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2 M. PORTILHEIRO AND A.E. TZAVARASassume throughout that C satis�es the properties:(h0) C(0(�))(�) = 0;(h1) ZXC(f)(�) d� = 0for every f in L1(X) and(h2) ZX �C(f(�))(�)� C( �f(�))(�)� sgn (f � �f)(�) d� 6 0;for every f and �f in L(X). Finally, the equilibria, or the Maxwellians, feq,de�ned as the solutions of C(feq)(�) � 0 form a one-parameter family interms of the mass, u = R fd�, whi
h we will denote by M(u; �) or by M(u).We assume that it satis�es:(h3) M(u) 2 L1 \ L1(X); dMdu (u; �) > 0; and ZXM(u; �) d� = u:Under hypothesis (h1), the mass u satis�es the 
onservation law�tu+ div ZX a(�)f d� = 0;(h2) guarantees that (1.1) is an L1-
ontra
tion, while the Maxwellians in (h3)provide the model with a 
lass of kineti
 entropies.The aim of this arti
le is to develop a framework for treating the hydrody-nami
 and di�usive limits for 
ollisional kineti
 equations that satisfy a sin-gle 
onservation law and generate L1-
ontra
tions. A number of previouslystudied models �t into the above framework, in
luding relaxation approxi-mations [13, 21℄, kineti
 BGK models [24, 4℄, and the dis
rete kineti
 modelsin [19, 5, 26℄. Most existing works 
on
ern BGK-type 
ollision operatorsand our obje
tive are to put these works in a 
ommon framework and todevelop a theory for general 
ollision operators. Additional hypotheses on Care needed, espe
ially for the di�usive limit. These are outlined in the sequel.We apply the theory to kineti
 models arising in the radiative transport ofrandom waves (e.g. [7, 22℄). Su
h models are naturally endowed with 
on-servation of energy and in the 
ase of radiative transport for a
ousti
 wavesC generates an L1-
ontra
tion. Our analysis provides a general 
onvergen
eresult for the di�usive limit of the radiative transport equations for a
ousti
waves in multidimensional spa
e.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 3A novel feature of this work is the analyti
al method of proof, whi
h is basedon the 
on
ept of dissipative solutions of [25℄ and the perturbed test fun
tionmethod ([9℄, [26℄) and renders the proofs parti
ularly simple and 
apable todeal with 
omplex models. Interestingly, the usual Hilbert expansion usedfor identifying the limiting behavior is 
arried now to the test fun
tions andthe asymptoti
 analysis pro
ess is parti
ularly appealing. In the di�usives
aling, this approa
h 
an handle 
ases where the estimate stru
ture is tooweak to be treated with traditional te
hniques.We outline next the main results: The hyperboli
 s
aling 
on
erns thelimiting pro
ess "! 0 for the initial value problem(1.2) �tf " + a(�) � rxf " = 1"C(f ");f(0; x; �) = f0(x; �):(For ease of notation, here and in what follows, when f is a fun
tion of (t; x; �)we use C(f) to denote the mapping (t; x; �) 7! C(f(t; x; �))(�).) To 
arry outthis limit we employ (h0){(h3) and pla
e the additional assumption that(f1) lim"!0 jf "(t; x; �)�M(u"(t; x); �))j = 0 a.e. in R+�R d�X :Hypothesis (f1) follows in appli
ations of our theory from an estimate analo-gous to the H-theorem, and is justi�ed in se
tions 5 and 6 for various spe
i�
models. Under hypotheses (h0){(h3) and (f1), problem (1.2) is equipped withkineti
 entropies and the total mass u" 
onverges to the entropy solution (orequivalently to the dissipative solution) of the s
alar 
onservation law(1.3) �tu+ div ZX a(�)M(u; �) d� = 0:We refer to [24, 13, 21, 14, 4, 28℄ for 
onvergen
e of various 
ontinuous ordis
rete BGK-type models and to [27℄ for the present setting of 
ontra
tive
ollisional operators. In Se
tion 3, we give a simpli�ed 
onvergen
e proofusing the setting of dissipative solutions [25℄, [26℄. Contra
tive kineti
 equa-tions provide a general framework for the extension of Kruzhkov theory tokineti
 models. However, not every kineti
 model with one 
onservationlaw generates an L1-
ontra
tion; see [11℄ for 
onvergen
e results outside theKruzhkov setting.



4 M. PORTILHEIRO AND A.E. TZAVARASNext, we 
onsider the di�usive s
aling for (1.1),(1.4) �tf " + 1"a(�) � rxf " = 1"2C(f ");f(0; x; �) = f0(x; �):This equation is equipped with 
onservation of mass:(1.5) �tu" + 1" div Z a(�)f " d� = 0:In addition to (h0){(h3), we make the following assumptions: First,(h4) Z ai(�)M(u; �) d� = 0 for every i in f1; : : : ; dg.Now the hydrodynami
 limit of (1.2) is the trivial equation ut = 0, and one
an 
onsider the di�usive s
aling. Se
ond, on the stru
ture of the linearized
ollision operator along Maxwellians, we assume the following:(h5) N�C 0(M(u))� = span��M�u � andR�C 0(M(u))� � span�aj �M�u : 1 6 j 6 d� :On the basis of asymptoti
 analysis of the di�usive s
aling (see se
tion 4)using the Hilbert expansion, the solution of (1.5) formally 
onverges to the(possibly degenerate) paraboli
 equation(1.6) �tu = dXi;j=1�xi ZR ai(�) hC 0(M(u))�1; aj(�)�xjM(u; �)i d�:Indeed, we validate the 
onvergen
e in the dissipative sense under two fun
-tional assumptions, namely (f1) and the assumption that the total mass(f2) fu"g is pre
ompa
t in L1lo
(R+�R d ):The fun
tional hypotheses are then justi�ed in various 
ir
umstan
es: Typi-
ally, (f1) follows from an H-estimate like in the hyperboli
 s
aling, and thisis exhibited for various models in what follows. The justi�
ation of (f2) ismore diÆ
ult. One has available from the 
ontra
tion stru
ture 
ontrol onthe modulus of 
ontinuity in x, and the goal is to use the 
onservation ofmass (1.5) with 
ondition (h4) and a s
heme on transferring L1-modulus of
ontinuity in x into L1-modulus of 
ontinuity in t (an idea due to Kruzhkov



HYDRODYNAMIC AND DIFFUSIVE LIMITS 5[15℄ as summarized in a te
hni
al lemma from [28℄). This is done in se
tion5.1 for the BGK-model and in se
tion 6.3 for the radiative transport equa-tions. The 
ompa
tness analysis for the radiative transport equations usesthe Fredholm stru
ture of the linear 
ollision operator. In the last se
tion, itis shown how use a strengthened version of (f1) and the Fredholm stru
tureof the linearized 
ollision operator in order to prove 
ompa
tness and derive(f2) in a general setting (see se
tion 7).Our analysis en
ompasses various results on di�usive limits of simpler mod-els [16, 5, 26℄ in the L1-
ontra
tion framework, and extends the di�usive limitanalysis to general 
ontra
tive models with one 
onservation laws. As a te
h-nique it treats the hyperboli
 and di�usive s
ales in a 
ommon framework,and uses in an essential way the 
ontra
tion stru
ture but very little informa-tion from the limit equation. For 
omplementary approa
hes in the di�usiveregime that are designed to use information from the paraboli
 stru
ture ofthe limit equation, see [19, 20, 17℄. We refer to [1, 2, 3℄ for early work onradiative transport, to [19, 10, 12℄ for treatments of the di�usive limit in onespa
e dimension and to [23℄ for a treatment of the di�usive limit in the 
on-text of a

retive solutions for paraboli
 equations for a dis
rete model (seealso the remark following Proposition 11).The arti
le is organized as follows. In se
tion 2 we dis
uss existen
e andstru
tural properties of the kineti
 model (1.1) (Theorem 1) and outline thenotion of dissipative solutions for a

retive operators. It is noted that dissi-pative, entropy and regular weak solutions are all equivalent for semilinearsystems or kineti
 models (Theorem 3). Dissipative and entropy solutionsare also equivalent for s
alar 
onservation laws [25℄ and for strongly para-boli
 equations, but the pre
ise relation is not yet understood at the levelof degenerate paraboli
 equations. The 
onvergen
e in the dissipative senseof the hydrodynami
 limit from (1.2) to the entropy solution of the s
alar
onservation law (1.3) (Theorem 4) is proved in se
tion 3. Then the di�usivelimit (1.4) is 
onsidered in se
tion 4, and 
onvergen
e is proved to the dissi-pative solution of (1.6). The proof of Theorem 6 is based on perturbation oftest fun
tions and an analysis of the stru
ture of the linearized 
ollision op-erator along Maxwellians. In se
tion 5 the analysis is applied to a variety ofkineti
 and dis
rete kineti
 models. Se
tion 6 
on
erns the most interestingappli
ation: Papani
olaou and Ryzhik [22℄ derive 
ollisional kineti
 modelsdes
ribing the radiative transport of waves in random environments. Thesemodels provide very interesting examples of 
ollisional models equipped with



6 M. PORTILHEIRO AND A.E. TZAVARASonly the 
onservation of energy. The theory applies to the di�usive approxi-mation of radiative transport for a
ousti
 waves (see also [19℄ for the studyof a simpli�ed BGK-type model in this dire
tion). In se
tion 7 we use the
onservation of mass together with the Fredholm stru
ture of the linearized
ollision operator in order to prove 
ompa
tness of mass in the di�usiveregime (Proposition 11).2. Stru
tural properties of the kineti
 modelConsider the initial value problem for the kineti
 mode,(2.1) �tf(t; x; �) + a(�) � rxf(t; x; �) = C(f(t; x; �); �);f(0; x; �) = f0(x; �);equipped with a single 
onservation law. We dis
uss in this se
tion the notionof solution in the dissipative sense and stru
tural properties of (2.1) underhypotheses (h0)-(h3).2.1. Preliminaries. In preparation, we review some properties of the linearequation(2.2) �tf(t; x; �) + a(�) � rxf(t; x; �) = g(t; x; �)f(0; x; �) = f0(x; �):The solution of (2.2) is 
omputed via the method of 
hara
teristi
s(2.3) f(t; x; �) = f0(x� a(�)t; �) + Z t0 g(s; x� a(�)(t� s); �) dsand it is easy to see that:(i) if f0 2 L1x;� and g 2 L1t;x;�, then f 2 C([0; T ℄;L1x;�);(ii) if f0 2 L1lo
;x;� and g 2 L1((0; T );L1lo
;x;�), then f 2 C([0; T ℄;L1lo
;x;�).The solution of (2.2) 
an be understood in the usual mild sense, or alter-natively one may de�ne weak solutions by requiring that f satis�es(2.4) � Z T0 ZZ f�'t + a(�) � rx'� dxd� dt� ZZ f0(x; �)'(0; x; �) dxd�= Z T0 ZZ g(t; x; �)'(t; x; �) dxd� dtfor any test fun
tion ' 2 C1
 ([0; T )�Rd�X).



HYDRODYNAMIC AND DIFFUSIVE LIMITS 7For solutions f of 
lass C([0; T ℄;L1lo
(R d�X)) the two notions of solution
oin
ide. Indeed, if f is a weak solution, using the 
hange of test fun
tion (t; y; �) = '(t; y + a(�)t; �), (2.4) is expressed in the equivalent form
(2.5) � Z T0 ZZ f(t; y + a(�)t; �) t dyd�dt� ZZ f0(y; �) (0; y; �) dyd�= Z T0 ZZ g(s; y + a(�)s; �) dyd�dsfor  2 C1
 ([0; T )�Rd�X). From (2.5) one obtains for � 2 C1
 (R d�X)ZZ nf(t; y + a(�)t; �)� f0(y; �)� tZ0 g(s; y + a(�)s; �) dso�(y; �) dyd� = 0;whi
h in turn implies (2.3). The 
onverse, that a mild solution is also a weaksolution, is 
lear.For K a 
ompa
t subset of R d�X , we have the stability estimate(2.6) ZK jf(t; x; �)jdxd� 6 ZSt(K) jf0jdxd� + Z t0 ZSt�� (K) jg(�; x; �)jd�dxd�;where St(K) = f(y; �) : y = x � a(�)t; (x; �) 2 Kg. It implies in parti
ularuniqueness of mild (or weak) solutions.2.2. Existen
e and stru
tural properties of the kineti
 model. Con-sider now the initial value problem (2.1). As was noted in the previousse
tion, the solution f of (2.1) 
an be understood in the weak or in the mildsense, and for solutions of 
lass C([0; T ℄;L1(R d�X)) weak and mild solutions
oin
ide. We restri
t attention to this 
lass, and express (2.1) in the form ofan integral equation(2.7) f(t; x; �) = f0(x� a(�)t; �) + tZ0 C(f)��; x� a(�)(t� �); �� d�:



8 M. PORTILHEIRO AND A.E. TZAVARASIt is assumed that the 
ollision operator satis�es for any given T > 0 thebounds(a1) sups2[0;T ℄ kC(f)� C( �f)kL1(Rd�X) 6 K1;T sups2[0;T ℄kf � �fkL1(Rd�X)ess sups2[0;T ℄ kC(f)kL1(Rd�X) 6 K1;Tfor some 
onstants K1;T , K1;T depending only on T and the L1 norms off and �f , kfk1 = kfkL1((0;T )�Rd�X). These hypotheses are needed for theexisten
e part and are ful�lled for various models 
onsidered in the sequel.Hen
eforth, we operate under (h0){(h3) and the assumption that a(�) isuniformly bounded by some M > 0,(a2) ja(�)j 6M; for every � in X.The models (1.1), or (1.2), or (1.4) satisfy 
onservation of mass(2.8) �tu+ 
(") divx ZX a(�)f d� = 0;where 
(") = 1 for (1.1) and (1.2) and 
(") = 1" for (1.4). Moreover, the
ollisional kineti
 model is endowed with kineti
 entropy fun
tions asso
iatedto the Maxwellians (see [27, 28℄). It is notable that all weak solutions satisfythe kineti
 entropy inequalities (2.10).Theorem 1. Let (a1), (a2) hold and f0 2 L1 \ L1(R d�X). There exists alo
al weak solution f 2 C([0; T ); L1(R d�X)) de�ned on a maximal interval ofexisten
e. If T <1 then lim supt!T� kf(t)kL1(Rd�X) !1. Under hypotheses(h0){(h3) and if the initial data, f0, satis�es(2.9) M(a) 6 f0 6M(b) for some a < b;then the solution f is de�ned globally in time and satis�es(i) The kineti
 model is a 
ontra
tion in L1(R d�X).(ii) For � 2 R ,(2.10) �t ZX jf �M(�)j d� + 
(") divx ZX a(�)jf �M(�)j d� 6 0in D0, where 
(") = 1 for (1.1) and (1.2), and 
(") = 1" for (1.4).(iii) The domain Q�[M(a; �);M(b; �)℄, with a < b, is positively invariant.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 9Proof : To prove lo
al existen
e of mild solutions we 
onsider the Bana
hspa
es X = C([0; � ℄; L1(R d�X)), Y = X \ L1((0; �)�Rd�X) (Y is dense inX) and the 
losed set F = �f 2 Y : kf � f0(x� a(�)t; �)k1 6 K	, where Kis some �xed positive 
onstant. Let us de�ne the map S : Y ! Y byS(f)(t; x; �) = f0(x� a(�)t; �) + Z t0 C(f(s; x; �))(�)dsIt is easy to 
he
k that, by (a1), for � suÆ
iently small S : F ! F and isa 
ontra
tion in X. The resulting �xed point f belongs to F and is a mildsolution for (2.7). Furthermore, it 
an be 
ontinued in time as long as kfk1does not blow up. We omit the lengthy yet straightforward details.Let f and �f be two solutions. By subtra
ting the 
orresponding equations,multiplying by sgn (f � �f) and using (h2), we obtain(2.11) �t ZX jf � �f j d� + divx ZX a(�)jf � �f j d�= 1" ZX �C(f)� C( �f)�sgn (f � �f) d� 6 0This shows that any two solutions f and �f satisfy the L1-
ontra
tion prop-erty: t 7! ZRd ZX jf � �f j(t; x; �) d�dx is nonin
reasing in t.Sin
e RR (f � �f) dxd� is a 
onserved quantity, we havet 7! ZRd ZX(f � �f)+(t; x; �) d�dx is nonin
reasing in tand as a result if f0 6 �f0 then f 6 �f:A spe
ial 
lass of solutions of (1.1) are the global Maxwellians M(�; �).These may be used as 
omparison fun
tions. For instan
e, if f0 6 M(a),for some a 2 R , then f(t; �; �) 6M(a). Part (iii) follows from this property.Finally, if �f =M(�) in (2.11) thenZX(�t + a(�) � rx)jf �M(�; �)j d� = 1" ZXC(f)sgn (f �M(�; �)) d� 6 0;whi
h shows (2.10). Global existen
e is obtained from the L1 bounds fol-lowing from (2.9), (h3) and (iii). Sin
e weak and mild solutions of 
lass



10 M. PORTILHEIRO AND A.E. TZAVARASC([0; T ℄; L1(R d�X)) 
oin
ide, weak solutions of (2.1) will satisfy the entropyinequalities (2.10).2.3. Dissipative solutions for a

retive equations. Next, we outline thenotion of \dissipative solutions" introdu
ed in [25℄ and examine the impli-
ations on de�ning a 
orresponding notion of solutions for 
ollisional kineti
problems.Consider an equation of the form(2.12) Au = f;where A : D(A)! X is a (nonlinear) a

retive operator de�ned on a subset,D(A), of the Bana
h spa
e X. The operator A is a

retive if for every u andv in D(A) 0 6 [u� v; Au� Av℄+ ;where [f; g℄+ := lim�!0+ ��1 (ku+ �vk � kuk)is the Kato bra
ket for the norm of X. This inequality 
an be used to de�nea weak solution of (2.12) for A a

retive, by stating that u solves (2.12) if(2.13) 0 6 [u� �; f � A�℄+for every \ni
e" test fun
tion � in some subset of the domain of A.For X = L1(d�) the Kato bra
ket is given by the formula[f; g℄+ = Zff 6=0g sgn (f) g d�+ Zff=0g jgj d�:(Here sgn (x) = x=jxj if x 6= 0, sgn (0) = 0). Thus, for a 
onservation law ofthe form(2.14) ut + divF (u) = gthe notion of dissipative solution is0 6 ZZfu6=�g sgn (u� �) (g � �t � divF (�)) dx dt+ ZZfu=�g jg � �t� divF (�)j dx dt:In fa
t, this operator is slightly better than a

retive, and we 
an drop these
ond integral in the de�nition (see [25℄). A

ordingly, u is a dissipative



HYDRODYNAMIC AND DIFFUSIVE LIMITS 11solution of (2.14) if u satis�es0 6 ZZfu6=�g sgn (u� �) (g � �t � divF (�)) dx dt;for every � smooth enough. In addition, as is proved in [25℄, the notion ofdissipative solution is equivalent to the usual notion of Kruzhkov entropysolution familiar from the theory of s
alar 
onservation laws.Dissipative solutions provide a parti
ularly good framework to study re-laxation limits (see [26℄ and the following se
tions) by using the perturbedtest fun
tion method of Evans [9℄. See [23℄ for an analogous notion of \a

re-tive solution" for degenerate di�usion equations, and its relations with theentropy solution in [8℄ (see also the remark following Proposition 11).2.4. Dissipative solutions for kineti
 models. Hypothesis (h2) impliesthat the operator Af := �tf + a(�) � rxf � C(f)is a

retive in L1((0; T );L1(R d�X)). Following [25℄, we de�ne dissipativesolutions for the equation�tf + a(�) � rxf � C(f) = 0as follows:De�nition 2. A fun
tion f in C([0; T ℄;L1(R d�X)) is a dissipative solutionof (1.1) if(2.15) 0 6 ZZZ sgn (f � k � �) (��t � a(�) � rx�+ C(f)) d� dx dtfor every smooth fun
tion � in C1
 (R+�R d�X), and every k in R .Remarks. 1. There are two reasons to 
onsider in the above formula C(f)instead of C(�). The �rst is a te
hni
al one: In order to prove equivalen
ewith entropi
 solutions (as in [25℄) we have to use test fun
tions of the formk+�, as above. For the above de�nition this 
an be done. By 
ontrast, we donot in general have that C(k+�) is in L1. One 
ould impose su
h a 
ondition,for instan
e impose that R C(k + g)d� = R C(g)d�, for g 2 L1(X). Su
h a
ondition is satis�ed for example by the linear 
ollision operator 
onsideredin se
tion 6. But we avoid making this a general assumption.2. A se
ond reason is more philosophi
al. The main bene�t of this formu-lation is that the derivatives fall on a test fun
tion. The last term involves



12 M. PORTILHEIRO AND A.E. TZAVARASno derivatives of f , hen
e we gain nothing by using the test fun
tion hereand we 
an regard it as a for
ing term.Furthermore, there is equivalen
e of entropy and dissipative solutions anda stronger dissipative property:Theorem 3. Under hypotheses (h0){(h3) the weak solution f of (1.1) satis-�es the entropy inequalities (2.10) and the dissipative property 
orrespondingto the a

retive operator A, i.e. for � 2 C1
 (R+�R d�X)(2.16) 0 6 ZZZ sgn (f � �) (��t � a(�) � rx�+ C(�)) d� dx dt:Proof : Let g = C(f). Then f solves equation (1.1). For this equation we 
anuse Lemmas 4.6 and 4.9 from [25℄ to 
on
lude that the weak solution (whi
his an entropi
 solution due to the uniqueness) is a dissipative solution, andvi
e-versa. Finally, 
ombining (2.15) and hypothesis (h2) gives (2.16).3. The hydrodynami
 limit for dissipative solutionsIn this se
tion we study the hydrodynami
 limit of the kineti
 equation(1.2) �tf "(t; x; �) + a(�) � rxf "(t; x; �) = 1"C(f "(t; x; �); �);f(0; x; �) = f "0(x; �):The dissipative solution, f ", of this equation satis�es(3.1) 0 6 ZZZ sgn (f " � �)���t � a(�) � rx�+ 1"C(�)� d� dx dtfor every smooth fun
tion � in C1
 (R+�R d�X). We will show that u" ! ua.e. in R+�R d and that u satis�es(1.3) �tu+ divx ZX a(�)M(u; �) d� = 0in the dissipative sense, that is,(3.2) 0 6 ZZ sgn (u�  )���t � divx ZX a(�)M( ; �) d�� dx dtfor every fun
tion  in k + C1
 (R+�R d ).It is shown in [27℄ that along a subsequen
e u" ! u a.e. and in Lplo
,1 6 p < 1, where u is the entropy solution of the 
onservation law (1.3).In the following theorem we obtain the dissipative limit dire
tly|we already



HYDRODYNAMIC AND DIFFUSIVE LIMITS 13know it has to be the same due to the equivalen
e of the notions of dissipativesolutions and entropy solutions ([25℄). The interest is in the proof via theperturbed test fun
tion method.We assume the stru
tural hypotheses (h0){(h3) and also that solutions of(1.2) satisfy (f1). In appli
ations of Theorem 4 assumption (f1) has to bejusti�ed and typi
ally follows from an entropy estimate (see se
tion 5).In the following ! denotes a modulus of 
ontinuity, i.e. a nonnegative,nonde
reasing fun
tion satisfying lim�!0+ !(�) = 0.Theorem 4. If assumptions (h0){(h3), (a2) and (f1) hold and the initialdata f0 satis�es(3.3) M(a) 6 f "0 6M(b) for some a < b,sup">0 ZZ jf "0(x; �)j dx d� <1;ZZ jf "0(x+ h; �)� f "0(x; �)j dx d� 6 !(jhj) for h 2 Rd ;then along a subsequen
e (not relabeled) u" ! u a.e. and in Lplo
((0; T )�Rd)for any p in f1; : : :1g, where u 2 C�[0; T ℄;L1(Rd)� \ L1((0; T )�Rd) is thedissipative solution of (1.3).Proof : 1. From the L1-
ontra
tion property in Theorem 1 we obtainZ ju"(t; x+ h)� u"(t; x)j dx 6 ZZ jf "(t; x+ h; �)� f "(t; x; �)j dxd�6 ZZ jf "0(x+ h; : dxd� 6 !(jhj)Then we use an idea of Kruzhkov [15℄ together with the 
onservation law(2.8) in order to transfer the L1-modulus of 
ontinuity in x into informationon the L1-modulus of 
ontinuity in t. The relevant te
hni
al lemma is statedbellow, Lemma 5, and is applied here with G = 0 (we refer to [28, Lemma 9℄for the proof). This yieldsZ ju"(t+ k; x)� u"(t; x)j dx 6 Kst!(k);(Kst will denote a 
onstant whi
h, unless otherwise stated, is independent ofthe other relevant quantities in the relation it appears), and thus 
ompa
tnessof u" in L1lo
(R+�R d ). It remains to prove that u is indeed a dissipativesolution of (1.3).



14 M. PORTILHEIRO AND A.E. TZAVARAS2. Being a dissipative solution of (1.2), f " satis�es (3.1). Given a testfun
tion  for (3.2), take � = M( ) as a test fun
tion in (3.1). By (h3),C(M( )) = 0 and (3.1) be
omes0 6 ZZZ sgn (f " � �) (��t � a(�) � rx�) d� dx dt:Using (f1), along a further subsequen
e if ne
essary, f " ! M(u; �) a.e. inR+�R d�X . Let us assume for the moment that alsosgn (f " � �)!sgn (M(u)� �) = sgn (M(u)�M( )) (h3)= sgn (u�  ):From this we dedu
e that0 6 ZZZ sgn (u�  ) (��tM( ; �)� a(�) � rxM( ; �)) d� dx dt= ZZ sgn (u�  )���t Z M( ) d� � divx Z a(�)� d�� dx dt= ZZ sgn (u�  )���t � divx Z a(�)M( ; �) d�� dx dt;whi
h is (3.2).3. Next we justify the 
onvergen
e of sgn (f "� �) to sgn (M(u)� �). Theargument is the same used in [26℄.It is 
lear that we have 
onvergen
e if jfM(u) = �gj = 0. If this is not the
ase, take test fun
tions of the form �Æ = � + Æ� where � 2 D is positive onthe support of � and Æ > 0. We assert that there exists a sequen
e Æj ! 0su
h that jfM(u) = �Æjgj = 0: Let AÆ = fM(u) = �Æg \ supp(�). GivenÆ; Æ� > 0, if x 2 AÆ \ AÆ�, we must have M(u(x); �) = �(x; �) + Æ�(x; �) andM(u(x); �) = �(x; �) + Æ��(x; �) whi
h implies Æ = Æ�. Therefore, fAÆgÆ>0 isa disjoint family. This means that there is at most a 
ountable sub-familywith positive measure. Hen
e we 
an 
ertainly pi
k a sequen
e Æj ! 0 su
hthat jAÆj j = 0. This proves the assertion.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 154. Now we use the previous step to obtain (3.2) for �j = �Æj :0 6 ZZZ sgn (M(u)� �j) (��t�j � a(�) � rx�j) d� dx dt= ZZZfM(u)6=�g sgn (M(u)� �j) (��t � a(�) � r)�j d� dx dt� ZZZfM(u)=�g (��t � a(�) � r)�j d� dx dt:The last step holds be
ause sgn (M(u)��j) � �1 on fM(u) = �g. Now welet Æj ! 0. Noting that on fM(u) 6= �g, sgn (M(u)��j)! sgn (M(u)��)a.e., we 
on
lude that0 6 ZZZfM(u)6=�g sgn (M(u)� �) (��t � a(�) � r)� d� dx dt� ZZZfM(u)=�g (��t � a(�) � r)� d� dx dt:5. Finally, if instead of 
onsidering �Æ = � + Æ� we 
onsider �Æ := � � Æ�,then with a similar 
omputation we dedu
e0 6 ZZZfM(u)6=�g sgn (M(u)� �) (��t � a(�) � r)� d� dx dt+ ZZZfM(u)=�g (��t � a(�) � r)� d� dx dt:Adding the above inequalities and using the fa
t that sgn (M(u) � �) =sgn (u�  ), we obtain (3.2).We now re
all [28, Lemma 9℄, whi
h is based on an idea of [15℄. For afun
tion H = H(t; x) let!H(t; h) = supjzj6hZRd jH(t; x+ z)�H(t; x)j dx



16 M. PORTILHEIRO AND A.E. TZAVARASbe its L1-modulus of 
ontinuity in x and de�neMH(k; h) = t+kZt supjyj<hZRd jH(�; x+ y)�H(�; x)j dxd� = t+kZt !H(�; h) d�;Lemma 5 ([28℄). Let u, G and Hi, i = 1; : : : ; d be fun
tions in L1((0; T )�Rd)satisfying �tu+ divxH = ��Gin the sense of distributions. There exists a 
onstant K > 0 su
h that forany t; k; h > 0 (with t+ k < T ) we haveZRd ju(t+ k; x)� u(t; x)j dx 6 K �!u(h) + 1hMH(k; h) + �h2MG(k; h)�6 Kminh>0 �!u(h) + kh supt6�6t+k !H(k; h) + �kh2 supt6�6t+k !G(k; h)� :4. Di�usive LimitsIn this se
tion we 
onsider the di�usive limit of(1.4) �tf(t; x; �) + 1"a(�) � rxf(t; x; �) = 1"2C(f(t; x; �))(�);f(0; x; �) = f0(x; �):This system 
orresponds to the long time behavior of (1.2) in the s
alinggiven by the transformation (t; x) 7! (t="; x).In addition to (h0){(h3) we now impose also (h4) and (h5). These assump-tions play a role in 
al
ulating the e�e
tive equation in the di�usive limit.The 
ollision operator is assumed to be twi
e di�erentiable in the Fr�e
hetsense and we use the notations hC 0(f); gi for the derivative at the point falong g, and hC 00(f); (g; h)i for the a
tion of the se
ond derivative at thepoint f the pair (g; h).Let us �rst formally 
ompute the di�usive limit equation. To this end
onsider a Hilbert expansionf " = f0 + "f1 + "2f2 + : : :for the solution of (1.4) and letu" = u0 + "u1 + "2u2 + : : :



HYDRODYNAMIC AND DIFFUSIVE LIMITS 17be the asso
iated expansion of the mass. Mat
hing in (1.4) the 
orrespondingpowers of ", we obtainfrom the \"�2" terms f0 =M(u0; �);(4.1) from the \"�1" terms a � rf0 = hC 0(f0); f1i:(4.2)The leading 
ontribution of the 
onservation of mass 
omes, by (h4), fromthe \"0" terms and is(4.3) �tu0 + divx Z a(�)f1 d� = 0:To pro
eed, we need to solve (4.2) for f1 when f0 the MaxwellianM(u0). By(h5), this equation has a solution, and a general solution 
an be expressed asf1 = hC 0(f0)�1; a � rxf0i+ � = �1 + �;where �1 is an inverse of a�rxf0 and � 2 N(C 0(f0)). In general C 0(f0) is non-invertible, but this does not 
ause problems. There is a 
anoni
al 
hoi
e for�1 whi
h determines a 
omplementary spa
e for N(C 0(M(u))). Moreover,the nontrivial null spa
e does not in
uen
e the limit equation. Indeed, u0satis�es the equation�tu0 + divx Z a(�)(�1 + �) d� = 0where �1 = hC 0(f0)�1; a � rxf0i. The term � 2 N(C 0(f0)) drops out from thelimit due to (h5) and the fa
t that (h4) implies R a�M�u (u)d� = 0.The limit equation in the di�usive regime thus be
omes(4.4) �tu� dXi;j=1�xi ZX ai(�) hC 0(M(u))�1; aj�xjM(u)i d� = 0:Note that u satis�es (4.4) in the dissipative sense if(4.5) 0 6 ZZ sgn (u�  )���t + dXi;j=1 �xi ZX ai(�) hC 0(M( ))�1; aj�xjM( )i d�� dx dt;for any smooth  .Next we 
onsider a family of solutions f " and the asso
iated mass u".Obtaining 
ompa
tness for fu"g is a 
omplex issue and will be 
arried out



18 M. PORTILHEIRO AND A.E. TZAVARASfor various examples in forth
oming se
tions. For the moment we assume(f1) and (f2) and 
arry out the 
onvergen
e part. Later on 
ompa
tness willbe justi�ed by taking advantage of the 
an
ellation properties of the 
ollisionterm, namely (h4). This is done for the BGK-model in Proposition 7, for theradiative transfer example of Se
tion 6 in Proposition 10 and in a generalsetting, with extra assumptions on the 
ollision term, in Se
tion 7.Theorem 6. Assume u" ! u and f " !M(u; �) a.e. Then u is a dissipativesolution of (4.4), that is, it satis�es (4.5).Proof : 1. We need to show that for any admissible test fun
tion  equation(4.5) holds. Let us �x su
h  . Take a test fun
tion �" for the de�nition ofdissipative solution of (1.4) of the form �" = �0 + "�1. Using (h2) again wehave(4.6) 0 6 ZZZ sgn (f " � �")���t�" � 1"a � rx�" + 1"2C(�")� d� dx dt:2. We want to expand �" and gather the appropriate terms in terms oftheir powers of ". Expanding the 
ollision term with the formula(4.7) C(f0+ f1) = C(f0) + hC 0(f0); f1i+ h 1Z0 tZ0 C 00(f0 + sf1) ds dt; (f1; f1)iwe obtainC(�") = C(�0) + "hC 0(�0); �1i+ "2h 1Z0 tZ0 C 00(�0 + s"�1) ds dt; (�1; �1)i:Therefore we 
an write the integrand in (4.6) (apart from sgn (f " � �")) as�"�t�1 � ��t�0 + a � rx�1 � h 1Z0 tZ0 C 00(�0 + s"�1) ds dt; (�1; �1)i��1"�a � rx�0 � hC 0(�0); �1i� + 1"2C(�0)3. Sin
e we want to let " ! 0, to make the \"�2" term vanish we sele
t�0 = M( ) where  is the �xed test fun
tion. For the \"�1" term we needto have hC 0(�0); �1i = a � rx�0:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 19Using (h5) we 
an solve this equation for �1:�1 = hC 0(�0)�1; a � rx�0i+ � =: �1 + �;where � is in N(C 0(�0)), whi
h is generated by dMdu (�0).4. To take the limit as "! 0 assume for the moment that sgn (f "� �")!sgn (f � �0). The limit of the rest of the terms in the integral is��t�0 � a(�) � rx�1 + 12hC 00(�0); (�1; �1)i:Now observe that sgn (f � �0) = sgn (M(u) �M( )) = sgn (u �  ) andtherefore we 
an take sgn (u�  ) out of the �-integral. Hen
e,0 6 ZZ sgn (u�  )���t Z �0 d� � divx Z a�1 d�+ 12 Z hC 00(�0); (�1; �1)i d��dx dt:We assert that the last term vanishes. Indeed, if we take f0 = �0 andf1 = h�1 in (4.7) and integrate in �, then due to (h1), our 
hoi
e of �1 and(h4) we obtain 0 = h2h 1Z0 tZ0 C 00(�0 + sh�1) ds dt; (�1; �1)i:Dividing by h2 and letting h! 0 we prove the assertion.Due now to our 
hoi
e of �0, and (h3) we have0 6 ZZ sgn (u�  )���t � divx Z a(�)(�1 + �) d�� dx dt:Sin
e Z a(�)� d� = ddu Z a(�)M(u; �) d� = 0;there is no ambiguity in the above equation for any 
hoi
e of an inverse forhC 0(�0)�1; arx�0i and we obtain (4.5).5. To 
on
lude, we show the assumption sgn (f " � �") ! sgn (f � �0) isjusti�ed. For simpli
ity we rewrite (4.6) as0 6 Z sgn (f " � �")I" dz;



20 M. PORTILHEIRO AND A.E. TZAVARASwhere I" is smooth and 
onverges uniformly to I. As in the proof of The-orem 4, we need to deal with the set fM(u; �) = �g. If this set has zeromeasure, we 
an take the limit in " and obtain0 6 Z sgn (M(u; �)� �)I dz:Be
ause of the "-perturbation to the test fun
tions we are now using, theprevious adjustment to the test fun
tion has to be done on the \ side".Let  Æ =  + Æ�, with � as in Theorem 4, and �"Æ be the same as �" above,with  Æ in pla
e of  . De�ne again the sets AÆ = fM(u) = �Æg. On
e morewe 
an �nd a sequen
e Æj ! 0 with jAÆj = 0. Utilizing the monotoni
ity ofM(�) from (h3), we dedu
e that0 6 ZfM(u)6=�gsgn (M(u)� �)I dz � ZfM(u)=�gI dz:If we 
hoose  Æ =  �Æ� instead, we get the opposite sign on the last integral.Then we add the two inequalities and 
on
lude as in step 5 of Theorem 4.5. Some kineti
 models and their di�usive limitsIn this se
tion we look at some kineti
 models where the di�usive limits
an be obtained from the above theory. In Se
tion 6 we deal with the mostinteresting appli
ation, the di�usive approximation of radiative transport fora
ousti
 waves.5.1. BGK-model. In the BGK-model the 
ollision term for the transportequation has the form M(u)� f , and the di�usive s
aling for this equationbe
omes(5.1) �tf "(t; x; �) + 1"a � rxf "(t; x; �) = � 1"2 (f "(t; x; �)�M(u"(t; x); �));where u" = R f "d�. It is assumed that the Maxwellian satis�es the properties:M(0) � 0 and(h3') �uM(u) > 0; ZXM(u)d� = u; M(u) 2 L1 \ L1(X)



HYDRODYNAMIC AND DIFFUSIVE LIMITS 21It is easy to 
he
k that under (h3') the model is 
ontra
tive and satis�es allof hypotheses (h0){(h3). In addition there is an H-estimate for this model(5.2) �t ZX Z f"0 M�1(v)dvd� + divx 1" ZX Z f"0 M�1(v) dxd�+ 1"2 ZX(f " �M(u"))(M�1(f ")� u") d� = 0By (h3') the last integrand is positive and vanishes only if f = M(u). We
on
lude that as "! 0, along a subsequen
e, f "�M(u")! 0 a.e. and thus(f1) is ful�lled for the BGK-model.For the di�usive limit we impose the stru
tural hypothesis(h4) Z ai(�)M(u; �) d� = 0; for every i 2 f1; : : : ; dg:The 
ollision operator for the BGK is C(f) = �f +M(u) and the linearized
ollision operator is given byhC 0(f); gi = �g + � Z g d���uM(u):Therefore, N�C 0(f)� = span f�uM(u)g ;R�C 0(f)� = nh : Z h d� = 0oand we see that (h4) implies (h5) is ful�lled. The limiting equation in thedi�usive limit be
omes(5.3) �tu� dXi;j=1 �xi�xj ZR ai(�)aj(�)M(u; �) d� = 0:In the next theorem we validate the di�usive limit. This result has beenproved in [5℄, and our interest here is to show an alternative argument forproving 
ompa
tness that will be used later in 
onne
tion to more general
ollision operators. Also, the limit here is understood in the dissipative sense.Proposition 7. For the BGK model, under hypotheses (h3') and (h4), ifja(�)j 6M and the initial data satisfy the uniform bounds(5.4) M(a) 6 f "0 6M(b) for some a < b;sup">0 kf "0kL1 + kDxf "0kL1 <1;



22 M. PORTILHEIRO AND A.E. TZAVARASthen u" ! u a.e. and in Lplo
([0; T ℄� Rd), for 1 6 p < 1, and u 2C�[0; T ℄;L1(Rd)� \ L1(0; T )�Rd) is a solution of (5.3) in the dissipativesense.Proof : We have already seen that (f1) holds and we will show below that (f2)holds as well. The result then follows from Theorem 6.To obtain 
ompa
tness in this setting we modify the argument of Theo-rem 4. We again use [28, Lemma 9℄, but instead of applying it dire
tly tothe 
onservation of mass(5.5) �tu" + divx 1" Z a(�)f " d� = 0;we employ an equation that better approximates the limiting response in thedi�usive s
ale. To this end, we multiply (5.1) by " a(�), integrate in � anduse (h4) to obtain�t Z " a(�)f " d� + divx Z a(�)
 a(�)f " d� = �1" Z a(�)f " d�:Then (5.5) gives(5.6) �t�u" � " divx Z a(�)f " d�� = �xi�xj Z ai(�)aj(�)f " d�:We apply to (5.6) a variant of Lemma 5. From the L1-
ontra
tion property(5.7) Z ju"(t; x+ h)� u"(t; x)jdx6 ZZ jf "(t; x+ h; �)� f "(t; x; �)jdxd� 6 hkDxf "0kL1Next, we multiply (5.6) by a fun
tion ' in C2(Rd) and integrate between tand t+ � to obtainZ �u"(t+ �; x)� u"(t; x)�'(x) dx= " ZZ a(�) � rx�f "(t+ �; x; �)� f "(t; x; �)�'(x) dxd�+ Z t+�t ZZ ai(�)aj(�)f "(s; x; �)�xi�xj'(x) dxd�ds=: J1 + J2:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 23The uniform BV bound for f "0 and the L1-
ontra
tion property imply that f "is uniformly bounded in L1(X;BV (Rd)). Thus we have the following estimatefor J1: jJ1j 6 "KstkDxf "0kL1 supx j'(x)jThe term J2 is estimated as in Lemma 5. First, as in the proof of [28, Lemma9℄ we obtain for h > 0jJ2j = ����Z t+�t Z Gij(s; x)�xi�xj'(x)dxds����6MGij(�; h)�supx j�xi�xj'(x)j+ 1h2 supx j'(x)j� ;whereMGij(�; h) := Z t+�t supjyj<hZ jGij(s; x+ y)�Gij(s; x)jdxds= Z t+�t supjyj<hZ ��� Z ai(�)aj(�)(f "(s; x+ y; �)� f "(s; x; �))d����dxds6M2� hkDxf "0kL1:Combining the above estimates we obtain(5.8) ��� Z �u"(t+ �; x)� u"(t; x)�'(x)dx���6 Kst�" supx j'(x)j+ �h� supx j�xi�xj'(x)j+ 1h2 supx j'(x)j��The rest of the argument is 
lassi
al. In (5.8) we introdu
e as a test fun
tion'Æ = �Æ ? sgn (u"(t+ �; �)� u"(t; �))where �Æ is a standard molli�er. Using (5.7) we obtainZ ��u"(t+ �; x)� u"(t; x)��dx 6 2!u(t; Æ) + C�"+ �h( 1Æ2 + 1h2 )�6 Kst�"+ Æ + �h( 1Æ2 + 1h2 )��and upon optimizing in Æ and h(5.9) Z ��u"(t+ �; x)� u"(t; x)��dx 6 Kst("+ � 1=2) :



24 M. PORTILHEIRO AND A.E. TZAVARASUsing (5.7), (5.9) and pro
eeding as in item 7 of Proposition 11, we see thatfu"g is sequentially pre
ompa
t in C�[0; T ℄;L1lo
(Rd)�.5.2. Dis
rete velo
ity systems. We 
onsider a se
ond example des
ribingan intera
tion of parti
les with dis
rete velo
ities.(5.10) 8>>><>>>: �tf0 + 1"a0 � rxf0 = � 1"2 dXi=1 (hi(f0)� fi) ;�tfi + 1"ai � rxfi = � 1"2 (fi � hi(f0)) ; i = 1; : : : ; d:The hydrodynami
 limit for this model is studied in [13℄. The model 
anbe obtained as mesos
opi
 s
aling of a sto
hasti
 parti
le system ([14℄). Thebehavior in the di�usive regime resembles the BGK model and we give abrief outline.It is assumed that for ea
h i in f0; : : : ; dg(5.11) hi(0) = 0; �hi�f0 > 0and that the initial data satis�es the uniform bounds(5.12) sup">0; i2f0;:::;dg kf "i kBV + kf "i kL1 <1:The system is equipped with 
onservation of the mass u = f0 +P fi. TheMaxwellians are the ve
tors of the form (f0; h1(f0); : : : ; hd(f0)) and the modelis endowed with an H-theorem:(5.13) �t "12f 20 +Xi  i(fi)#+ 1" divx "a012f 20 +Xi ai i(fi)#+ 1"2Xi �f0 � h�1i (fi)� (hi(f0)� fi) = 0;where  i(z) = R z0 h�1i (�) d� are 
onvex. The last term is positive due to(5.11) (see [13℄).To 
onsider the di�usive s
aling, we pla
e the stru
tural hypothesis(5.14) a0f0 + dXi=1 aihi(f0) = 0;



HYDRODYNAMIC AND DIFFUSIVE LIMITS 25so that hydrodynami
 limit is trivial ut = 0. The expe
ted equation in thedi�usive s
aling is(5.15) �tb(w)� divx dXi=1 ai(ai � rxhi(w)) = 0;where u = b(w) := w +Pi hi(w).To prove 
onvergen
e in the di�usive s
aling, we validate assumptions (f1)and (f2) and invoke Theorem 6. The identity (5.13) implies thatb(f "0)� u" =Xi (hi(f "0)� f "i )! 0 for a.e. (t; x):Sin
e b is in
reasing this means f "0 � b�1(u") ! 0 and thus (f1) is satis�ed.To validate (f2) we observe that the 
onservation of mass�t(f0 +Xi fi) + 1" divx(a0f0 +Xi aifi) = 0
an be expressed by using (5.14) and (5.10) in the form(5.16) �t u� " divx dXi=1 fi! = divx dXi=1 ai(ai � rx)fiOn the one hand this implies that the di�usive limit (formally) satis�es (5.15),on the other hand one 
an base on (5.16) an argument as in the proof ofTheorem 7 to show that fu"g is sequentially pre
ompa
t in L1lo
(R+�R d ).5.3. A 
ontinuous kineti
 model for a mixture of parti
les. We 
on-sider a kineti
 model des
ribing a mixture of two kinds of parti
les ea
h kind
onverting to the other kind of parti
les, but not intera
ting with parti
lesof the same kind. The model has 
ertain analogies with a dis
rete modelstudied in [26℄.We 
onsider two parti
le densities, f and g, where f is a fun
tion of (t; x; �)and g a fun
tion of (t; x; �). The kineti
 variables are distin
t, namely � 2 Xand � 2 Z where X \ Z = ;. The system governing the intera
tion of the



26 M. PORTILHEIRO AND A.E. TZAVARAStwo types of parti
les is(5.17)�tg + �(�) � rxg = C1(f; g)(�) := � Z (a(�; �)A(g)� b(�; �)B(f)) d��tf + �(�) � rxf = C2(f; g)(�) := � Z (b(�; �)B(f)� a(�; �)A(g)) d�;where a and b are positive fun
tions, and A and B stri
tly in
reasing withA(0) = B(0) = 0. We dis
uss 
onditions on the parameters so that thestru
tural hypotheses from the previous se
tions are ful�lled.5.3.1. Contra
tion property. Clearly the mass u := R g d� + R f d� is 
on-served. Let us 
he
k the 
ontra
tion property:Z (C1(f; g)� C1( �f; �g))sgn (g � �g)d� + Z (C2(f; g)� C2( �f; �g)sgn (f � �f)d�= � ZZ sgn (g � �g) �aA(g)� bB(f)� aA(�g) + bB( �f)�+ sgn (f � �f) �bB(f)� aA(g)� bB( �f) + aA(�g)� d�d�= ZZ �sgn (f � �f)� sgn (g � �g)��a(A(g)�A(�g))� b(B(f)� B( �f))� d�d�6 0;sin
e a; b > 0 and A and B are monotone. This is hypothesis (h2). Hypothe-ses (h0) and (h1) are obvious.5.3.2. Entropy and Maxwellians. Maxwellians for this model will 
ome out ofan analysis of kineti
 entropies and an asso
iated \H{theorem". Let A0 = A,B0 = B and note that A, B are 
onvex fun
tions. Multiplying the �rstequation in (5.17) by  A(g) and the se
ond by 'B(f), where  =  (�) > 0,' = '(�) > 0, integrating the resulting identities in � and �, respe
tively,and adding we obtain�t�Z  (�)A(g) d� + Z '(�)B(f) d��+ divx�Z �(�) (�)A(g) d� + Z �(�)'(�)B(f) d��+ ZZ ( (�)A(g)� '(�)B(f)) (a(�; �)A(g)� b(�; �)B(f)) d� d� = 0:
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tions a and b have the form(5.18) (a(�; �) = d(�; �) (�)b(�; �) = d(�; �)'(�) d > 0;  > 0; ' > 0;the last term is positive and the model is equipped with the following versionof H-Theorem
(5.19) �t�Z  (�)A(g) d� + Z '(�)B(f) d��+ divx�Z �(�) (�)A(g) d� + Z �(�)'(�)B(f) d��+ ZZ ( (�)A(g)� '(�)B(f))2 d(�; �) d� d� = 0The Maxwellians geq(�), feq(�) satisfy (�)A(geq(�)) = '(�)B(feq(�)) = �for some 
onstant � and thus 
an be determined by(5.20) geq(�) = A�1� � (�)� ; feq(�) = B�1� �'(�)� ; � 2 R :If we want these Maxwellians to be in L1 we need to pla
e te
hni
al hy-potheses relating the growth of A, B, with the growth of '(�),  (�). Forsimpli
ity, we will work out only the 
ase when the kineti
 variables takevalues in 
ompa
t sets, X and Z. The total mass of a Maxwellian
(5.21) m(�) := ZX feq d� + ZZ geq d�= ZX B�1� �'(�)� d� + ZZ A�1� � (�)� d�is a stri
tly in
reasing fun
tion of �. Therefore, Maxwellians may be re-parametrized in terms of their total mass and (h3) is satis�ed.



28 M. PORTILHEIRO AND A.E. TZAVARAS5.3.3. Hydrodynami
 limit. We 
onsider now the hydrodynami
 limit for(5.17), (5.18)(5.22) �tg + � � rxg = �1" ZX d ( A(g)� 'B(f)) d�;�tf + � � rxf = �1" ZZ d ('B(f)�  A(g)) d�and prove the 
onvergen
e of the solutions to the asso
iated 
onservationlaw.Proposition 8. Let the initial data satisfy uniform bounds as in (3.3) andassume a(�; �) = d(�; �) (�), b(�; �) = d(�; �)'(�) where ',  and d are posi-tive fun
tions, X and Z are 
ompa
t sets and A and B are stri
tly in
reasingwith A(0) = B(0) = 0. Then the total mass, u", of the mixture model (5.22)satis�es u" ! u for a.e. (t; x), where u is the entropy solution of a s
alar
onservation law(5.23) �tu+ divx F (u) = 0:Proof : We apply the general theory of se
tion 3 to justify this hydrodynami
limit. We need to justify (f1). We use (5.19) and pro
eed as in Theorem 4to show that along a subsequen
e u" ! u for a.e. (t; x) and  (�)A(g"(�))�'(�)B(f "(�))! 0 for a.e. (t; x) and (�; �). Set�"(t; x; �) =  A(g"); ��"(t; x) = 1jZj ZZ �"d�;�"(t; x; �) = 'B(f "); ��"(t; x) = 1jXj ZX �"d�and note that by the monotoni
ity of A and B��" � ��" ! 0f " � B�1� ��" �! 0; g" �A�1� ��"' �! 0u" � ZX B�1� ��"'(�)� d� � ZZ A�1� ��" (�)�! 0Sin
e m(�) in (5.21) is in
reasing, (5.3.3) implies ��" ! � = m�1(u) fora.e. (t; x). A

ordingly, f " and g" 
onverge strongly to the Maxwellian with



HYDRODYNAMIC AND DIFFUSIVE LIMITS 29parameter �(t; x). The limit satis�es the s
alar 
onservation law�tm(�) + divxG(�) = 0G(�) = ZZ �A�1�� � d� + ZX �B�1��'� d�Using (5.21) the latter may be expressed in the more 
onventional form (5.23)with F (u) = �G Æm�1�(u).5.4. Mixture model - di�usive s
aling. For the nonlinear model (5.22)it is not easy to obtain 
ompa
tness of u" in the di�usive s
aling. Instead,we 
onsider a linear model satisfying (5.18) and A(z) = B(z) = z:(5.24) �tg + 1"� � rxg = � 1"2 ZX d ( g � 'f) d�;�tf + 1"� � rxf = � 1"2 ZZ d ('f �  g) d�:The H-theorem now takes the form�t ZZ  g22 d� + ZX 'f 22 d� + 1" divx ZZ � g22 d� + ZX �'f 22 d�+ 1"2 ZZX�Z( g � 'f)2 d d� d� = 0;the Maxwellians are(5.25) feq(�) = �'(�); geq(�) = � (�) ;and their total mass is related to � by the relation(5.26) m(�) = ZX feq d� + ZZ geq d� = ��ZX 1'd� + ZZ 1 d��:The balan
e hypothesis (h4) for this model isZZ �(�) 1 (�) d� + ZX �(�) 1'(�) d� = 0:



30 M. PORTILHEIRO AND A.E. TZAVARAS5.4.1. Collision operator. The 
ollision operator C is linear and may beexpressed as C �gf� = �RX d ( g � 'f) d�RZ d ('f �  g) d�� = (JI�A) �gf� ;where I is the identity, J is the invertible matrixJ = � (�)d1(�) 00 '(�)d2(�)� ;with d1(�) = ZX d(�; �)'(�) d� > 0; d2(�) = ZZ d(�; �) (�) d� > 0and A is the 
ompa
t operator on E = L1(Z)� L1(X) de�ned byA �gf� = �RX d(�; �)'(�)f(�) d�RZ d(�; �) (�)g(�) d�� :Observe thatN (C) = N (JI�A) = f(g; f) 2 E : g = � ; f = �'g;R(C) = N (JI�A?)? = f(g; f) 2 E : ZZ gd� + ZX fd� = 0gand R(C) is 
losed. Moreover, C : N (C)? ! R(C) is invertible and itsinverse K : R(C)! E=N (C) is a bounded linear map(5.27) K �gf� = �K1(g; f)K2(g; f)�5.4.2. Di�usive limit. The balan
e hypothesis (h4) for this model be
omesZZ �(�) 1 (�) d� + ZX �(�) 1'(�) d� = 0and (h5) follows from the above analysis of the 
ollision operator.We pro
eed to obtain the limiting equation in the di�usive s
aling. Themass u" satis�es �tu" + 1" divx � ZZ �g" d� + ZX �f " d�� = 0:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 31By inverting the 
ollision operator C we obtain from (5.24)1" �g"f "� = �K �"�tg" + � � rxg""�tf " + � � rxf "� = �"�tK �g"f "�� �xjK ��jg"�jf "�(here we are using the summation 
onvention). Therefore,(5.28) �t�u" � "�xi�ZZ �iK1(g"; f ")d� + ZX �iK2(g"; f ")d���= �xi�xj �ZZ �iK1(�jg"; �jf ")d� + ZX �iK2(�jg"; �jf ")d��Equation (5.28) provides an eÆ
ient approximation of the problem in thedi�usive regime. Using (5.27) and pro
eeding as in Theorem 9 of se
tion6.3 we show that, for data satisfying uniform BV bounds, the total mass ispre
ompa
t in L1lo
(R+�R d ) and along a subsequen
e u" ! u for a.e. (t; x).The H-estimate ensures that  (�)g"(�) � '(�)f "(�) 
onverges point wisefor a.e. (t; x) and a.e. (�; �) Set �" = 1jZj R  g". Then, as in the proof ofProposition 8, we haveZX jf " � 1'�"jd� ! 0; ZZ jg" � 1 �"jd� ! 0;u" � �"� ZX 1'd� + ZZ 1 d��! 0and thus (f " ! 1m 1'u;g" ! 1m 1 u; where m = ZX 1'd� + ZZ 1 d�:We 
an now pass to the limit as "! 0 in (5.28) and 
on
lude that u satis�esthe equation(5.29) �tu(t; x) =Xi;j 1mDij�xi�xju(t; x)with Dij = ZZ �iK1(�j' ; �j )d� + ZX �iK2(�j' ; �j )d�Unlike in the radiative transfer example of the next se
tion, the di�usionmatrix Dij 
an not be 
omputed expli
itly for the mixture model.



32 M. PORTILHEIRO AND A.E. TZAVARAS6. Di�usion approximation for waves in random mediaAn important 
lass of equations that falls under the above formalism 
omesfrom rather general symmetri
 hyperboli
 systems of the form(6.1) A(x)�u�t (t;x) +Xi Di �u�xi(t;x) = 0;u(0;x) = u0(x);where u is a 
omplex N -ve
tor and x 2 R3 . The matrix A(x) is assumed tobe symmetri
 and positive de�nite while the matri
es Di are symmetri
 andindependent of x and t. Three parti
ular examples of models of this type area
ousti
 waves, ele
tromagneti
 waves and elasti
 waves.If we de�ne the Wigner distribution for the N -ve
tor solutions of this sys-tem as the N �N matrixW (t;x;k) = 1(2�)d Z eik�yu(t;x� y2 )u�(t;x+ y2 ) dy;where u� = �ut is the 
onjugate transpose of u. Then W (t;x;k) satis�es a
ertain transport equation. For the above mentioned examples this equationlooks like the equation for radiative transfer ([7℄).The general referen
e we are following is [22℄, from where we take thenotation used here.We want to understand this type of equation with small random perturba-tions, 
onsidering instead the system(6.2) A(x)fI + "1=2V �x"�g�u"�t +Xi Di�u"�xi = 0;where V (x) is a matrix valued random pro
ess with zero mean, statisti
allyhomogeneous in x. In this 
ase it is ne
essary to 
onsider the s
aled Wignerdistribution matrixW "(t;x;k) = 1(2�)d Z eik�yu"(t;x� "y2 )u�"(t;x+ "y2 ) dy:To understand the behavior ofW " we 
an formally expand it terms of " witha new \fast" variable � = x="W "(t;x;k) =W (0)(t;x;k) + "1=2W (1)(t;x; �;k) + "W (2)(t;x; �;k) + : : : :



HYDRODYNAMIC AND DIFFUSIVE LIMITS 33Then the statisti
al average of W ", hW "i should be 
lose to W (0) and satisfythe radiative transfer-like transport equation�W�t + k � rxW = �LWwhere �LW (x;k) = 4� Z R̂(p� k)Æ(k2 � p2)�W (x;p)�W (x;k)�dp:We 
an expand W (0)(t;x;k) asW (0)(t;x;k) =X�;i;j a�ij(t;x;k)B�;ij(x;k);where a�ij are s
alar fun
tions and B�;ij areN�N matri
es de�ned in terms ofthe eigenve
tors of the dispersion matrix of the system (see [22℄ for details.)Under the appropriate di�usive s
aling, t! "2t, x! "x, we expe
t to obtainin the limit a di�usion equation for the 
oheren
e matri
es.6.1. Di�usive limit for a
ousti
 waves. The a
ousti
 wave equations forvelo
ity and pressure, u and p are(6.3) ��u�t (t;x) +rp(t;x) = 0;��p�t (t;x) + divu(t;x) = 0;with t > 0, x 2 R3. In the general 
ase both the density �(x) and the
ompressibility �(x) depend on x. We will 
onsider only the homogeneousba
kground 
ase, �; � = 
onst. The sound speed is then 
onstant, v = 1p�� .In the absen
e of polarization the radiative transport system simpli�es,and it is enough to 
onsider one s
alar equation for the amplitude.(6.4) "2�ta" + "vk̂ � rxa" = Zjk0j=jkj�(k;k0)a"(k0) d
(k̂0)� �(jkj)a"(k)gHere d
 is the unit sphere surfa
e element, k̂ = k=jkj and the total s
attering
ross-se
tion is �(jkj) = Zjk0j=jkj �(k;k0) d
(k̂0):



34 M. PORTILHEIRO AND A.E. TZAVARASIn (6.4) and in the rest of this se
tion, to simplify the notation we will oftenwrite a(k) for a fun
tion depending on (t;x;k) if no 
onfusion 
an arise. Weare 
onsidering only rotationally invariant s
attering so that the di�erentials
attering 
ross-se
tion �(k;k0) is a nonnegative fun
tion of jkj and k̂ � k̂0only. We will write �(r; �), r = jkj and � = k̂ � k̂0, to denote this fun
tion.This radiative transport equation for the amplitude a" is of the form of(1.4) with 
ollision operatorC(a)(k) = Zjk0j=jkj �(jkj; k̂ � k̂0)a(k0) d
(k̂0)� �(jkj)a(k):In this 
ase the kineti
 variable is k̂ = ! 2 SN�1 and r = jkj a
ts as aparameter. The averaging is done on spheresw(t;x; r) = Zjkj=r a(k) d
(k̂);so the limit is an equation for a fun
tion of (t;x; r). The \mass" w(t;x; r)represents the average of the amplitudes a"(t;x;k) over all (unit) dire
tionsof wave ve
tors k with jkj = r. Note that the integration is 
arried over theunit sphere and d
(k̂) is the surfa
e measure of the unit sphere.6.2. Hypotheses for the model. Now we 
he
k that the hypotheses (h0){(h5) and assumptions (a1) and (a2) are all satis�ed for this model. Noti
ethat here we are 
onsidering a ve
tor valued kineti
 variable k.6.2.1.Hypotheses (h0){(h3). Hypothesis (h0) is obvious. To show that (h1)holds take any fun
tion a and integrate the 
ollision termZjkj=r C(a)(k)d
(k̂)= ZZjkj=jk0j=r�(jkj; k̂ � k̂0)a(k0) d
(k̂0) d
(k̂)� Zjkj=r�(jkj)a(k) d
(k̂)= Zjk0j=r a(k0)�(jk0j) d
(k̂0)� Zjkj=r �(jkj)a(k) d
(k̂) = 0:This means that w(r) = R a(k)dk is the 
onserved quantity in (6.4).



HYDRODYNAMIC AND DIFFUSIVE LIMITS 35The operator C is negative in L2 ([22℄)Zjkj=r C(a)(k)a(k)d
(k̂)= �12 ZZjkj=jk0j=r(a(k)� a(k0))2�(jkj; k̂ � k̂0) d
(k̂0) d
(k̂) 6 0
Solutions of C(a)(k) = 0 are of the form a(k) =Ma(jkj). These are pre
iselythe Maxwellians, whi
h 
an be parameterized in terms of their mass w(r).Also, C de�nes a 
ontra
tion in L1: Given two fun
tions a and �a,Zjkj=r Zjk0j=jkj �(jkj; k̂ � k̂0)(a(k0)� �a(k0)) d
(k̂0) sgn (a(k)� �a(k))d
(k̂)6 Zjk0j=r ja(k0)� �a(k0)j Zjkj=r �(jk0j; k̂ � k̂0) d
(k̂) d
(k̂0)= Zjk0j=r ja(k0)� �a(k0)j�(jk0j) d
(k̂0);
hen
e (h2) follows.Finally we obtain (f1) from the following H-Theorem. For �xed r > 0multiplying (6.4) by a" and integrating over the unit sphere of wave numberdire
tions with jkj = r we obtain�t Zjkj=r (a")2 d
(k̂) + v" divx Zjkj=r k̂(a")2 d
(k̂)+ 1"2 ZZjkj=jk0j=r �(r; k̂ � k̂0)�a"(k0)� a"(k)�2 d
(k̂) d
(k̂0) = 0:



36 M. PORTILHEIRO AND A.E. TZAVARASFrom here we have that for any T > 0Z T0 Z Zjkj=r ja"(t;x;k)� w"(t;x; r)j d
(k̂) dx dt6 Z T0 Z ZZjkj=jk0j=r ja"(k)� a"(k0)j d
(k̂) d
(k̂0) dx dt6 Kst "2 ka"kL2:6.2.2. Assumptions (a1), (a2), (h4) and (h5). Taking now two fun
tions aand �a in L1(SN�1) we haveZ Zjkj=r jC(a)� C(�a)jd
(k̂) dx 6 Kst ZZ ja � �ajd
(k̂) dx;whi
h implies (a1). Assumption (a2) is obvious. Sin
e for a Maxwellianfun
tion Ma Zjkj=r k̂Ma(jkj) d
(k̂) = 0;the stru
tural hypothesis (h4) is automati
ally satis�ed. In order to 
al
ulatethe formal limit (see se
tion 4) we need to invert the problemhC 0(�0); �1i = vk̂ � rx�0for a Maxwellian �0. In our 
ase this equation is(6.5) Zjk0j=jkj�(jkj; k̂ � k̂0)�1(k0) d
(k̂0)� �(jkj)�1(k) = vk̂ � rx�0:where �0 = �0(t;x; jkj).Following [22, Se
tion 5.1℄ the fun
tion k̂�rx�0(t;x; jkj) is an eigenfun
tionof the operator A de�ned byAf(k) = Zjk0j=jkj �(jkj; k̂ � k̂0)f(k0) d
(k̂0);
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orresponding to the eigenvalue�(jkj) = 2� 1Z�1 �(jkj; �)� d�:This 
an be seen as follows. Fix k = rk̂, a 2 R3 and let Q be a rotation su
hthat Qk̂ = e1, the �rst unit ve
tor. Then, k̂ � a = e1 �Qa andA(k 7! k̂ � a)(k) = Zjk0j=r �(jkj; k̂ � k̂0)(k̂0 � a) d
(k̂0)= Zjk00j=r �(r;Qk̂ � k̂00)(QT k̂00 � a) d
(k̂00)= Zjk0j=r �(r; k̂0 � e1)�k̂0 �Xj (Qa)jej� d
(k̂0)= �2� Z 1�1 �(r; �)�d��k̂ � awhere we used (Qa)1 = k̂ � a, the substitution k̂00 = Qk̂0 and the formulaZ �(r; k̂0i)k̂0j d
(k̂0) = �2� Z 1�1 �(r; �)�d��Æij(whi
h is seen by expressing the integral in spheri
al 
oordinates).A spe
ial solution of (6.5) is�1(t;x;k) = � v�(jkj)� �(jkj)k̂ � rx�0(t;x; jkj):The null spa
e of C 0(�0) = C(�) is the family of Maxwellians, thus the generalsolution of (6.5) is �1(t;x;k) = �1(t;x;k) + �(t;x; jkj):From (4.3), the total massw(t;x; r) = Zjkj=r �0(t;x; jkj)d
(k̂) = 4��0(t;x; r)



38 M. PORTILHEIRO AND A.E. TZAVARASsatis�es the paraboli
 equation�tw(t;x; r) = �xi�xj Zjkj=r k̂ik̂j v2�(jkj)� �(jkj)�0(t;x; jkj) d
(k̂)= 13 v2�(jkj)� �(jkj)�xw(t;x; r):6.3. Compa
tness. We will now 
omplete the rigorous validation of thedi�usive limit by establishing the 
ompa
tness assumption.Theorem 9. If the initial data satis�es(6.6) sup">0 ka"0kL1 + ka"0kL1 + kDxa"0kL1 <1;then, for r �xed, fw"(�; �; r)g is sequentially pre
ompa
t in C([0; T ℄; L1lo
(R3))and any limit point w solves, in the dissipative sense, the di�usion equation�tw(t;x; r) = divx[D(r)rxw(t;x; r)℄;where the di�usion 
oeÆ
ient is as in [22℄D(jkj) = v23(�(jkj)� �(jkj)):The proof is based on the following lemma.Lemma 10. For initial data satisfying (6.6), the set fw"(�; �; r)g is, for ea
h�xed r, sequentially pre
ompa
t in C([0; T ℄; L1lo
(R3)).Proof : This 
ompa
tness is obtained by an argument analogous to Proposi-tion 7. However, we need to invert the 
ollision operator in order to obtainthe same estimate. Consider the linear integral equationg(k) =�(jkj)f(k)� Zjk0j=jkj �(jkj; k̂ � k̂0)f(k0) d
(k̂0)=(�I�A)(f)(k);where I is the identity operator and A is a 
ompa
t operator, both operatorsde�ned from X := L1(S2) to X itself. The kernel of �I�A is NM , the set ofMaxwellians, and has dimension 1. From the Fredholm theory for 
ompa
toperators (see for example [18℄ for details) the range R(�I�A) is 
losed and
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odimension one. In fa
t it is also true that NM is the 
omplementaryspa
e to the range and we 
an invert the restri
tion of �I�A on the quotientspa
es: �I�A : X=NM ! X=NM has an inverseK : X=NM ! X=NM :The inverse is a bounded linear operator:(6.7) kKgkL1(S2) 6 kKk kgkL1(S2); for g 2 X=NM :Consider now the equation (6.4). On the one hand we have�tw" + v" divx Zjkj=r k̂a" d
(k̂) = 0;on the other hand, upon inverting (6.4), we obtain1"a" = (�I�A)�1�� "�ta" � vk̂ � rxa"�= �"�tK(a")� v�xiK(k̂ia")and therefore w" satis�es the approximation equation�t�w" � "v�xiH"i � = v2�xi�xjG"ij;(6.8) with H"i = Zjkj=r k̂iK(a") d
(k̂) and G"ij = Zjkj=r k̂jK(k̂ia")d
(k̂):The L1-
ontra
tion property and the uniform BV bounds for the data (6.6)imply estimates for the L1-moduli of 
ontinuity:Z Zjkj=r ja"(t;x+ h;k)� a"(t;x+ h;k)jd
(k̂)dx 6 Kstjhjand, using (6.7),Z jH"i (t;x+ h; r)�H"i (t;x; r)jdx 6 Kstjhj



40 M. PORTILHEIRO AND A.E. TZAVARASMG"ij(�;h) = Z t+�t supjyj<jhj Z jG"ij(s;x+ y; r)�G"ij(s;x; r)jdxds6 Kst Z t+�t Z Zjkj=r ja"(s;x+ h;k)� a"(s;x+ h;k)jd
(k̂)dxds6 Kst� jhjWe then dedu
e the 
ompa
tness of fw"g by using lemma 5 and an argumentas in the proof of Proposition 7.Proof of Theorem 9: Fix r > 0. Along a subsequen
e,w"(t;x; r) = Zjkj=r a"(t;x;k) d
(k̂)! w(t;x; r) for a.e. (t;x):From the H-estimateZ T0 Z Zjkj=r ja"(t;x;k)� w"(t;x; r)j d
(k̂) dx dt! 0a"(t;x;k)! 4�w(t;x; r) for a.e. (t; x) and d
-a.e. k̂:At this point we have validated (f1) and (f2) and we 
an 
on
lude by invokingTheorem 6. In any 
ase we also give a formal dire
t argument. We 
an passto the limit in (6.8) using (6.7) and the fa
t that H"i is uniformly boundedin BVx to 
on
lude that w satis�es�tw = v2�xi�xj4� Zjkj=r k̂iK(wkj)d
(k̂):Note that gj = K(kjw) if and only if (�I�A)gj = wkj, hen
e (6.2.2) impliesgj = w���kj and w satis�es�tw = v2�(r)� �(r)�xi�xj4�w Zjkj=r k̂ikjd
(k̂) = D(r)�xw:
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tness of mass in the di�usive s
alingIn this se
tion we establish the 
ompa
tness property (f2) in the di�usives
aling(1.4) �tf " + 1"a(�) � rxf " = 1"2C(f ");f "(0; x; �) = f "0 (x; �):Apart from (h4) and (h5), we need some extra assumptions on the linearized
ollision operator (see below). (These are not too restri
tive and are validfor the examples of se
tion 5 and 6.) We also need a strengthened version of(f1),(f10) Z T0 Z Z jf " �M(u")j2d�dxdt = O("2) as "! 0;whi
h in appli
ations follows from an H-theorem.In the Taylor expansion (4.7),C(f0 + f1) = C(f0) + C 0(f0)f1 + �C 00(f0) : (f1; f1)�C 00(f0) : (f1; f1) := h 1Z0 tZ0 C 00(f0 + sf1) ds dt; (f1; f1)iwe set f0 = M" := M(u") and f1 = f "M := f " �M", and use it along with(h3) in (1.4) to obtain(7.1) 1"C 0(M")f "M = "�tf " + a(�) � rxf " � 1" �C 00(M") : (f "M ; f "M):If we follow the 
ompa
tness statements we proved in the previous se
tionswe see that we want to invert the operator Cu := C 0(M(u)) in order toestimate the se
ond term of (1.5),�tu" + 1" divx Z a(�)f " d� = 0;whi
h due to (h4) we 
an write as(7.2) �tu" + 1" divx Z a(�) (f " �M(u")) d� = 0:This motivates the following assumptions for the 
ollision operator. LetX = L1(X), N(u) be the null spa
e of Cu and R(u) its range. We will



42 M. PORTILHEIRO AND A.E. TZAVARASassume that(h6) dimN(u) = 
odimR(u) = 1 for every u 2 R :Note that the �rst part of (h5) already implies dimN(u) = 1. Of 
oursewe 
an de�ne the inverse of Cu on R(u) with values in the quotient spa
eX=N(u) or equivalently in a 
omplementary spa
e to N(u), R�(u),Du := C�1u : R(u)! R�(u);whi
h is bounded due to the fa
t that R(u) is the range of a linear operatorwith �nite 
odimension, and thus 
losed. It is 
onvenient however to 
onsidera pseudoinverse of Cu, whi
h is guaranteed to exist sin
e this operator has�nite index: there exist operators Tu; K1;u; K2;u : X ! X, Tu bounded,K1;u and K2;u 
ompa
t, su
h thatTuCu = I +K1;u and CuTu = I +K2;u;where I is the identity. We will use this in parti
ular in the following way.Given g 2 R�(u) and h in X su
h thatCu(g) = h;obviously h 2 R(u). Sin
e g is in the 
omplementary spa
e R�(u) we 
aninvert this relation and getg = Duh = DuIh = Du(CuTu �K2;u)h= DuCuTuh�DuK2;uh= Tuh�DuK2;uh:Note that sin
e both h and CuTuh are in R(u), then so is K2;uh, so thatthe last expression is well de�ned. Note also that the operator DuK2;u is
ompa
t, de�ned on the whole spa
e X and thus(7.3) g = Suh;where Su : X ! X is a bounded operator. We further assume that thisoperator depends smoothly on the parameter u and is uniformly bounded:(h7) kSugkX 6 �1kgkX ;for some 
onstant �1 independent of u, and(h8) 8><>: The mapping R 3 u 7! Su 2 L(X;X)is C2 with respe
t to the norm topology and itsderivatives are bounded uniformly in u:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 43We will denote the �rst derivative of Su by Lu and the se
ond by Ju.Finally, in order to 
ontrol the se
ond order term, we assume (f10) and thatthe 
ollision operator is twi
e di�erentiable and satis�es(h9) k �C 00(h) : (g; g)kX 6 �2kgk2L2(X); for every h 2 L1 \ L1(X);where �2 is a 
onstant independent of h.With these assumptions we 
an state the following 
ompa
tness result.Proposition 11.With the above assumptions on the 
ollision operator, (h0){(h9), assumption (f10), and for ja(�)j 6M , if the initial data satis�essup">0 kf "0kL1 + kf "0kL1 + kDxf "0kL1 <1;then the set fu"g, where u"(t; x) = R f "(t; x; �) d�, is sequentially pre
ompa
tin C([0; T ℄; L1lo
(Rd)) for any T > 0.Proof : 1. From (1.4) we obtained (7.1). Using (7.3) here we 
an write1"f "M = "Su�tf " + Sua � rxf " � Sug";where g" := 1" �C 00 : (f "M ; f "M):We want to bring the derivatives in t and x out of the operator Su, but sin
enow this depends on u"(t; x) we need to a

ount for the derivative of theoperator. Thus we have"�1f "M ="�tSu (f ") +Xj �xjSu (ajf ")� Sug"� Lu ("u"tf ")� Lu (f "a � rxu") :Sin
e "u"t = � divx R a(�)f " d� we 
an rewrite the last identity in the form"�1f "M ="�tSu (f ") +Xj �xjSu (ajf ")� Sug"+Xj �xjLu�f " Z�0 aj(�0)f "(�0)d�0 � ajf " Z�0 f "(�0)d�0� :



44 M. PORTILHEIRO AND A.E. TZAVARASWe now multiply this by ai(�) and integrate in �, substituting in (7.2) toobtain(7.4) �tu" =� 1"Xi �xi Z ai(f " �M(u")) d�="�t divxA" � divxB" +Xi;j �xi�xj�C ij" +Dij" �;whereA" = Z a(�)Suf "d�; B" = Z a(�)Sug"d�; C ij" = Z aiSu�ajf "�d�and Dij" = Z aiLu�f " Z�0�aj(�0)� aj(�)�f "(�0)d�0� d�:2. The idea now is the same as in the proof of Lemma 10. From the
ontra
tion property and the BV bounds on the initial data we get an L1-modulus of 
ontinuity for u" in x. To estimate the t-modulus of 
ontinuitywe need to estimate the x-modulus of 
ontinuity of the terms on the righthand side of (7.4). This now requires more te
hni
al 
omputations sin
e theoperators involved in these terms depend on x through u".3. Estimate for A"Z jA"(x+ h)�A"(x)j dx= Z ���Z a(�)�Su(x+h)f "(x+ h)� Su(x)f "(x)� d���� dx6 Z ���Z a(�)�Su(x+h) � Su(x)�f "(x+ h) d���� dx+ Z ���Z a(�)Su(x)�f "(x+ h)� f "(x)�d���� dx=:A1 + A2:Sin
e we 
an write(Su(x+h) � Su(x))f = 1Z0 �u"(x+ h)� u"(x)�Lv(s)f ds;



HYDRODYNAMIC AND DIFFUSIVE LIMITS 45where v(s) := su"(x+ h) + (1� s)u"(x), for the �rst of the above terms wehave A1 6M Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z Lv(s)f "(x+ h) d����� ds dx6Kst Z ��u"(x+ h)� u"(x)��dx ku"(�+ h)kL1 = O(jhj):Here we have used the a priori L1 bounds, (h8) and the x-modulus of
ontinuity of u". For the se
ond term, A2, similarly we haveA2 = Z ����Z a(�)Su�f "(x+ h)� f "(x)� d����� dx6Kst ZZ ��f "(x+ h)� f "(x)�� d� dx = O(jhj);hen
e we also have(7.5) Z jA"(x+ h)�A"(x)j dx = O(jhj):4. Estimates for C ij" and Dij" . The terms C ij" 
an be estimated exa
tly inthe same way as above to obtain(7.6) Z jC ij" (x+ h)� C ij" (x)j dx = O(jhj):The same idea applies to the terms Dij" , but for these we need to observethat the bound on the integrand is obtained in a slightly di�erent way. Morespe
i�
ally we haveZ ��Dij" (x+ h)�Dij" (x)�� dx6 Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z a(�)Jv(s)F "(x+ h) d����� ds dx+ Z ����Z a(�)Lu(x)�F "(x+ h)� F "(x)�d����� dx;where F " = f " Z �a(�0)� a(�)�f "(�0) d�0:



46 M. PORTILHEIRO AND A.E. TZAVARASSin
e Z jF "(t; x; �)j d� 6 Kstkf "(t; x; �)k2L1(X) 6 Kst;using again (h8) we have the same type of estimate for the �rst of the aboveintegrals:Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z a(�)Jv(s)F "(x+ h) d����� ds dx 6 Kst jhj:To estimate the se
ond integral note thatjF "(x+ h)� F "(x)j 6Kst ��f "(x+ h)� f "(x)�� kf "kL1(X)+Kstjf "jkf "(x+ h)� f "(x)kL1(X);Hen
e again from (h8) we �nally get(7.7) Z ��Dij" (x+ h)�Dij" (x)��dx = O(jhj):5. Estimate for B". For the term B", as there is no information on itsmodulus of 
ontinuity, we pro
eed to show it gives rise to an error term.From (h7), (h9) and (f10) we obtain(7.8)Z t0 Z ��B"(t; x)��dxdt = Z t0 Z ��� Z Sug"d����dxdt 6 Kst Z t0 ZZ jg"jd�dxdt= Z t0 ZZ j1" �C 00 : (f "M ; f "M)jd�dxdt 6 Kst1" Z t0 ZZ jf " �M"j2d�dxdt= O("):6. Pro
eeding as in the proof of Proposition 7, we use (7.5), (7.8), (7.6)and (7.7) to obtainZ ��u"(t+ �; x)� u"(t; x)��dx 6 Kst�Æ + "+ "1Æ + �h� 1Æ2 + 1h2��;where the last three terms are the respe
tive 
ontributions of the last threeterms in the right hand side of (7.4). Optimizing in Æ and h we again obtain(7.9) Z ��u"(t+ �; x)� u"(t; x)��dx 6 Kst�"(1 + 1� 1=2) + � 1=2� :
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all now thatZ ��u"(s; x+ h)� u"(s; x)��dx 6 Kst!(h) :For ea
h �xed s we 
hoose a subsequen
e fu"ng su
h that u"n(s; �)! u(s; �)in L1(V ), where V is a 
ompa
t subset of Rd . By a diagonal argument we
an extra
t a subsequen
e (still denoted by fu"ng) for whi
h this holds forevery s 2 Q .We want to show that fu"ng is a Cau
hy sequen
e in C([0; T ℄;L1(V )).Given Æ > 0, 
hoose � < Æ2 and let s1 < : : : < sl be rationals in [0; T ℄ su
hthat s1, si+1� si and T � sl are all less that �=2. Then, for any t 2 [0; T ℄ we
an �nd a j su
h that jt� sj j < � and hen
e for any n and m, using (7.9) wehave ZV ��u"n(t; x)� u"m(t; x)��dx6 ZV ��u"n(t; x)� u"n(sj; x)��dx+ ZV ��u"n(sj; x)� u"m(sj; x)�� dx+ ZV ��u"m(sj; x)� u"m(t; x)��dx6 �"n + "m� 1=2 + 2Æ�+ sup16i6l ZV ��u"n(si; x)� u"m(si; x)��dx:We 
an now 
hoose n and m large enough to make this quantity less than,say, 4Æ.Remark. It is 
lear that even though we have 
ompa
tness in L1, it is notpossible to obtain the limiting equation with traditional te
hniques withoutfurther estimates. This is 
ertainly a strength of using dissipative solutions.It should be pointed though that, for degenerate paraboli
 equations it is not
lear whether the framework of dissipative solutions provides uniqueness, asis the 
ase with the entropy solutions of Chen-Perthame [8℄. The latterhowever require mu
h stronger regularity assumptions that are avoided here.For stri
tly paraboli
 equations the notions of strong and dissipative solutionsare equivalent.Referen
es[1℄ C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transferequations, Comm. Pure Appl. Math. 40 (1987), no. 6, 691{721.
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