Q-(V, 1) + O(Aztu,), (19)

where
g; (v, ) = v(1 = v* = 6p)a(j) — b(j) + e(s)-
For the Modified Quickest scheme, obtained using a cubic interpolant, the
exact error for x;,j > 2 is given by the cumbersome expression

1
Athj = ﬂA:z:‘lumm;g;’(V, 1) + O(Azuy,s), (20)
with

gi(vip) = (12p° = 2p = 12p0(1 — v) +v(1 = v*)(2 = v))a(j)
—2b(5)(12uv + 2v° + 2jv + 1 + 25°)
+2¢(5)(1+65%) +2(1 — 2)e(5) + 2Z(5) (3" + 5° + 10u).

Proof: The details of the proof can be seen in Appendix A. [
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When j — oo then a(j) = 1,b(j) = ¢(j) = e(j) = 0 and the expressions
(19) and (20) are the truncation errors obtained for the Lax-Wendroff scheme
and Quickest scheme respectively. Consequently, for each scheme, near the
boundary we shall have a different truncation error which nevertheless does
not have an inferior order.

These results indicate that the new schemes have similarities in terms of
accuracy with the Lax-Wendroff and Quickest schemes respectively.

It is well know that numerical boundary conditions do interfere with the
stability region of the scheme. This raises the question whether by using
the Quickest scheme, instead of the Modified Quickest scheme, with the
numerical boundary condition (12), we would still have gains in stability.
We check this possibility in the next section.

3.3. Stability of mixed schemes. It was seen in Sousa and Sobey [10] that
the choice of numerical boundary conditions may strongly affect the stability
of a Quickest scheme even if the accuracy is not affected.

1.5,

| All< 1
05" (Al

02 04 06 08 1 12 14
3

FIGURE 3. Stability region for Quickest scheme with the numerical bound-
ary condition (12);

When 7 — oo the Modified Quickest scheme is identical to the Quickest
scheme. It is in the first points of the scheme that a considerable difference
may occur and this seems to affect strongly the stability. This fact motivates
us to consider the use of the Quickest scheme together with the numerical
boundary condition (12) in situations where we are interested in long time
behaviour of solutions.
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We plot, in figure 3, the region ||A|| < 1, where A is the iteration matrix for
the Quickest scheme associated with the numerical boundary conditions (12).
We observe that we recover the von Neumann stability region lost when using
different numerical boundary conditions with the Quickest scheme studied in
Sousa and Sobey [10].

4. Test Problems

In this section we consider two test problems to compare the performances
between the Modified Quickest scheme and the Quickest scheme. On the first
test problem, the solution is dominated by the inflow boundary condition
whereas on the second test problem is dominated by the initial condition.
For our tests we assume V' = 0.1 and D = 0.001.

4.1. Test problem: initial condition f(z) = 0. To measure accuracy of
the different schemes we have considered a test problem with initial data
u(z,0)=0, >0, u(0,t)=C,.

The analytical solution is given by

u(z,t) = % [Erfc (2\;%? +e'D Erfe (‘Z:;DKEN . (21)

10

80

60/

u(t)

40

20

0 0.5 1 15 2
t

FIGURE 4. Exact solution (21) for Cy = 100, V = 0.1 and D = 0.001 at z = 0.075

In the next examples we consider Cy = 100. The exact solution at z = 0.075
is displayed in figure 4.
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For this test problem we have ¢g(¢) # 0 and we can not consider the first
integral of (9) zero. This integral is now given by

CO At
v Jy
where G* is defined by (5). We evaluate this integral using Gaussian quad-
rature formulas [11] and add it to the right side of (11).
Our main concern, as mentioned before, is with the Modified Quickest

scheme obtained using a cubic interpolation.
Let us consider the error function defined as

error(t) = U(t) — u(t),

G*(z,7)dr

where U(t) is the approximate solution and u(t) is the exact solution.

As we refine the space step we observe , see figure 5, that the error dimin-
ishes as expected for both schemes, the Modified Quickest scheme and the
Quickest scheme. Although they share the same order of accuracy, the new
scheme seems to have the advantage of a smaller error, next to the inflow
boundary. In figure 5 we have used v = 0.03 and At = 4.5x107% Az = 0.0015
and At = 2.25 x 107* Az = 7.5 x 10~ respectively. The part of the error
after ¢ = 2 tends to keep a constant error as ¢ increases, since both schemes
show to be dissipative very near the inflow boundary.

0. T T T 0.05
0.08

0.06

2 004
(0]

0.02

-0.0?)

FIGURE 5. Error for Modified Quickest (—) and for Quickest (— - —) at
r=0.075: (a) Az=15x10"3 (b) Az =7.5x10"1

As x becomes bigger the two schemes become more similar. This is the
reason to suggest the new scheme for problems where we are interested in
small values of space, small values of time or as a mixed scheme as pointed
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out in section 3. In figure 6 we plot the errors when we take x = 0.15 and
x = 0.3 for Az = 0.0015. The error functions approach considerably as z
increases and additionally they tend to zero as time becomes larger.

0.0 T T T T T 0.0
0.05 0.05
0.04 0.04

0.03 0.03

error
error

0.02 0.02

0.0 0.0%

0

00 05 1 15 2 25 3 00 1 2 3 4 5

FIGURE 6. Error for Modified Quickest (—) and for Quickest (— - —) at
Az =0.0015: (a) z = 0.15; (b) =10.3

Furthermore, we can also observe that as we refine the space step and not
the time step the fact that the stability region of the new scheme is larger
allows us to get convergence in less time steps. For instance in figure 7 we

show both schemes for At = 0.006 and Az = 0.003, where the Quickest
scheme with the numerical boundary condition

V2

U =1L = v+ (G + )8 + 21— 07 = )8 A 07
diverges but the new scheme with the numerical boundary condition (12)
converges.

This fact is quite important concerning that next to the inflow boundary
to get a better accuracy, in most cases, it is convenient to refine the space
step or the time step. If the stability region is larger when we refine the space
step we have no need to refine the time step in order to be inside the stable
region as happens in many practical situations.

We also believe that more significant is the inflow boundary more relevant
this new scheme can be.

4.2. Test problem: boundary condition ¢(f) = 0. We can raise the
question: Is it also worthwhile to use the Modified Quickest scheme if the
inflow boundary is zero? Concerning stability it is always worthwhile.
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10 : : : x10

80
0.5

60
E

40

20 03

% 05 1 15 2 5 05 1 15 2
(a) (b)

FIGURE 7. At =0.006 and Az = 0.003: (a) Modified Quickest scheme (b)
Quickest scheme.

Let us then consider the initial condition and the inflow boundary condition
as follows:

w(z,0)=e*, >0, u(0,t)=0.

Our reason for considering this initial profile is that it is straight forward to
calculate an exact solution:

(z — Vt)?

1 T (z — V)
u(zr,t) = ———— |e 4Dt + 1 Erfe | —
(@) 2/4Dt + 1 ( 2/ Dt(4Dt + 1))

(2 + V) N Vi y
—e 4Dt+1 D Erfe ( (z+ V) ) : (22)

24/Dt(4Dt + 1)

1
09
08
07
0§

Sog
04
03
02
01

G0 05 1 15 2 25 3

t

FIGURE 8. Exact solution (22) for V' = 0.1 and D = 0.001 at x = 0.075
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FIGURE 9. Error for Modified Quickest (—) and for Quickest (— - —): (a)
Az =15x10"3 (b) Az =75x 104

error
T P S NS

FIGURE 10. Error for Modified Quickest (—) and for Quickest (— - —) at
Az =0.0015: (a) z = 0.15; (b) =10.3

In figure 8 we display the exact solution (22). We also plot similar results
to figures 5-6 in figures 9-10. We have the same symptoms in both test prob-
lems. Furthermore the size of the error is influenced by the inflow boundary
condition if we are next to it.

5. Concluding remarks

The new schemes are theoretically interesting because of the general frame-
work in which they are derived. We have focused our attention on the Modi-
fied Quickest scheme which seems to provide a substantial advantage in terms
of stability and an advantage in terms of the error in the part of the domain
next to the inflow boundary.
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The gain in stability seems strongly associated with the choice of the nu-
merical boundary condition at the first point of the mesh. The Modified
Quickest scheme for 7 — oo becomes identical to the Quickest scheme and
consequently for most practical purposes it is in the first discretisation points
that we could expect some significant difference. The extension to the two-
dimensional case is straightforward.
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Appendix A: Error analysis for the new schemes

Following Morton and Sobey [1], the truncation error is given by

n 1 n n
™ = ERE(At)(u — I,Ru"),
where E(At) is the evolution operator u(-,t + At) = E(At)u(-,t), for our
problem in the semi line x > 0, R is the restriction operator onto the nodes
and [, is the local approximation based on nodal values.
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Let us define the interpolation error Lu" = u" — I,u" and define for a > 0,
the integrals of the form

d
En(a;p) / gme=(6+a) /4“2\/5_ (23)

In what follows we denote s = (z — z;)/Az and we omit the subscript n,
referring only to u(x) and its evolution over one time step.

Quadratic interpolation
We calculate the error at the point z; = jAz. We have, for 7 > 1

st Pulzi) — [1— sFuley) — S5 + slulzjon).

Lu = —
u = u(x) > >

Then using the Peano kernel theorem we can write

Lu_/ K (z, p)u®(p)dp,

where K (z,p) = (1/2)L,[(z —p)?%], L, refers to L acting in z, and (z —p)2 =
(z — p)?if x —p > 0, and zero otherwise. We calculate the Peano kernel
function K (sAz + jAz, EAz),

(

(s+7=8% = ([ —1-8*=s/2+5"/2)
—( =€ =s") = (G +1-%s*/2+5/2), 0<E<j-1,
K:%A:I:Q (s+7 -85 -G-8 (1-57)

—(j+1—-8)*(s*/2+5/2), j—1l1<&<y,
(s+7—83—-(G+1-8%*s*/2+5/2), j<E<j+1,
| (s+7—6)3, &> 5+ 1.

The local error is given by

AtT = RE, / K (z,p)u®(p)dp = / RE, K (z,p)u® (p)dp
0 0
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where we use the notation E, to describe E(At) acting on z. After some
manipulation to calculate RE, K (z, p)u®(p) we have,

[ Eo(E+v—jypu) — e9/MEy(E+ v+ j;p)
—(—1=8*—fi+ f2)/2
—({—f)%—)ﬁ)—,(/j+}—f)2(f2+)f1)/2, 0<&<j—1,

_ L o) Ey(§+v—gip) —eFE(E+ v+ i
RER =BT (02— f2) = G+ 1- 2 fo+ f1)/2, j—1<E<
Ey(€+v —jip) — e MEy(E+ v+ j; )
—(+1=8>(fa+ f1)/2, j<E<j+L
| Bo(E+v — ;) — e"IPEy(E+ v+ 5 ), £>j+1,
where,
fi = —va(j) +b()) fo = (v +2p)a(j) + 2¢(j)
fs = a(j) fi = =’ +6ur)a(y) + e(j).

The exact error at z; is given by

+oo Jj+1
ALY, = Ac’[ | Ki(€, v, n)ul® (€Az)dé + O Ka(€, v, n)ul® (€Ax)de].

where we have introduced two functions

Ki(&,v,p) = %[E2(_j Fut&p) — By (4 v+ & p)l;

~(- AU -1 £)°/4
2= f3) (7~ )/22 |
Ko (&, v, 1) = (fgfﬁﬁ)(ﬁ)l/;f) /A 0<E<i—1,
—(fo+ f1)(j+1—€)?%/4 j—1<€<j,
| —(fo+ f)G+1-¢ —j)2/4 j<E< 41

Although the exact error expression appears complicated, it can be used to
examine the detailed structure of the error and to obtain overall bounds for
the local error.

Considering first the structure of the error, if we assume u € C*(IR) and
use a Taylor series expansion for u® around z, then after some algebra,

1
Atﬂzj = 6A$3uwmazg]2'(y, ,U) + O(A$4uw4),
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where
g; (v, ) = v(1 = v = 6p)a(s) — b(j) + e(j).

Secondly, we can obtain an overall bound for the local error since
+00 Jj+1
AT < Auly [ 1€ m i+ [ Ka(e v ]

Cubic interpolation

We have
! 3 1 2, 3
Lu = u(x)— 6[8 — s°lu(zj—2) — 5[—23 + s° + s°|u(z;_1)
1 1
—5[2 + 5 —25° — s°Ju(z;) — 6[23 +35* + s u(zj41).

The Peano kernel function K (z,p) for z = sAxz + jAz and p = Az€ is given
by

K = sA (54— 6L 5 -2 s~ )

U1 (2 + 8+ ) — (- 25— 262 — o
_%(j +1—6)3(25 435> + 33)] :

Summarising the calculations in this case, the exact error for z;,7 > 2 is
given by

A:E4 +00 Jj+1
AT, == W mu?(EAa)ds + | WH(E v, wu' (€Az)dg)
! 0 0

where the functions

WE(E v, 1) = [B3(—j +v+&p) — M Ey(j + v+ & p));
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where

q1
a2
q3
44

(g6 —j+ 2)3/6
tp(E—j+1)°)2
(= )2+ () (E—j—1)%/6, 0<€E<j—2

W3 (& v, m) =1 @65 +1)°/2+a(5) (€ —4)°/2
i€ — 35— 1)°/6,

(€= 3)°/2+ a(i)(E—j—1)°/6,
| qu(€—35—1)°/6,

= fl_f47

fa+ fo—2f1,
2f3 — fa+ f1—2fs,
2f1+3f2+ fa

J<E<j+1.

21

If we assume v € C*®(IR) and use a Taylor expansion for u* then the

truncation error is given by the cumbersome expression

1
Ath] = ﬂAx4uxxa?l‘g§?(Va H) + .- ,

with

giv,pw) = (124 —2p — 12p0(1 — v) + v(1 = v*)(2 — v))a(j)

—2b(5)(12uv + 2v° + 2jv + 1 + 25°)

+2¢(7)(1+65%) +2(1 — 2j)e(5) + 2Z(j) (3" + 5° + 10u).
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