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ON THE CORNERS OF CERTAIN DETERMINANTAL
RANGES

NATÁLIA BEBIANO, JOÃO DE PROVIDÊNCIA AND ALEXANDER KOVAČEC

Abstract: Let A be a complex n × n matrix and let SO(n) be the group of real
orthogonal of matrices of determinannt one. Define ∆(A) = {det(A a Q) : Q ∈
SO(n)}, where a denotes the Hadamard product of matrices. For a permutation
σ on {1, . . . , n}, define zσ = dσ(A) =

∏n
i=1 aiσ(i). It is shown that if the equation

zσ = det(A a Q) has in SO(n) only the obvious solutions (Q = (εiδσi,j), εi = ±1 such
that ε1 . . . εn = sgn σ), then the local shape of ∆(A) in a vicinity of zσ resembles a
truncated cone whose opening angle equals zσ1 ẑσzσ2 , where σ1, σ2 differ from σ by
transpositions. This lends further credibility to the well known de Oliveira Marcus
Conjecture (OMC) concerning the determinant of the sum of normal n×n matrices.
We deduce the mentioned fact from a general result concerning multivariate power
series and also use some elementary algebraic topology.

1. Introduction

a. Notation. Our notation is standard where advisable. Here are listed in
telegram style the notations and definitions that may need clarification.

R≥0;Rn
>0; Ṙ, etc. reals≥ 0; (R>0)n; extended reals: R ∪ {∞}; etc.

Sn; T ; i ∈ τ symmetric group on {1, . . . , n}; set T = {(i, j) : 1 ≤ i <
j ≤ n} often identified with the set of transpositions in
Sn; i ∈ τ = 〈k, l〉 ∈ T means i = k or i = l.

so(n), su(n) the Lie-algebras of (real) skew-symmetric and (complex)
skew-hermitian n× n matrices of trace 0.

SO(n), SU(n) Lie-groups of orthogonal and unitary n× n matrices of
determinant 1.

A; Q an arbitrary n×n complex matrix mostly fixed, a matrix
in SO(n) respectively.
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dσ(M); zσ; zid the diagonal product of matrix M associated to permu-
tation σ. dσ(M) =

∏n
i=1 miσ(i); in particular did(M) =

m11m22 . . . mnn. For the particular matrix A mentioned
before, we sometimes use zσ := dσ(A).

|u| mostly the norm of an element u in a normed space; Rn,
C carry euclidean norm.

B(z, ρ), B(x, ρ) open balls of radius ρ > 0 centers z or x, in C or Rn

respectively.

|B|; Pσ; Pσ the matrix (|bij|); for σ ∈ Sn the matrix (δσi,j); the set
{Q ∈ SO(n) : |Q| = Pσ}.

A a B the Hadamard product of matrices A,B of same size:
(A a B)ij = aijbij.

lhs(.), rhs(.), mid(.) left hand side, right hand side, mid of an equation.

l+; px+; px a ray; for points p, x, the ray with origin p containing x;
segment joining p to x.

f ' g; X ≈ Y homotope maps; homoeomorphic spaces.

clX, or X the topological closure of a subset X of the plane.

p, x, 0; x, 0 points p, x, 0 in the complex plane; a point in Rn, di-
mension n will follow from context; the zero of Rn.

min b; max b minimum/maximum of entries of real n−tuple b =
(b1, . . . , bn).

[SW, p45c-3] example of reference to book or article: see [SW] page
45, about 3cm from last text row.

cone Z; co Z for a set Z ⊆ C, the set (cone) {∑k
i=1 rizi : k ∈ Z≥1, ri ≥

0, zi ∈ Z}; the similarly constructed set (convex hull)
with additional restriction

∑
i ri = 1.
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monomial cix
i; |i| an expression of the form ci1i2...inx

i1
1 · · · xin

n .
|i| = i1 + . . . + in is it’s degree.

powerseries a sum of possibly infinitely many monomials formally
summed in any order.

b. Content and outline of results. Let A = (aij) be a complex n × n-
matrix. Since SO(n) =Lie group of unitary n × n matrices of determinant
1 is a compact connected set [SW, pp104c-4, 147c-1], the region ∆(A) =
{det(A a Q) : Q ∈ SO(n)} is a compact connected set in the complex
plane. Let zσ = zσ(A) =

∏n
i=1 aiσi be the (unsigned) diagonal product of A

associated to σ ∈ Sn. The following formulation of a slightly weakened form
of the Oliveira Marcus Conjecture [dO] appears first in [QK]; OMC itself
claims the same thing to be true even if ∆(A) is defined using SU(n) instead
of SO(n).

Conjecture (OMC for SO(n)). If A is a rank 2 matrix, then

∆(A) ⊆ co{zσ(A) : σ ∈ Sn}.

Q = 1
3



−1 2 2
2 −1 2
2 2 −1




Example. Although experiments indicate that
the inclusion seems to remain true in many cases
in which rankA > 2, this is not so in general:
consider the case A = diag(1, 1, 1) and choose Q
as the matrix at the left.

In this article we prove a result, see theorem 11, related to the shape of
∆(A) near points zσ(A) ∈ C.

In section 2 we compute the first terms of the power series det(A a exp S)
in the real and imaginary parts of the entries of S ∈ su(n) around the zero
matrix. The salient feature is that the nontrivial homogeneous component of
lowest degree of this series is a linear combination of the squares of these parts
with coefficients that are simple expressions in the dσ(A). Section 3 defines
the concept of a corner of a region in the plane. An archetypical corner is
a disk-sector of angle measure < π. We show that under natural restrictions
a set valued map defined on such a sector and deviating from the identity
by small enough a quantity as its argument approaches its vertex has as
image region approximately the sector. The proof employs some elementary
algebraic topology. Section 4 gives a lemma on power series of the type
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encountered for det(A a exp S). It assures that such power series defines in a
natural manner a set valued map of the type considered previously. This is
used to deduce the main result, theorem 11, in sectin 5. We end with some
remarks.

2. A Power Series

Recall that so(n) =Lie-algebra of real skew-symmetric n× n matrices S of
trace 0 is associated to SO(n) via the exponential map: indeed, by [SW,
p147c-2] (or [BtD, p165c4]), every Q ∈ SO(n) can be written Q = exp(S)
for some S ∈ so(n). Hence

∆(A) = {det(A a Q) : Q ∈ SO(n)} = {det(A a exp S) : S ∈ so(n)}.
For the proper understanding of the theory of absolutely summable series

in a Banach space, and in particular function spaces and power series, as
referred below, see [D, pp. 94-5, 127-8,193-7]. For the formal background to
these (of lesser importance here), see [ZS].

Note that the matrices S ∈ su(n) are precisely the matrices of the form S =
A + iB where A is a skew symmetric with zero diagonal and B is symmetric
of trace 0. Hence there enter (n2 − n)/2 + (n2 − n)/2 + (n − 1) = n2 − 1
real variables. By a polynomial in the entries of S, we mean a polynomial
in these real variables; in particular that the square of the modulus of such
entries is a polynomial of degree 2 in these variables. Finally recall that if
τ = 〈i, j〉 ∈ T , then we permit sτ as a shorthand for sij, i < j.

Theorem 1. Let A be a complex n×n matrix and let S be a matrix in su(n).
For τ ∈ T put d̃τ(A) = dτ(A)− did(A). Then we have a development

det(A a exp(S)) = did(A) +
∑

τ∈T
d̃τ(A)|sτ |2 +

∑

k≥3

pk(S).

Here each pk(S) as well as |sτ |2 is either 0 or a homogeneous polynomial of
degree k respectively 2, in ≤ n2 − 1 real variables. There is for any neigh-
bourhood U0 of the zero (matrix) in su(n) ≈ Rn2−1, a constant M, so that for
every monomial m(·) occurring in this power series, and every S ∈ U0, there
holds |m(S)| ≤ M.

Proof. Since the matrix S = (sij), satisfies for all i, j ∈ {1, . . . , n}, the
relations sij = −sji, in particular sii ∈

√−1R, we find that the (i, i)-entry of
S2 is given by
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n∑
ν=1

siνsνi = −|sii|2 −
∑
τ :i∈τ

|sτ |2.

Since exp S = I + S + 1
2S

2 + ..., and since the nonzero entries of Sk are
homogeneous polynomials of degree k in the sij, we find

(exp S)ij =





1 + sii − 1
2
|sii|2 − 1

2

∑
τ :i∈τ

|sτ |2 + pii(S) if i = j

sij + pij(S) if i 6= j,

where the power series pii(S) has under-degree≥ 3, while for i 6= j, pij(S)
has under-degree≥ 2.

From this we extract information about the diagonal products dσ(exp S).
First, using

∑
i sii = 0, and hence also

0 = (
∑

i

sii)
2 = 2

∑

l<k

sllskk −
∑

i

|sii|2,

we find

did(exp S) =
n∏

i=1

(1 + sii − 1
2
|sii|2 − 1

2

∑
τ :i∈τ

|sτ |2 + pii(S))

= 1 +
∑

i

sii +
∑
i<j

siisjj − 1
2

∑
i

|sii|2 − 1
2

∑
i

∑
τ :i∈τ

|sτ |2 + pid(S)

= 1− 1
2

∑

i

∑

τ :i∈τ

|sτ |2 + pid(S)

= 1−
∑

τ∈T
|sτ |2 + pid(S),

where the power series pid(S) has underdegree≥ 3.
The diagonal products corresponding to transpositions are given as follows.

d〈i,j〉(exp S) =




n∏

l 6=i,j

(1 + sll − 1
2
|sll|2 − 1

2

∑

τ :l∈τ

|sτ |2 + pll(S))




×(sij + pij(S))(−sij + pji(S))

= −|sij|2 + p′ij(S),
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where p′ij(S) has underdegree≥ 3. Finally, what concerns the diagonal prod-
ucts corresponding to σ 6∈ {id} ∪ T , the set {i : σ(i) 6= i} contains at least
three elements. It follows that an associated diagonal product yields a power
series of underdegree≥ 3. Consequently

det(A a exp S) =
∑

σ∈Sn

sgn σ dσ(A)dσ(exp S)

= did(A)(1−
∑

τ

|sτ |2 + pid(S))

−
∑

τ∈T
dτ(A)(−|sτ |2 + p′τ(S)) +

∑

σ 6∈T ∪{id}
sgn σdσ(A)dσ(exp S).

This formula and the degree properties of pid(S), p′τ(S), dσ(exp S) imply the
formal expression given for det(A a exp S). Now each of the n2 functions
su(n) 3 S 7→ (exp S)ij, i, j = 1, . . . , n, is a power series of complex coefficients
in n2 − 1 real variables. Since the exponential series converges absolutely on
U0 [SW, p25], the family of monomials in these variables occuring in the
power series (exp S)ij is absolutely (or normally) summable on U0 in the
sense of [D, p95c7, p128]. Since det(.) is a polynomial in the entries of a
matrix, the claim concerning m(S) is easily inferred. ¤

3. A set valued map

Definitions 2. a. Call a cone in the sense of the notation section degenerate
if it is one of these: the plane C, a half plane, a ray, or a straight line.

b. A closed (convex) non-degenerate cone will be called a cnd-cone, for short.
It is an exercise in plane geometry to show that a cnd-cone can be uniquely
written in the form C = cone{eiθ1, eiθ2} with θ1, θ2 ∈] − π, π], satisfying
0 < α = min{2π − |θ1 − θ2|, |θ1 − θ2|} < π. The real α is the usual measure
of the angle the cone defines.

c. An angular region (or cone) at z is a set given by ar = z + C, with C a
cnd-cone.

d. The (disk-)sector of radius ρ given by this ar is S(ar, ρ) = ar ∩B(z, ρ).

e. Let ar be a (nondegenerate) angular region at z with angle α > 0 and
let ε > 0 be such that 0 < α − 2ε < α < α + 2ε < π. We call the two
angular regions with the same vertex z and bissector as ar, but by a small
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angle 2ε > 0 smaller/wider than α the ε-contraction ar−ε/ ε-extension
ar+ε of ar.

The central definition for this paper is that of a corner of a subset of the
plane.

Definition 3. Let ∆ be a subset of C, and let z ∈ ∆. The point z is called a
corner of ∆, if there exists a nondegenerate angular region ar at z such that
for every small ε > 0:

there exists a δ > 0 so that S(ar−ε, δ) ⊆ ∆ ∩B(z, δ) ⊆ S(ar+ε, δ).

In this case we also may say ∆ has in z the corner ar.

Example 4. The idea of what a corner is, can be gleaned from the following
series of pictures: the shaded regions (a) and (b) have in z corners whose
angular regions ar are indicated by tangent lines. The region (c) has in z no
corner. Similarly region (d) has in z no corner, since it has a sequence of
‘holes’ converging towards z. Assume a boundary curve of ∆ near z exists.
If it is strictly convex (‘inward bounded’) then as ε → 0, δ has to go to 0 to
satisfy the first inclusion, while if it is concave, δ → 0 is required to satisfy
the second inclusion.

Observations 5. Let ∆, ∆′, ∆′′ be subsets of the plane.

a. If ∆ ⊆ ∆′ ⊆ ∆′′ and ∆ and ∆′′ have in z the corner ar then ∆′ has in z
the corner ar.

b. ∆ has in z the corner ar iff ∆ ∩ B(z, r) has for some small r > 0 the
corner ar.

c. If ∆ has in z the corner ar, then u + ∆ has in u + z the corner u + ar.

Proof. The simple considerations necessary are left to the reader. ¤
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Let P(R2) =family of subsets (i.e. powerset) of R2.

Theorem 6. Let S = S(ar, ρ) be a disk sector with vertex in 0 and let
F : S → P(R2) be a set valued map with the following further properties:

(i) For some function r : S → Ṙ≥0, satisfying limx→0 r(x)/|x| = 0 and
r(0) = 0, there holds F (x) ⊆ B(x, r(x)) for all x ∈ S.

(ii) There exists a continuous selection S 3 x 7→ f(x) ∈ F (x).

Then for all small r′ > 0, the set F (S(ar, r′)) has ar as a corner at 0.

Proof.

The left figure shows the bound-
aries Cr1, Cr2 of two disk-sectors
which we think of being Īr1 =
clS(ar−ε, r1), Īr2 = clS(ar, r2). Of
ε, r1, r2 we require in the moment
only that ε be small enough so
that ar−ε is nontrivial, and that
the radii are assumed to satisfy
0 < r1/ cos ε < r2 ≤ ρ.

We dispense with proving that Cr1, Cr2 are rectifiable curves; that the Jor-
dan curve theorem [M, p31] applies to them; that their respective Jordan-
interiors [M, p36c-1; Enc. 93B& K] Ir1, Ir2, as well as Īr1, Īr2 are (convex) disk
sectors; that Cr2 \ {0} lies in the Jordan-exterior of Cr1; and that we have
a homeomorphism Īr2 ≈closed unit disc, which induces a homeomorphism
Cr2 ≈ S1.

Let L =perimeter of Cr2 and parametrize Cr2 by traversing it counterclock-
wise from 0 to 0 and defining l : Cr2 → [0, L[ by l(x) =arc-length from 0 to
x; also let d(x) =distance from x ∈ Cr2 to Cr1. Note that l is a continu-
ous bijection. Simple geometry, in particular the cosine theorem, yields the
following:

d(x) =





l(x) sin(ε) for l(x) ∈ [0, r1/ cos ε],√
l(x)2 + r2

1 − 2l(x)r1 cos ε for l(x) ∈ [r1/ cos ε, r2],√
r2

1 + r2
2 − 2r1r2 cos(1 + ε− (l(x)/r2) ) for l(x) ∈ [r2, r2(1 + ε)],

r2 − r1 for l(x) ∈ [r2(1 + ε), L
2 ],

d(l−1(L− l(x))) for l(x) ∈ [L2 , L[.
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The graph l(x)-versus-d(x) for the example shown above is this figure for
l(x) ≤ L/2. The requirement r1/ cos ε < r2 (instead of simply r1 < r2) was
made to simplify analysability of d(x).

We define the function

[0, ρ] 3 t 7→ r̃(t) := sup{r(x) : x ∈ S, |x| = t} ∈ Ṙ≥0.

From the hypothesis on r we get ∗1 : limt↓0 r̃(t)/t = 0. Now fix an ε satisfying
0 < ε ≤ min{0.9, α/2, (π − α)/2}.
Fact 1. For small r2, there exist r1 with 0 < r1/ cos ε < r2 so that for
x ∈ Cr2 \ {0}, r(x) < d(x).
d> By ∗1 we find for small r2 ≤ ρ that for all 0 < t ≤ r2, r̃(t) < sin ε

1+sin εt.
Choose such an r2 and put r1 = r2/(1 + sin ε). Then from the hypothesis
on ε one checks that we have r2 > r1/ cos ε > r1. Note that for x ∈ Cr2,
|x| = min{l(x), r2} ≤ r2. Then from the formulae for d(x) one finds by
routine checks for x ∈ Cr2 \ {0}, that r(x) ≤ r̃(|x|) < sin ε

1+sin ε |x| ≤ d(x). c<
Let r1 < r2 be as in fact 1; it implies for x ∈ Cr2 \{0}, that F (x)∩Cr1 = ∅.

Since, when connecting x by a segment to a point p ∈ Ir1 we cross Cr1, it
follows that |x−p| > d(x). So p 6∈ F (x). This shows ∗2 : Īr1∩F (Cr2) = {0}.
Fact 2. Every point in Īr1 \ {0} lies in the image of Ir2 under F : Īr1 \ {0} ⊆
F (Ir2).
d> Assume there exists a point p ∈ Īr1 \{0} so that p 6∈ F (Ir2). Then p 6= f(x)
for all x ∈ Ir2. It is also clear by ∗2 that p 6∈ f(Cr2). So we have a continuous

map f |Īr2 : Īr2

f→ R2 \ {p}. Let β : R2 \ {p} → Cr2 be the standard retraction
map that carries each x ∈ R2 \ {p} to the unique intersection of the ray px+

with Cr2 : β(x) = px+ ∩ Cr2. Then we get a continuous map β a f |Īr2 :
Īr2 → Cr2 extending β a f |Cr2 : Cr2 → Cr2. By Spanier [S, p27] this means
that β a f |Cr2 is nullhomotopic. Note that we can write f(x) = x + e(x)
for some continuous map e(x) satisfying |e(x)| ≤ r(x). Since for t ∈ [0, 1],
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|te(x)| ≤ |e(x)|, by fact 1 we have a homotopy

Cr2 × [0, 1] 3 (x, t)
H7→ x + te(x) ∈ R2 \ {p}

showing idCr2
' f |Cr2 as t : 0 ↗ 1. But since Cr2 ≈ S1 and idS1 is not

nullhomotopic (as follows from the observations [S, pp25c-7, 56c4, 59c5,
23c6]), we get that idCr2

is not nullhomotopic. Now β a H yields a homotopy
idCr2

= β a idCr2
' β a f |Cr2; so we get a contradiction, proving the claim. c<

Fact 3. For all small r2 > 0 there exists r1 > 0 so that

∗3 : S(ar−ε, r1) ⊆ F (S(ar, r2)) ∩B(0, r1) ⊆ S(ar+ε, r1).

d> Recall that Īr1 = clS(ar−ε, r1). Also, by i, F (0) = 0. So for given ε, as
above, facts 1 and 2 yield that for all small r2 there exists an r1 > 0, so
that S(ar−ε, r1) ⊆ F (S(ar, r2)). Intersecting both sides with B(0, r1) yields
the left of the inclusions. Next let u ∈ mid(∗3). Then u ∈ F (x) for some
x ∈ S(ar, r2). As in the proof of fact 1 we have observed that this means
r(x) ≤ sin ε

1+sin ε |x| < |x| sin ε. Consequently u ∈ B(x, |x| sin ε). Suppose u 6∈
ar+ε. Since x ∈ ar ⊆ ar+ε, u 6∈ ar. It follows that the segment ux has to
contain a point in a side of ar and another in a side of ar+ε. These two
sides define an angle≥ ε with vertex 0. Consequently |u − x| ≥ |x| sin ε.
Contradiction. Hence u ∈ ar+ε. Since also |u| ≤ r1, we get u ∈ rhs(∗3). c<

With fact 3 the theorem is proved. ¤

4. A lemma on power series

Lemma 7. Let f(x) =
∑

k≥2 fk(x) be a power series over C where every fk

is either 0 or a homogeneous polynomial of degree k. Assume that

(i) f2(x) =
∑n

i=1 cix
2
i , with coefficients satisfying 0 6∈ co{ci : i = 1, . . . , n};

(ii) there exist M > 0, and b ∈ Rn
>0, so that |cib

i| < M for all monomials
cix

i of f(x).

For any real positive r < min b, we have a continuous function

[−r, r]n 3 x 7→ f(x) ∈ C.

Furthermore, |f2(x)| → 0, x ∈ [−r, r]n, implies
∑

k≥3 fk(x)
/|f2(x)| → 0.
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Proof. That f defines in the closed cube [−r, r]n a continuous function is a
consequence of [D, p194c1..5]. From i we get that there exist

0 < ρ1 < ρ2 = max{|ci| : i = 1, . . . , n}
such that

ρ1 ≤
∣∣∣∣∣

n∑
j=1

cj

x2
j

x2
1 + . . . + x2

n

∣∣∣∣∣ , so: ρ1(x
2
1 + . . .+x2

n) ≤ |f2(x)| ≤ ρ2(x
2
1 + . . .+x2

n);

(∗)
for the set of values the expression

∑
... assumes as x varies over any neigh-

bourhood of 0 is just the convex hull of c1, . . . , cn. Henceforth, we assume
fk(x) =

∑
|i|=k cix

i, k = 3, ... .
We put

Lk = {i : |i| = k, iν ≤ 1 for all ν}, Qk = {i : |i| = k, iν ≥ 2 for some ν}.
Case i ∈ Lk. Then exactly k of the iνs are 1, say iν1 = . . . = iνk

= 1. We have
the estimates

xiν1
· · · xiνk

≤ 1
k

(|xiν1
|k + . . . + |xiνk

|k); and
|xi|k

x2
1 + . . . + x2

n

≤ |xi|k−2,

i = 1, . . . , n, the first following from the arithmetic geometric mean inequal-
ity, the second being trivial. These inequalities imply

|ci
xi

x2
1 + . . . + x2

n

∣∣ ≤ 1
k

∑
ν:iν=1

|ci||xiν |k−2.

Case i ∈ Qk. Then, for a definite choice, we can define

j = j(i) = min{ν : iν = 2},
and find

|ci
xi

x2
1 + . . . + x2

n

∣∣ = |ci| |xj|2
x2

1 + . . . + x2
n

|x1|i1 · · · |xj|ij−2 · · · |xn|in

≤ |ci||x1|i1 · · · |xj|ij−2 · · · |xn|in.
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Now put m(x) = max{|x1|, . . . , |xn|}. Then

|
∑

k≥3

fk(x)
/
f2(x)| ≤ 1

ρ1

∑

k≥3

|fk(x)|/(x2
1 + . . . + x2

n)

≤ 1
ρ1

∑

k≥3

( ∑

i∈Lk

1
k

∑
ν:iν=1

|ci||xiν |k−2 +
∑

i∈Qk

|ci||x1|i1 · · · |xj(i)|ij(i)−2 · · · |xn|in
)

≤ 1
ρ1

∑

k≥3

∑

i:|i|=k

|ci|(max{|x1|, . . . , |xn|})k−2

=
1
ρ1

∑

k≥3

∑

i:|i|=k

|ci|m(x)k−2 =
1
ρ1

∑

i:|i|≥3

|ci|m(x)|i|−2.

The last equality sign is justified as follows: let b = min{b1, . . . , bn}. By
hypothesis ii we know |ci|b|i|−2 ≤ M/b2. Put q = r/b. For all x ∈] − r, r[n,
m(x)/b ≤ q, and so

|ci|m(x)|i|−2 ≤ |ci|q|i|−2b|i|−2 ≤ M/b2q|i|−2.

Now ∑

i:|i|≥3

q|i|−2 ≤ 1/q2
∑

i∈Zn
≥0

q|i| = (1− q)−n−2.

Therfore, by [D, p95c4..8], the denumerable family (|ci|m(x)|i|−2)i:|i|≥3 of
bounded continuous functions on polycylinder ]− r, r[n is absolutely summa-
ble. Furthermore, by [D, pp 128c7,129c3] it is continuous. Since m(0) = 0,
we have that, as x → 0, the right hand side converges to 0. This proves the
lemma. ¤

Example 8. Consider the polynomial f(x, y) = x2 + y3 as a power series in
x, y. Here, f2(x) → 0 does not imply f3(x) → 0. So hypothesis i of lemma 7
cannot be weakened to 0 6∈ co{ci : ci 6= 0, i = 1, ..., n}.

Note that if lemma 7 holds for a certain r > 0, then it holds also when
formulated with a neighbourhood U ⊆ [−r, r]n of 0 instead of [−r, r]n.

Corollary 9. Assume the hypotheses and notation of lemma 7 in force and
additionally that the ci are not collinear. Then for all small neighbourhoods
U of 0 ∈ Rn, f(U) has in 0 the angular region ar = cone{c1, . . . , cn} as a
corner.
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Proof. The noncollinearity condition, ensures that ar obeys the nondegener-
acy condition implicit in definition 2. We prove next two general facts.

Fact 1. For every neighbourhood U of 0 ∈ Rn we can find 0 < r1 = r1(U)
and 0 < r2 = r2(U) such that S(ar, r1) ⊆ f2(U) ⊆ S(ar, r2) and so that
diameter(U) → 0 implies r2(U) → 0.
d> Recall that according to inequality (∗) in the proof of lemma 7 there exist
two constants 0 < ρ1 < ρ2 so that ρ1|x|2 ≤ |f2(x)| ≤ ρ2|x|2. Choose balls
B(0, ρ) ⊆ U ⊆ B(0, ρ′) with ρ, ρ′ = diameter(U) ∈ Ṙ. Define r1 = ρ1ρ

2, r2 =
ρ2ρ

′2. Let x ∈ S(ar, r1). Since from the very definition of a cone it follows that
f2(Rn) = ar, there is an x ∈ Rn so that x = f2(x). Hence ρ1|x|2 ≤ |x| ≤ r1.
Consequently |x|2 ≤ ρ2. This shows S(ar, r1) ⊆ f2(B(0, ρ)) ⊆ f2(U). Next,
assume x ∈ f2(U). Then there exists x ∈ U, hence |x| ≤ ρ′, so that x = f2(x).
So |x| ≤ ρ2ρ

′2 = r2 and so we have f2(U) ⊆ S(ar, r2). The remaining claim
follows from the definitions of r2, ρ

′. c<
Now we define for any neighbourhood U of 0 ∈ Rn with U ⊆] − r, r[n, for

x ∈ f2(U):

C(x) = {x ∈ U : f2(x) = x}, S(x) = {
∑

k≥3

fk(x) : x ∈ C(x)},

and F (x) = x + S(x).

Fact 2. f(U) = F (f2(U)).
d> Choose any x ∈ U. Put x = f2(x). Then x ∈ f2(U), x ∈ C(x), and

f(x) = f2(x) +
∑

k≥3

fk(x) ∈ x + S(x) = F (x).

This shows f(U) ⊆ F (f2(U)). Now choose any x ∈ f2(U). Next choose any
s ∈ S(x). Then s =

∑
k≥3 fk(x) for some x ∈ C(x); so that x = f2(x). Hence

x + s = f2(x) +
∑

k≥3 fk(x) = f(x). Since x ∈ U, we have x + s ∈ f(U). This
shows x + S(x) ⊆ f(U) and F (f2(U)) ⊆ f(U). c<

We emphasize that facts 1 and 2 hold for an arbitrary neighbourhood U
of 0 ∈ Rn with U ⊆] − r, r[n and f2(U), S(x), C(x), are conditioned by this
choice.

We now fix U to be a neighbourhood satisfying U ⊆] − r, r[n, r being
chosen as in lemma 7. The set valued map F can by fact 1 be restricted to
a disc-sector S of type ar contained in f2(U): ∗1: S ⊆ f2(U).

Fact 3. F : S → P(R2) satisfies the hypotheses of theorem 6.
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d> Define for x ∈ S the function r(x) = 1.1 · sup{|s| : s ∈ S(x)}. Then
S(x) ⊆ B(0, r(x)). By lemma 7 we know

∀ε > 0∃δ > 0 s.t. |f2(x)| < δ ⇒ |
∑

k≥3

fk(x)| ≤ ε|f2(x)|.

Now fix an ε > 0, and choose an associated δ > 0 accordingly. Let x ∈ S,
|x| < δ. By ∗1, x = f2(x) for all x ∈ C(x). Hence |∑k≥3 fk(x)| ≤ ε|x| for all
x ∈ C(x). This means r(x) ≤ ε|x|. By the arbitraryness of ε > 0 we have
shown, r(x)/|x| → 0 as |x| ↓ 0. Also, S(0) = {0}. Since F (x) = x + S(x)
we see F (x) ⊆ B(x, r(x)), so F satisfies hypothesis i of theorem 6. To see ii,
we use that there exist two ci, c1 and c2, say so that ar = cone{c1, c2}. We
can then write each x ∈ S in a unique way as x = c1x

2
1 + c2x

2
2. Clearly the

coordinate functions x1 = x1(x), x2 = x2(x) depend continuously on x. So

S 3 x 7→ f((x1(x), x2(x), 0n−2)) ∈ F (x)

is a continuous selection, showing ii. c<
There exists, by theorem 6, an r2 ≤radius of S so that for all 0 < r′ ≤ r2

the set F (S(ar, r′)) has in 0 a corner of type ar. By (the arguments which
proved) fact 1, we can choose a neighbourhood U ′ ⊆ U of 0, and an r1 > 0 so
that S(ar, r1) ⊆ f2(U ′) ⊆ S(ar, r2). Upon applying F, we get F (S(ar, r1)) ⊆
F (f2(U ′)) ⊆ F (S(ar, r2)). The left and the right subsets of this inclusion are
corners of type ar. Hence, by observation 5a, F (f2(U ′)) = f(U ′) also has ar
as a corner in 0. This was to prove. ¤

5. The main result

Lemma 10. Let A,Q, D, Pσ be n × n matrices, D diagonal, σ, ρ ∈ Sn,
Pσ, Pρ the associated permutation matrices. Then there hold the following
computational rules.

Pρσ = PσPρ, dσ(PρA) = dρ−1σ(A), D(A a Q) = A a (DQ) = (DA) a Q,

Pσ(A a Q) = (PσA) a (PσQ), det(A a Pσ) = sgn σ dσ(A).

Proof. The easy proofs are left to the reader; see also [HJ, p304]. ¤
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Let Pσ = {Q ∈ SO(n) : |Q| = Pσ}. Clearly each Q ∈ Pσ can be written
Q = DPσ, with D = diag(ε1, . . . , εn), εi ∈ {−1, +1}, det(D) = sgn σ. One
consequence of lemma 10 is that if Q ∈ Pσ, then det(A a Q) = dσ(A).

Theorem 11. Let A be a complex n×n matrix, and let σ ∈ Sn. Assume that
the only matrices Q ∈ SO(n) for which det(A a Q) = dσ(A) are the matrices
in Pσ; and that the complex numbers d̃στ(A) = dστ(A)− dσ(A), τ ∈ T , lie in
an open half plane whose support contains the origin, and that they are not
all collinear with 0. Then ∆(A) = {det(A a Q) : Q ∈ SO(n)} has in dσ(A)
the corner dσ(A) + cone{d̃στ(A) : τ ∈ T }
Proof. Case σ = id. The essentials lie in the proof for this case. By the theory
of Lie-groups [SW, pp31c5, 145c4] we can choose small open neighbourhoods,
U0 of 0 ∈ so(n) and UI of I ∈ SO(n) so that the map U0 3 S 7→ exp(S) ∈ UI

delivers a bijection. Also, by [SW, p91c-5], if D = diag(ε1, . . . , εn) ∈ SO(n),
then, UD = DUI is a neighbourhood of D. Let

K = SO(n) \
⋃
{UD : D = diag(ε1, . . . , εn) ∈ SO(n)}.

Then K is compact.
On so(n) and SO(n), respectively, define the maps f, ϕ by

so(n) 3 S
f7→ det(A a exp S)− did(A) ∈ C; SO(n) 3 Q

ϕ7→ det(A a Q) ∈ C.

From the hypothesis we find that ϕK is a compact set not containing
did(A). Since the distance between compact disjoint sets is positive [D, p61c-
2], we can find a ball around did(A) having with ϕK empty intersection. Now
for every of the diagonal matrices D here present, and every Q ∈ SO(n),
ϕ(DQ) = ϕ(Q),

So

∆(A) = ϕ(SO(n)) = ϕ(K ∪
⋃

D

UD) = ϕK ∪
⋃

D

ϕ(DUI)

= ϕK ∪ ϕUI = ϕK ∪ (ϕ a exp U0) = ϕK ∪ (f(U0) + did(A)).

For small r > 0, we now have

∆(A) ∩B(did(A), r) = did(A) + (f(U0) ∩B(0, r)).

From theorem 1 we know that for S ∈ U0,

f(S) =
∑

τ∈T
d̃τ(A)|sτ |2 +

∑

k≥3

pk(S),
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and this can be rewritten as a real variable power series with complex coef-
ficients, precisely in the form required in lemma 7. This yields by corollary
9 and the observation 5bc that ∆ has in did(A) the corner claimed.

Case σ ∈ Sn arbitrary. As one may expect this case can be reduced to the
previous one. Let Ã = Pσ−1A and let Q ∈ SO(n). Choose a diagonal matrix
D so that DPσ−1 ∈ Pσ−1 and put Q̃ = DPσ−1Q. Then

det(Ã a Q̃) = det(Pσ−1A a (DPσ−1Q)) = det(DPσ−1) det(A a Q) = det(A a Q),

and dσ(A) = did(Ã). Now

Q̃ ∈ Pid iff Q ∈ Pσ (easy)
iff det(A a Q) = dσ(A) (by hypotheses)
iff det(Ã a Q̃) = did(Ã) (by the equations above)

So we can apply the first case to the matrix Ã. So ∆(Ã) has in did(Ã) the
corner ar = did(Ã) + cone{d̃τ(Ã) : τ ∈ Sn}. Now for any Q ∈ SO(n),

det(Ã a Q) = det((DPσ−1A) a Q) = det(A a (PσDQ)).

Since PσDSO(n) = SO(n), we can infer

∆(Ã) = {det(Ã a Q) : Q ∈ SO(n)} = ∆(A).

Furthermore did(Ã) = dσ(A), and dτ(Ã) = dτ(Pσ−1A) = dστ(A). From this
we get ar = dσ(A) + cone{dστ(A)− dσ(A) : τ ∈ T }. The theorem is proved.

¤

We end with three remarks.

Remarks 12. a. For technical reasons (in particular what concerns the
reasoning employed in theorem 6, fact 2) we have restricted the formulation
of the main result to the case that the d̃τ(A) are not all collinear with 0.
It seems to us that with obvious modifications it will also hold without this
restriction (and indeed the proof will be easier).

Q(c, s) =




c 0 s
−s 0 c
0 −1 0


 .

b. For c, s reals satisfying c2 + s2 = 1,
define Q = Q(c, s) ∈ SO(3), the matrix
at the right.

Then det(I a Q(c, s)) = 0 = dσ(I) for all admissible c, s and σ 6= id. So the
hypothesis of theorem 11 usually is not satisfied.
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At the other hand, the condition of theorem 11 is certainly not empty.
For example det(I a Q) = 1 will happen only if Q ∈ SO(n) is a signed
identity matrix. Some proofs of the special cases of OMC already available
provide more examples; see e.g [F]. Indeed it seems to us that answering the
question for which pairs Q ∈ SO(n), and permutations σ ∈ Sn equations
det(A a Q) = dσ(A) can happen would mean - in case rankA = 2 at least - to
go a long way towards deciding OMC.

c. The reader may well ask why we have not formulated theorem 11 for
SU(n). The reason is that the diagonal entries of an S ∈ su(n) do not enter
in the homogeneus part of degree 2 in the real variable power series of complex
coefficients, f(S) = det(A a exp S). So in terms of lemma 7, see also example
8, we do not know whether f2(S) → 0 implies

∑
k≥3 fk(S)/f2(S) → 0; hence

we cannot apply our reasoning to these cases.
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