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2 M. PORTILHEIRO AND A.E. TZAVARASassume throughout that C satis�es the properties:(h0) C(0(�))(�) = 0;(h1) ZXC(f)(�) d� = 0for every f in L1(X) and(h2) ZX �C(f(�))(�)� C( �f(�))(�)� sgn (f � �f)(�) d� 6 0;for every f and �f in L(X). Finally, the equilibria, or the Maxwellians, feq,de�ned as the solutions of C(feq)(�) � 0 form a one-parameter family interms of the mass, u = R fd�, whih we will denote by M(u; �) or by M(u).We assume that it satis�es:(h3) M(u) 2 L1 \ L1(X); dMdu (u; �) > 0; and ZXM(u; �) d� = u:Under hypothesis (h1), the mass u satis�es the onservation law�tu+ div ZX a(�)f d� = 0;(h2) guarantees that (1.1) is an L1-ontration, while the Maxwellians in (h3)provide the model with a lass of kineti entropies.The aim of this artile is to develop a framework for treating the hydrody-nami and di�usive limits for ollisional kineti equations that satisfy a sin-gle onservation law and generate L1-ontrations. A number of previouslystudied models �t into the above framework, inluding relaxation approxi-mations [13, 21℄, kineti BGK models [24, 4℄, and the disrete kineti modelsin [19, 5, 26℄. Most existing works onern BGK-type ollision operatorsand our objetive are to put these works in a ommon framework and todevelop a theory for general ollision operators. Additional hypotheses on Care needed, espeially for the di�usive limit. These are outlined in the sequel.We apply the theory to kineti models arising in the radiative transport ofrandom waves (e.g. [7, 22℄). Suh models are naturally endowed with on-servation of energy and in the ase of radiative transport for aousti wavesC generates an L1-ontration. Our analysis provides a general onvergeneresult for the di�usive limit of the radiative transport equations for aoustiwaves in multidimensional spae.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 3A novel feature of this work is the analytial method of proof, whih is basedon the onept of dissipative solutions of [25℄ and the perturbed test funtionmethod ([9℄, [26℄) and renders the proofs partiularly simple and apable todeal with omplex models. Interestingly, the usual Hilbert expansion usedfor identifying the limiting behavior is arried now to the test funtions andthe asymptoti analysis proess is partiularly appealing. In the di�usivesaling, this approah an handle ases where the estimate struture is tooweak to be treated with traditional tehniques.We outline next the main results: The hyperboli saling onerns thelimiting proess "! 0 for the initial value problem(1.2) �tf " + a(�) � rxf " = 1"C(f ");f(0; x; �) = f0(x; �):(For ease of notation, here and in what follows, when f is a funtion of (t; x; �)we use C(f) to denote the mapping (t; x; �) 7! C(f(t; x; �))(�).) To arry outthis limit we employ (h0){(h3) and plae the additional assumption that(f1) lim"!0 jf "(t; x; �)�M(u"(t; x); �))j = 0 a.e. in R+�R d�X :Hypothesis (f1) follows in appliations of our theory from an estimate analo-gous to the H-theorem, and is justi�ed in setions 5 and 6 for various spei�models. Under hypotheses (h0){(h3) and (f1), problem (1.2) is equipped withkineti entropies and the total mass u" onverges to the entropy solution (orequivalently to the dissipative solution) of the salar onservation law(1.3) �tu+ div ZX a(�)M(u; �) d� = 0:We refer to [24, 13, 21, 14, 4, 28℄ for onvergene of various ontinuous ordisrete BGK-type models and to [27℄ for the present setting of ontrativeollisional operators. In Setion 3, we give a simpli�ed onvergene proofusing the setting of dissipative solutions [25℄, [26℄. Contrative kineti equa-tions provide a general framework for the extension of Kruzhkov theory tokineti models. However, not every kineti model with one onservationlaw generates an L1-ontration; see [11℄ for onvergene results outside theKruzhkov setting.



4 M. PORTILHEIRO AND A.E. TZAVARASNext, we onsider the di�usive saling for (1.1),(1.4) �tf " + 1"a(�) � rxf " = 1"2C(f ");f(0; x; �) = f0(x; �):This equation is equipped with onservation of mass:(1.5) �tu" + 1" div Z a(�)f " d� = 0:In addition to (h0){(h3), we make the following assumptions: First,(h4) Z ai(�)M(u; �) d� = 0 for every i in f1; : : : ; dg.Now the hydrodynami limit of (1.2) is the trivial equation ut = 0, and onean onsider the di�usive saling. Seond, on the struture of the linearizedollision operator along Maxwellians, we assume the following:(h5) N�C 0(M(u))� = span��M�u � andR�C 0(M(u))� � span�aj �M�u : 1 6 j 6 d� :On the basis of asymptoti analysis of the di�usive saling (see setion 4)using the Hilbert expansion, the solution of (1.5) formally onverges to the(possibly degenerate) paraboli equation(1.6) �tu = dXi;j=1�xi ZR ai(�) hC 0(M(u))�1; aj(�)�xjM(u; �)i d�:Indeed, we validate the onvergene in the dissipative sense under two fun-tional assumptions, namely (f1) and the assumption that the total mass(f2) fu"g is preompat in L1lo(R+�R d ):The funtional hypotheses are then justi�ed in various irumstanes: Typi-ally, (f1) follows from an H-estimate like in the hyperboli saling, and thisis exhibited for various models in what follows. The justi�ation of (f2) ismore diÆult. One has available from the ontration struture ontrol onthe modulus of ontinuity in x, and the goal is to use the onservation ofmass (1.5) with ondition (h4) and a sheme on transferring L1-modulus ofontinuity in x into L1-modulus of ontinuity in t (an idea due to Kruzhkov



HYDRODYNAMIC AND DIFFUSIVE LIMITS 5[15℄ as summarized in a tehnial lemma from [28℄). This is done in setion5.1 for the BGK-model and in setion 6.3 for the radiative transport equa-tions. The ompatness analysis for the radiative transport equations usesthe Fredholm struture of the linear ollision operator. In the last setion, itis shown how use a strengthened version of (f1) and the Fredholm strutureof the linearized ollision operator in order to prove ompatness and derive(f2) in a general setting (see setion 7).Our analysis enompasses various results on di�usive limits of simpler mod-els [16, 5, 26℄ in the L1-ontration framework, and extends the di�usive limitanalysis to general ontrative models with one onservation laws. As a teh-nique it treats the hyperboli and di�usive sales in a ommon framework,and uses in an essential way the ontration struture but very little informa-tion from the limit equation. For omplementary approahes in the di�usiveregime that are designed to use information from the paraboli struture ofthe limit equation, see [19, 20, 17℄. We refer to [1, 2, 3℄ for early work onradiative transport, to [19, 10, 12℄ for treatments of the di�usive limit in onespae dimension and to [23℄ for a treatment of the di�usive limit in the on-text of aretive solutions for paraboli equations for a disrete model (seealso the remark following Proposition 11).The artile is organized as follows. In setion 2 we disuss existene andstrutural properties of the kineti model (1.1) (Theorem 1) and outline thenotion of dissipative solutions for aretive operators. It is noted that dissi-pative, entropy and regular weak solutions are all equivalent for semilinearsystems or kineti models (Theorem 3). Dissipative and entropy solutionsare also equivalent for salar onservation laws [25℄ and for strongly para-boli equations, but the preise relation is not yet understood at the levelof degenerate paraboli equations. The onvergene in the dissipative senseof the hydrodynami limit from (1.2) to the entropy solution of the salaronservation law (1.3) (Theorem 4) is proved in setion 3. Then the di�usivelimit (1.4) is onsidered in setion 4, and onvergene is proved to the dissi-pative solution of (1.6). The proof of Theorem 6 is based on perturbation oftest funtions and an analysis of the struture of the linearized ollision op-erator along Maxwellians. In setion 5 the analysis is applied to a variety ofkineti and disrete kineti models. Setion 6 onerns the most interestingappliation: Papaniolaou and Ryzhik [22℄ derive ollisional kineti modelsdesribing the radiative transport of waves in random environments. Thesemodels provide very interesting examples of ollisional models equipped with



6 M. PORTILHEIRO AND A.E. TZAVARASonly the onservation of energy. The theory applies to the di�usive approxi-mation of radiative transport for aousti waves (see also [19℄ for the studyof a simpli�ed BGK-type model in this diretion). In setion 7 we use theonservation of mass together with the Fredholm struture of the linearizedollision operator in order to prove ompatness of mass in the di�usiveregime (Proposition 11).2. Strutural properties of the kineti modelConsider the initial value problem for the kineti mode,(2.1) �tf(t; x; �) + a(�) � rxf(t; x; �) = C(f(t; x; �); �);f(0; x; �) = f0(x; �);equipped with a single onservation law. We disuss in this setion the notionof solution in the dissipative sense and strutural properties of (2.1) underhypotheses (h0)-(h3).2.1. Preliminaries. In preparation, we review some properties of the linearequation(2.2) �tf(t; x; �) + a(�) � rxf(t; x; �) = g(t; x; �)f(0; x; �) = f0(x; �):The solution of (2.2) is omputed via the method of harateristis(2.3) f(t; x; �) = f0(x� a(�)t; �) + Z t0 g(s; x� a(�)(t� s); �) dsand it is easy to see that:(i) if f0 2 L1x;� and g 2 L1t;x;�, then f 2 C([0; T ℄;L1x;�);(ii) if f0 2 L1lo;x;� and g 2 L1((0; T );L1lo;x;�), then f 2 C([0; T ℄;L1lo;x;�).The solution of (2.2) an be understood in the usual mild sense, or alter-natively one may de�ne weak solutions by requiring that f satis�es(2.4) � Z T0 ZZ f�'t + a(�) � rx'� dxd� dt� ZZ f0(x; �)'(0; x; �) dxd�= Z T0 ZZ g(t; x; �)'(t; x; �) dxd� dtfor any test funtion ' 2 C1 ([0; T )�Rd�X).



HYDRODYNAMIC AND DIFFUSIVE LIMITS 7For solutions f of lass C([0; T ℄;L1lo(R d�X)) the two notions of solutionoinide. Indeed, if f is a weak solution, using the hange of test funtion (t; y; �) = '(t; y + a(�)t; �), (2.4) is expressed in the equivalent form
(2.5) � Z T0 ZZ f(t; y + a(�)t; �) t dyd�dt� ZZ f0(y; �) (0; y; �) dyd�= Z T0 ZZ g(s; y + a(�)s; �) dyd�dsfor  2 C1 ([0; T )�Rd�X). From (2.5) one obtains for � 2 C1 (R d�X)ZZ nf(t; y + a(�)t; �)� f0(y; �)� tZ0 g(s; y + a(�)s; �) dso�(y; �) dyd� = 0;whih in turn implies (2.3). The onverse, that a mild solution is also a weaksolution, is lear.For K a ompat subset of R d�X , we have the stability estimate(2.6) ZK jf(t; x; �)jdxd� 6 ZSt(K) jf0jdxd� + Z t0 ZSt�� (K) jg(�; x; �)jd�dxd�;where St(K) = f(y; �) : y = x � a(�)t; (x; �) 2 Kg. It implies in partiularuniqueness of mild (or weak) solutions.2.2. Existene and strutural properties of the kineti model. Con-sider now the initial value problem (2.1). As was noted in the previoussetion, the solution f of (2.1) an be understood in the weak or in the mildsense, and for solutions of lass C([0; T ℄;L1(R d�X)) weak and mild solutionsoinide. We restrit attention to this lass, and express (2.1) in the form ofan integral equation(2.7) f(t; x; �) = f0(x� a(�)t; �) + tZ0 C(f)��; x� a(�)(t� �); �� d�:



8 M. PORTILHEIRO AND A.E. TZAVARASIt is assumed that the ollision operator satis�es for any given T > 0 thebounds(a1) sups2[0;T ℄ kC(f)� C( �f)kL1(Rd�X) 6 K1;T sups2[0;T ℄kf � �fkL1(Rd�X)ess sups2[0;T ℄ kC(f)kL1(Rd�X) 6 K1;Tfor some onstants K1;T , K1;T depending only on T and the L1 norms off and �f , kfk1 = kfkL1((0;T )�Rd�X). These hypotheses are needed for theexistene part and are ful�lled for various models onsidered in the sequel.Heneforth, we operate under (h0){(h3) and the assumption that a(�) isuniformly bounded by some M > 0,(a2) ja(�)j 6M; for every � in X.The models (1.1), or (1.2), or (1.4) satisfy onservation of mass(2.8) �tu+ (") divx ZX a(�)f d� = 0;where (") = 1 for (1.1) and (1.2) and (") = 1" for (1.4). Moreover, theollisional kineti model is endowed with kineti entropy funtions assoiatedto the Maxwellians (see [27, 28℄). It is notable that all weak solutions satisfythe kineti entropy inequalities (2.10).Theorem 1. Let (a1), (a2) hold and f0 2 L1 \ L1(R d�X). There exists aloal weak solution f 2 C([0; T ); L1(R d�X)) de�ned on a maximal interval ofexistene. If T <1 then lim supt!T� kf(t)kL1(Rd�X) !1. Under hypotheses(h0){(h3) and if the initial data, f0, satis�es(2.9) M(a) 6 f0 6M(b) for some a < b;then the solution f is de�ned globally in time and satis�es(i) The kineti model is a ontration in L1(R d�X).(ii) For � 2 R ,(2.10) �t ZX jf �M(�)j d� + (") divx ZX a(�)jf �M(�)j d� 6 0in D0, where (") = 1 for (1.1) and (1.2), and (") = 1" for (1.4).(iii) The domain Q�[M(a; �);M(b; �)℄, with a < b, is positively invariant.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 9Proof : To prove loal existene of mild solutions we onsider the Banahspaes X = C([0; � ℄; L1(R d�X)), Y = X \ L1((0; �)�Rd�X) (Y is dense inX) and the losed set F = �f 2 Y : kf � f0(x� a(�)t; �)k1 6 K	, where Kis some �xed positive onstant. Let us de�ne the map S : Y ! Y byS(f)(t; x; �) = f0(x� a(�)t; �) + Z t0 C(f(s; x; �))(�)dsIt is easy to hek that, by (a1), for � suÆiently small S : F ! F and isa ontration in X. The resulting �xed point f belongs to F and is a mildsolution for (2.7). Furthermore, it an be ontinued in time as long as kfk1does not blow up. We omit the lengthy yet straightforward details.Let f and �f be two solutions. By subtrating the orresponding equations,multiplying by sgn (f � �f) and using (h2), we obtain(2.11) �t ZX jf � �f j d� + divx ZX a(�)jf � �f j d�= 1" ZX �C(f)� C( �f)�sgn (f � �f) d� 6 0This shows that any two solutions f and �f satisfy the L1-ontration prop-erty: t 7! ZRd ZX jf � �f j(t; x; �) d�dx is noninreasing in t.Sine RR (f � �f) dxd� is a onserved quantity, we havet 7! ZRd ZX(f � �f)+(t; x; �) d�dx is noninreasing in tand as a result if f0 6 �f0 then f 6 �f:A speial lass of solutions of (1.1) are the global Maxwellians M(�; �).These may be used as omparison funtions. For instane, if f0 6 M(a),for some a 2 R , then f(t; �; �) 6M(a). Part (iii) follows from this property.Finally, if �f =M(�) in (2.11) thenZX(�t + a(�) � rx)jf �M(�; �)j d� = 1" ZXC(f)sgn (f �M(�; �)) d� 6 0;whih shows (2.10). Global existene is obtained from the L1 bounds fol-lowing from (2.9), (h3) and (iii). Sine weak and mild solutions of lass



10 M. PORTILHEIRO AND A.E. TZAVARASC([0; T ℄; L1(R d�X)) oinide, weak solutions of (2.1) will satisfy the entropyinequalities (2.10).2.3. Dissipative solutions for aretive equations. Next, we outline thenotion of \dissipative solutions" introdued in [25℄ and examine the impli-ations on de�ning a orresponding notion of solutions for ollisional kinetiproblems.Consider an equation of the form(2.12) Au = f;where A : D(A)! X is a (nonlinear) aretive operator de�ned on a subset,D(A), of the Banah spae X. The operator A is aretive if for every u andv in D(A) 0 6 [u� v; Au� Av℄+ ;where [f; g℄+ := lim�!0+ ��1 (ku+ �vk � kuk)is the Kato braket for the norm of X. This inequality an be used to de�nea weak solution of (2.12) for A aretive, by stating that u solves (2.12) if(2.13) 0 6 [u� �; f � A�℄+for every \nie" test funtion � in some subset of the domain of A.For X = L1(d�) the Kato braket is given by the formula[f; g℄+ = Zff 6=0g sgn (f) g d�+ Zff=0g jgj d�:(Here sgn (x) = x=jxj if x 6= 0, sgn (0) = 0). Thus, for a onservation law ofthe form(2.14) ut + divF (u) = gthe notion of dissipative solution is0 6 ZZfu6=�g sgn (u� �) (g � �t � divF (�)) dx dt+ ZZfu=�g jg � �t� divF (�)j dx dt:In fat, this operator is slightly better than aretive, and we an drop theseond integral in the de�nition (see [25℄). Aordingly, u is a dissipative



HYDRODYNAMIC AND DIFFUSIVE LIMITS 11solution of (2.14) if u satis�es0 6 ZZfu6=�g sgn (u� �) (g � �t � divF (�)) dx dt;for every � smooth enough. In addition, as is proved in [25℄, the notion ofdissipative solution is equivalent to the usual notion of Kruzhkov entropysolution familiar from the theory of salar onservation laws.Dissipative solutions provide a partiularly good framework to study re-laxation limits (see [26℄ and the following setions) by using the perturbedtest funtion method of Evans [9℄. See [23℄ for an analogous notion of \are-tive solution" for degenerate di�usion equations, and its relations with theentropy solution in [8℄ (see also the remark following Proposition 11).2.4. Dissipative solutions for kineti models. Hypothesis (h2) impliesthat the operator Af := �tf + a(�) � rxf � C(f)is aretive in L1((0; T );L1(R d�X)). Following [25℄, we de�ne dissipativesolutions for the equation�tf + a(�) � rxf � C(f) = 0as follows:De�nition 2. A funtion f in C([0; T ℄;L1(R d�X)) is a dissipative solutionof (1.1) if(2.15) 0 6 ZZZ sgn (f � k � �) (��t � a(�) � rx�+ C(f)) d� dx dtfor every smooth funtion � in C1 (R+�R d�X), and every k in R .Remarks. 1. There are two reasons to onsider in the above formula C(f)instead of C(�). The �rst is a tehnial one: In order to prove equivalenewith entropi solutions (as in [25℄) we have to use test funtions of the formk+�, as above. For the above de�nition this an be done. By ontrast, we donot in general have that C(k+�) is in L1. One ould impose suh a ondition,for instane impose that R C(k + g)d� = R C(g)d�, for g 2 L1(X). Suh aondition is satis�ed for example by the linear ollision operator onsideredin setion 6. But we avoid making this a general assumption.2. A seond reason is more philosophial. The main bene�t of this formu-lation is that the derivatives fall on a test funtion. The last term involves



12 M. PORTILHEIRO AND A.E. TZAVARASno derivatives of f , hene we gain nothing by using the test funtion hereand we an regard it as a foring term.Furthermore, there is equivalene of entropy and dissipative solutions anda stronger dissipative property:Theorem 3. Under hypotheses (h0){(h3) the weak solution f of (1.1) satis-�es the entropy inequalities (2.10) and the dissipative property orrespondingto the aretive operator A, i.e. for � 2 C1 (R+�R d�X)(2.16) 0 6 ZZZ sgn (f � �) (��t � a(�) � rx�+ C(�)) d� dx dt:Proof : Let g = C(f). Then f solves equation (1.1). For this equation we anuse Lemmas 4.6 and 4.9 from [25℄ to onlude that the weak solution (whihis an entropi solution due to the uniqueness) is a dissipative solution, andvie-versa. Finally, ombining (2.15) and hypothesis (h2) gives (2.16).3. The hydrodynami limit for dissipative solutionsIn this setion we study the hydrodynami limit of the kineti equation(1.2) �tf "(t; x; �) + a(�) � rxf "(t; x; �) = 1"C(f "(t; x; �); �);f(0; x; �) = f "0(x; �):The dissipative solution, f ", of this equation satis�es(3.1) 0 6 ZZZ sgn (f " � �)���t � a(�) � rx�+ 1"C(�)� d� dx dtfor every smooth funtion � in C1 (R+�R d�X). We will show that u" ! ua.e. in R+�R d and that u satis�es(1.3) �tu+ divx ZX a(�)M(u; �) d� = 0in the dissipative sense, that is,(3.2) 0 6 ZZ sgn (u�  )���t � divx ZX a(�)M( ; �) d�� dx dtfor every funtion  in k + C1 (R+�R d ).It is shown in [27℄ that along a subsequene u" ! u a.e. and in Lplo,1 6 p < 1, where u is the entropy solution of the onservation law (1.3).In the following theorem we obtain the dissipative limit diretly|we already



HYDRODYNAMIC AND DIFFUSIVE LIMITS 13know it has to be the same due to the equivalene of the notions of dissipativesolutions and entropy solutions ([25℄). The interest is in the proof via theperturbed test funtion method.We assume the strutural hypotheses (h0){(h3) and also that solutions of(1.2) satisfy (f1). In appliations of Theorem 4 assumption (f1) has to bejusti�ed and typially follows from an entropy estimate (see setion 5).In the following ! denotes a modulus of ontinuity, i.e. a nonnegative,nondereasing funtion satisfying lim�!0+ !(�) = 0.Theorem 4. If assumptions (h0){(h3), (a2) and (f1) hold and the initialdata f0 satis�es(3.3) M(a) 6 f "0 6M(b) for some a < b,sup">0 ZZ jf "0(x; �)j dx d� <1;ZZ jf "0(x+ h; �)� f "0(x; �)j dx d� 6 !(jhj) for h 2 Rd ;then along a subsequene (not relabeled) u" ! u a.e. and in Lplo((0; T )�Rd)for any p in f1; : : :1g, where u 2 C�[0; T ℄;L1(Rd)� \ L1((0; T )�Rd) is thedissipative solution of (1.3).Proof : 1. From the L1-ontration property in Theorem 1 we obtainZ ju"(t; x+ h)� u"(t; x)j dx 6 ZZ jf "(t; x+ h; �)� f "(t; x; �)j dxd�6 ZZ jf "0(x+ h; : dxd� 6 !(jhj)Then we use an idea of Kruzhkov [15℄ together with the onservation law(2.8) in order to transfer the L1-modulus of ontinuity in x into informationon the L1-modulus of ontinuity in t. The relevant tehnial lemma is statedbellow, Lemma 5, and is applied here with G = 0 (we refer to [28, Lemma 9℄for the proof). This yieldsZ ju"(t+ k; x)� u"(t; x)j dx 6 Kst!(k);(Kst will denote a onstant whih, unless otherwise stated, is independent ofthe other relevant quantities in the relation it appears), and thus ompatnessof u" in L1lo(R+�R d ). It remains to prove that u is indeed a dissipativesolution of (1.3).



14 M. PORTILHEIRO AND A.E. TZAVARAS2. Being a dissipative solution of (1.2), f " satis�es (3.1). Given a testfuntion  for (3.2), take � = M( ) as a test funtion in (3.1). By (h3),C(M( )) = 0 and (3.1) beomes0 6 ZZZ sgn (f " � �) (��t � a(�) � rx�) d� dx dt:Using (f1), along a further subsequene if neessary, f " ! M(u; �) a.e. inR+�R d�X . Let us assume for the moment that alsosgn (f " � �)!sgn (M(u)� �) = sgn (M(u)�M( )) (h3)= sgn (u�  ):From this we dedue that0 6 ZZZ sgn (u�  ) (��tM( ; �)� a(�) � rxM( ; �)) d� dx dt= ZZ sgn (u�  )���t Z M( ) d� � divx Z a(�)� d�� dx dt= ZZ sgn (u�  )���t � divx Z a(�)M( ; �) d�� dx dt;whih is (3.2).3. Next we justify the onvergene of sgn (f "� �) to sgn (M(u)� �). Theargument is the same used in [26℄.It is lear that we have onvergene if jfM(u) = �gj = 0. If this is not thease, take test funtions of the form �Æ = � + Æ� where � 2 D is positive onthe support of � and Æ > 0. We assert that there exists a sequene Æj ! 0suh that jfM(u) = �Æjgj = 0: Let AÆ = fM(u) = �Æg \ supp(�). GivenÆ; Æ� > 0, if x 2 AÆ \ AÆ�, we must have M(u(x); �) = �(x; �) + Æ�(x; �) andM(u(x); �) = �(x; �) + Æ��(x; �) whih implies Æ = Æ�. Therefore, fAÆgÆ>0 isa disjoint family. This means that there is at most a ountable sub-familywith positive measure. Hene we an ertainly pik a sequene Æj ! 0 suhthat jAÆj j = 0. This proves the assertion.



HYDRODYNAMIC AND DIFFUSIVE LIMITS 154. Now we use the previous step to obtain (3.2) for �j = �Æj :0 6 ZZZ sgn (M(u)� �j) (��t�j � a(�) � rx�j) d� dx dt= ZZZfM(u)6=�g sgn (M(u)� �j) (��t � a(�) � r)�j d� dx dt� ZZZfM(u)=�g (��t � a(�) � r)�j d� dx dt:The last step holds beause sgn (M(u)��j) � �1 on fM(u) = �g. Now welet Æj ! 0. Noting that on fM(u) 6= �g, sgn (M(u)��j)! sgn (M(u)��)a.e., we onlude that0 6 ZZZfM(u)6=�g sgn (M(u)� �) (��t � a(�) � r)� d� dx dt� ZZZfM(u)=�g (��t � a(�) � r)� d� dx dt:5. Finally, if instead of onsidering �Æ = � + Æ� we onsider �Æ := � � Æ�,then with a similar omputation we dedue0 6 ZZZfM(u)6=�g sgn (M(u)� �) (��t � a(�) � r)� d� dx dt+ ZZZfM(u)=�g (��t � a(�) � r)� d� dx dt:Adding the above inequalities and using the fat that sgn (M(u) � �) =sgn (u�  ), we obtain (3.2).We now reall [28, Lemma 9℄, whih is based on an idea of [15℄. For afuntion H = H(t; x) let!H(t; h) = supjzj6hZRd jH(t; x+ z)�H(t; x)j dx



16 M. PORTILHEIRO AND A.E. TZAVARASbe its L1-modulus of ontinuity in x and de�neMH(k; h) = t+kZt supjyj<hZRd jH(�; x+ y)�H(�; x)j dxd� = t+kZt !H(�; h) d�;Lemma 5 ([28℄). Let u, G and Hi, i = 1; : : : ; d be funtions in L1((0; T )�Rd)satisfying �tu+ divxH = ��Gin the sense of distributions. There exists a onstant K > 0 suh that forany t; k; h > 0 (with t+ k < T ) we haveZRd ju(t+ k; x)� u(t; x)j dx 6 K �!u(h) + 1hMH(k; h) + �h2MG(k; h)�6 Kminh>0 �!u(h) + kh supt6�6t+k !H(k; h) + �kh2 supt6�6t+k !G(k; h)� :4. Di�usive LimitsIn this setion we onsider the di�usive limit of(1.4) �tf(t; x; �) + 1"a(�) � rxf(t; x; �) = 1"2C(f(t; x; �))(�);f(0; x; �) = f0(x; �):This system orresponds to the long time behavior of (1.2) in the salinggiven by the transformation (t; x) 7! (t="; x).In addition to (h0){(h3) we now impose also (h4) and (h5). These assump-tions play a role in alulating the e�etive equation in the di�usive limit.The ollision operator is assumed to be twie di�erentiable in the Fr�ehetsense and we use the notations hC 0(f); gi for the derivative at the point falong g, and hC 00(f); (g; h)i for the ation of the seond derivative at thepoint f the pair (g; h).Let us �rst formally ompute the di�usive limit equation. To this endonsider a Hilbert expansionf " = f0 + "f1 + "2f2 + : : :for the solution of (1.4) and letu" = u0 + "u1 + "2u2 + : : :



HYDRODYNAMIC AND DIFFUSIVE LIMITS 17be the assoiated expansion of the mass. Mathing in (1.4) the orrespondingpowers of ", we obtainfrom the \"�2" terms f0 =M(u0; �);(4.1) from the \"�1" terms a � rf0 = hC 0(f0); f1i:(4.2)The leading ontribution of the onservation of mass omes, by (h4), fromthe \"0" terms and is(4.3) �tu0 + divx Z a(�)f1 d� = 0:To proeed, we need to solve (4.2) for f1 when f0 the MaxwellianM(u0). By(h5), this equation has a solution, and a general solution an be expressed asf1 = hC 0(f0)�1; a � rxf0i+ � = �1 + �;where �1 is an inverse of a�rxf0 and � 2 N(C 0(f0)). In general C 0(f0) is non-invertible, but this does not ause problems. There is a anonial hoie for�1 whih determines a omplementary spae for N(C 0(M(u))). Moreover,the nontrivial null spae does not inuene the limit equation. Indeed, u0satis�es the equation�tu0 + divx Z a(�)(�1 + �) d� = 0where �1 = hC 0(f0)�1; a � rxf0i. The term � 2 N(C 0(f0)) drops out from thelimit due to (h5) and the fat that (h4) implies R a�M�u (u)d� = 0.The limit equation in the di�usive regime thus beomes(4.4) �tu� dXi;j=1�xi ZX ai(�) hC 0(M(u))�1; aj�xjM(u)i d� = 0:Note that u satis�es (4.4) in the dissipative sense if(4.5) 0 6 ZZ sgn (u�  )���t + dXi;j=1 �xi ZX ai(�) hC 0(M( ))�1; aj�xjM( )i d�� dx dt;for any smooth  .Next we onsider a family of solutions f " and the assoiated mass u".Obtaining ompatness for fu"g is a omplex issue and will be arried out



18 M. PORTILHEIRO AND A.E. TZAVARASfor various examples in forthoming setions. For the moment we assume(f1) and (f2) and arry out the onvergene part. Later on ompatness willbe justi�ed by taking advantage of the anellation properties of the ollisionterm, namely (h4). This is done for the BGK-model in Proposition 7, for theradiative transfer example of Setion 6 in Proposition 10 and in a generalsetting, with extra assumptions on the ollision term, in Setion 7.Theorem 6. Assume u" ! u and f " !M(u; �) a.e. Then u is a dissipativesolution of (4.4), that is, it satis�es (4.5).Proof : 1. We need to show that for any admissible test funtion  equation(4.5) holds. Let us �x suh  . Take a test funtion �" for the de�nition ofdissipative solution of (1.4) of the form �" = �0 + "�1. Using (h2) again wehave(4.6) 0 6 ZZZ sgn (f " � �")���t�" � 1"a � rx�" + 1"2C(�")� d� dx dt:2. We want to expand �" and gather the appropriate terms in terms oftheir powers of ". Expanding the ollision term with the formula(4.7) C(f0+ f1) = C(f0) + hC 0(f0); f1i+ h 1Z0 tZ0 C 00(f0 + sf1) ds dt; (f1; f1)iwe obtainC(�") = C(�0) + "hC 0(�0); �1i+ "2h 1Z0 tZ0 C 00(�0 + s"�1) ds dt; (�1; �1)i:Therefore we an write the integrand in (4.6) (apart from sgn (f " � �")) as�"�t�1 � ��t�0 + a � rx�1 � h 1Z0 tZ0 C 00(�0 + s"�1) ds dt; (�1; �1)i��1"�a � rx�0 � hC 0(�0); �1i� + 1"2C(�0)3. Sine we want to let " ! 0, to make the \"�2" term vanish we selet�0 = M( ) where  is the �xed test funtion. For the \"�1" term we needto have hC 0(�0); �1i = a � rx�0:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 19Using (h5) we an solve this equation for �1:�1 = hC 0(�0)�1; a � rx�0i+ � =: �1 + �;where � is in N(C 0(�0)), whih is generated by dMdu (�0).4. To take the limit as "! 0 assume for the moment that sgn (f "� �")!sgn (f � �0). The limit of the rest of the terms in the integral is��t�0 � a(�) � rx�1 + 12hC 00(�0); (�1; �1)i:Now observe that sgn (f � �0) = sgn (M(u) �M( )) = sgn (u �  ) andtherefore we an take sgn (u�  ) out of the �-integral. Hene,0 6 ZZ sgn (u�  )���t Z �0 d� � divx Z a�1 d�+ 12 Z hC 00(�0); (�1; �1)i d��dx dt:We assert that the last term vanishes. Indeed, if we take f0 = �0 andf1 = h�1 in (4.7) and integrate in �, then due to (h1), our hoie of �1 and(h4) we obtain 0 = h2h 1Z0 tZ0 C 00(�0 + sh�1) ds dt; (�1; �1)i:Dividing by h2 and letting h! 0 we prove the assertion.Due now to our hoie of �0, and (h3) we have0 6 ZZ sgn (u�  )���t � divx Z a(�)(�1 + �) d�� dx dt:Sine Z a(�)� d� = ddu Z a(�)M(u; �) d� = 0;there is no ambiguity in the above equation for any hoie of an inverse forhC 0(�0)�1; arx�0i and we obtain (4.5).5. To onlude, we show the assumption sgn (f " � �") ! sgn (f � �0) isjusti�ed. For simpliity we rewrite (4.6) as0 6 Z sgn (f " � �")I" dz;



20 M. PORTILHEIRO AND A.E. TZAVARASwhere I" is smooth and onverges uniformly to I. As in the proof of The-orem 4, we need to deal with the set fM(u; �) = �g. If this set has zeromeasure, we an take the limit in " and obtain0 6 Z sgn (M(u; �)� �)I dz:Beause of the "-perturbation to the test funtions we are now using, theprevious adjustment to the test funtion has to be done on the \ side".Let  Æ =  + Æ�, with � as in Theorem 4, and �"Æ be the same as �" above,with  Æ in plae of  . De�ne again the sets AÆ = fM(u) = �Æg. One morewe an �nd a sequene Æj ! 0 with jAÆj = 0. Utilizing the monotoniity ofM(�) from (h3), we dedue that0 6 ZfM(u)6=�gsgn (M(u)� �)I dz � ZfM(u)=�gI dz:If we hoose  Æ =  �Æ� instead, we get the opposite sign on the last integral.Then we add the two inequalities and onlude as in step 5 of Theorem 4.5. Some kineti models and their di�usive limitsIn this setion we look at some kineti models where the di�usive limitsan be obtained from the above theory. In Setion 6 we deal with the mostinteresting appliation, the di�usive approximation of radiative transport foraousti waves.5.1. BGK-model. In the BGK-model the ollision term for the transportequation has the form M(u)� f , and the di�usive saling for this equationbeomes(5.1) �tf "(t; x; �) + 1"a � rxf "(t; x; �) = � 1"2 (f "(t; x; �)�M(u"(t; x); �));where u" = R f "d�. It is assumed that the Maxwellian satis�es the properties:M(0) � 0 and(h3') �uM(u) > 0; ZXM(u)d� = u; M(u) 2 L1 \ L1(X)



HYDRODYNAMIC AND DIFFUSIVE LIMITS 21It is easy to hek that under (h3') the model is ontrative and satis�es allof hypotheses (h0){(h3). In addition there is an H-estimate for this model(5.2) �t ZX Z f"0 M�1(v)dvd� + divx 1" ZX Z f"0 M�1(v) dxd�+ 1"2 ZX(f " �M(u"))(M�1(f ")� u") d� = 0By (h3') the last integrand is positive and vanishes only if f = M(u). Weonlude that as "! 0, along a subsequene, f "�M(u")! 0 a.e. and thus(f1) is ful�lled for the BGK-model.For the di�usive limit we impose the strutural hypothesis(h4) Z ai(�)M(u; �) d� = 0; for every i 2 f1; : : : ; dg:The ollision operator for the BGK is C(f) = �f +M(u) and the linearizedollision operator is given byhC 0(f); gi = �g + � Z g d���uM(u):Therefore, N�C 0(f)� = span f�uM(u)g ;R�C 0(f)� = nh : Z h d� = 0oand we see that (h4) implies (h5) is ful�lled. The limiting equation in thedi�usive limit beomes(5.3) �tu� dXi;j=1 �xi�xj ZR ai(�)aj(�)M(u; �) d� = 0:In the next theorem we validate the di�usive limit. This result has beenproved in [5℄, and our interest here is to show an alternative argument forproving ompatness that will be used later in onnetion to more generalollision operators. Also, the limit here is understood in the dissipative sense.Proposition 7. For the BGK model, under hypotheses (h3') and (h4), ifja(�)j 6M and the initial data satisfy the uniform bounds(5.4) M(a) 6 f "0 6M(b) for some a < b;sup">0 kf "0kL1 + kDxf "0kL1 <1;



22 M. PORTILHEIRO AND A.E. TZAVARASthen u" ! u a.e. and in Lplo([0; T ℄� Rd), for 1 6 p < 1, and u 2C�[0; T ℄;L1(Rd)� \ L1(0; T )�Rd) is a solution of (5.3) in the dissipativesense.Proof : We have already seen that (f1) holds and we will show below that (f2)holds as well. The result then follows from Theorem 6.To obtain ompatness in this setting we modify the argument of Theo-rem 4. We again use [28, Lemma 9℄, but instead of applying it diretly tothe onservation of mass(5.5) �tu" + divx 1" Z a(�)f " d� = 0;we employ an equation that better approximates the limiting response in thedi�usive sale. To this end, we multiply (5.1) by " a(�), integrate in � anduse (h4) to obtain�t Z " a(�)f " d� + divx Z a(�)
 a(�)f " d� = �1" Z a(�)f " d�:Then (5.5) gives(5.6) �t�u" � " divx Z a(�)f " d�� = �xi�xj Z ai(�)aj(�)f " d�:We apply to (5.6) a variant of Lemma 5. From the L1-ontration property(5.7) Z ju"(t; x+ h)� u"(t; x)jdx6 ZZ jf "(t; x+ h; �)� f "(t; x; �)jdxd� 6 hkDxf "0kL1Next, we multiply (5.6) by a funtion ' in C2(Rd) and integrate between tand t+ � to obtainZ �u"(t+ �; x)� u"(t; x)�'(x) dx= " ZZ a(�) � rx�f "(t+ �; x; �)� f "(t; x; �)�'(x) dxd�+ Z t+�t ZZ ai(�)aj(�)f "(s; x; �)�xi�xj'(x) dxd�ds=: J1 + J2:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 23The uniform BV bound for f "0 and the L1-ontration property imply that f "is uniformly bounded in L1(X;BV (Rd)). Thus we have the following estimatefor J1: jJ1j 6 "KstkDxf "0kL1 supx j'(x)jThe term J2 is estimated as in Lemma 5. First, as in the proof of [28, Lemma9℄ we obtain for h > 0jJ2j = ����Z t+�t Z Gij(s; x)�xi�xj'(x)dxds����6MGij(�; h)�supx j�xi�xj'(x)j+ 1h2 supx j'(x)j� ;whereMGij(�; h) := Z t+�t supjyj<hZ jGij(s; x+ y)�Gij(s; x)jdxds= Z t+�t supjyj<hZ ��� Z ai(�)aj(�)(f "(s; x+ y; �)� f "(s; x; �))d����dxds6M2� hkDxf "0kL1:Combining the above estimates we obtain(5.8) ��� Z �u"(t+ �; x)� u"(t; x)�'(x)dx���6 Kst�" supx j'(x)j+ �h� supx j�xi�xj'(x)j+ 1h2 supx j'(x)j��The rest of the argument is lassial. In (5.8) we introdue as a test funtion'Æ = �Æ ? sgn (u"(t+ �; �)� u"(t; �))where �Æ is a standard molli�er. Using (5.7) we obtainZ ��u"(t+ �; x)� u"(t; x)��dx 6 2!u(t; Æ) + C�"+ �h( 1Æ2 + 1h2 )�6 Kst�"+ Æ + �h( 1Æ2 + 1h2 )��and upon optimizing in Æ and h(5.9) Z ��u"(t+ �; x)� u"(t; x)��dx 6 Kst("+ � 1=2) :



24 M. PORTILHEIRO AND A.E. TZAVARASUsing (5.7), (5.9) and proeeding as in item 7 of Proposition 11, we see thatfu"g is sequentially preompat in C�[0; T ℄;L1lo(Rd)�.5.2. Disrete veloity systems. We onsider a seond example desribingan interation of partiles with disrete veloities.(5.10) 8>>><>>>: �tf0 + 1"a0 � rxf0 = � 1"2 dXi=1 (hi(f0)� fi) ;�tfi + 1"ai � rxfi = � 1"2 (fi � hi(f0)) ; i = 1; : : : ; d:The hydrodynami limit for this model is studied in [13℄. The model anbe obtained as mesosopi saling of a stohasti partile system ([14℄). Thebehavior in the di�usive regime resembles the BGK model and we give abrief outline.It is assumed that for eah i in f0; : : : ; dg(5.11) hi(0) = 0; �hi�f0 > 0and that the initial data satis�es the uniform bounds(5.12) sup">0; i2f0;:::;dg kf "i kBV + kf "i kL1 <1:The system is equipped with onservation of the mass u = f0 +P fi. TheMaxwellians are the vetors of the form (f0; h1(f0); : : : ; hd(f0)) and the modelis endowed with an H-theorem:(5.13) �t "12f 20 +Xi  i(fi)#+ 1" divx "a012f 20 +Xi ai i(fi)#+ 1"2Xi �f0 � h�1i (fi)� (hi(f0)� fi) = 0;where  i(z) = R z0 h�1i (�) d� are onvex. The last term is positive due to(5.11) (see [13℄).To onsider the di�usive saling, we plae the strutural hypothesis(5.14) a0f0 + dXi=1 aihi(f0) = 0;



HYDRODYNAMIC AND DIFFUSIVE LIMITS 25so that hydrodynami limit is trivial ut = 0. The expeted equation in thedi�usive saling is(5.15) �tb(w)� divx dXi=1 ai(ai � rxhi(w)) = 0;where u = b(w) := w +Pi hi(w).To prove onvergene in the di�usive saling, we validate assumptions (f1)and (f2) and invoke Theorem 6. The identity (5.13) implies thatb(f "0)� u" =Xi (hi(f "0)� f "i )! 0 for a.e. (t; x):Sine b is inreasing this means f "0 � b�1(u") ! 0 and thus (f1) is satis�ed.To validate (f2) we observe that the onservation of mass�t(f0 +Xi fi) + 1" divx(a0f0 +Xi aifi) = 0an be expressed by using (5.14) and (5.10) in the form(5.16) �t u� " divx dXi=1 fi! = divx dXi=1 ai(ai � rx)fiOn the one hand this implies that the di�usive limit (formally) satis�es (5.15),on the other hand one an base on (5.16) an argument as in the proof ofTheorem 7 to show that fu"g is sequentially preompat in L1lo(R+�R d ).5.3. A ontinuous kineti model for a mixture of partiles. We on-sider a kineti model desribing a mixture of two kinds of partiles eah kindonverting to the other kind of partiles, but not interating with partilesof the same kind. The model has ertain analogies with a disrete modelstudied in [26℄.We onsider two partile densities, f and g, where f is a funtion of (t; x; �)and g a funtion of (t; x; �). The kineti variables are distint, namely � 2 Xand � 2 Z where X \ Z = ;. The system governing the interation of the



26 M. PORTILHEIRO AND A.E. TZAVARAStwo types of partiles is(5.17)�tg + �(�) � rxg = C1(f; g)(�) := � Z (a(�; �)A(g)� b(�; �)B(f)) d��tf + �(�) � rxf = C2(f; g)(�) := � Z (b(�; �)B(f)� a(�; �)A(g)) d�;where a and b are positive funtions, and A and B stritly inreasing withA(0) = B(0) = 0. We disuss onditions on the parameters so that thestrutural hypotheses from the previous setions are ful�lled.5.3.1. Contration property. Clearly the mass u := R g d� + R f d� is on-served. Let us hek the ontration property:Z (C1(f; g)� C1( �f; �g))sgn (g � �g)d� + Z (C2(f; g)� C2( �f; �g)sgn (f � �f)d�= � ZZ sgn (g � �g) �aA(g)� bB(f)� aA(�g) + bB( �f)�+ sgn (f � �f) �bB(f)� aA(g)� bB( �f) + aA(�g)� d�d�= ZZ �sgn (f � �f)� sgn (g � �g)��a(A(g)�A(�g))� b(B(f)� B( �f))� d�d�6 0;sine a; b > 0 and A and B are monotone. This is hypothesis (h2). Hypothe-ses (h0) and (h1) are obvious.5.3.2. Entropy and Maxwellians. Maxwellians for this model will ome out ofan analysis of kineti entropies and an assoiated \H{theorem". Let A0 = A,B0 = B and note that A, B are onvex funtions. Multiplying the �rstequation in (5.17) by  A(g) and the seond by 'B(f), where  =  (�) > 0,' = '(�) > 0, integrating the resulting identities in � and �, respetively,and adding we obtain�t�Z  (�)A(g) d� + Z '(�)B(f) d��+ divx�Z �(�) (�)A(g) d� + Z �(�)'(�)B(f) d��+ ZZ ( (�)A(g)� '(�)B(f)) (a(�; �)A(g)� b(�; �)B(f)) d� d� = 0:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 27Assuming the funtions a and b have the form(5.18) (a(�; �) = d(�; �) (�)b(�; �) = d(�; �)'(�) d > 0;  > 0; ' > 0;the last term is positive and the model is equipped with the following versionof H-Theorem
(5.19) �t�Z  (�)A(g) d� + Z '(�)B(f) d��+ divx�Z �(�) (�)A(g) d� + Z �(�)'(�)B(f) d��+ ZZ ( (�)A(g)� '(�)B(f))2 d(�; �) d� d� = 0The Maxwellians geq(�), feq(�) satisfy (�)A(geq(�)) = '(�)B(feq(�)) = �for some onstant � and thus an be determined by(5.20) geq(�) = A�1� � (�)� ; feq(�) = B�1� �'(�)� ; � 2 R :If we want these Maxwellians to be in L1 we need to plae tehnial hy-potheses relating the growth of A, B, with the growth of '(�),  (�). Forsimpliity, we will work out only the ase when the kineti variables takevalues in ompat sets, X and Z. The total mass of a Maxwellian
(5.21) m(�) := ZX feq d� + ZZ geq d�= ZX B�1� �'(�)� d� + ZZ A�1� � (�)� d�is a stritly inreasing funtion of �. Therefore, Maxwellians may be re-parametrized in terms of their total mass and (h3) is satis�ed.



28 M. PORTILHEIRO AND A.E. TZAVARAS5.3.3. Hydrodynami limit. We onsider now the hydrodynami limit for(5.17), (5.18)(5.22) �tg + � � rxg = �1" ZX d ( A(g)� 'B(f)) d�;�tf + � � rxf = �1" ZZ d ('B(f)�  A(g)) d�and prove the onvergene of the solutions to the assoiated onservationlaw.Proposition 8. Let the initial data satisfy uniform bounds as in (3.3) andassume a(�; �) = d(�; �) (�), b(�; �) = d(�; �)'(�) where ',  and d are posi-tive funtions, X and Z are ompat sets and A and B are stritly inreasingwith A(0) = B(0) = 0. Then the total mass, u", of the mixture model (5.22)satis�es u" ! u for a.e. (t; x), where u is the entropy solution of a salaronservation law(5.23) �tu+ divx F (u) = 0:Proof : We apply the general theory of setion 3 to justify this hydrodynamilimit. We need to justify (f1). We use (5.19) and proeed as in Theorem 4to show that along a subsequene u" ! u for a.e. (t; x) and  (�)A(g"(�))�'(�)B(f "(�))! 0 for a.e. (t; x) and (�; �). Set�"(t; x; �) =  A(g"); ��"(t; x) = 1jZj ZZ �"d�;�"(t; x; �) = 'B(f "); ��"(t; x) = 1jXj ZX �"d�and note that by the monotoniity of A and B��" � ��" ! 0f " � B�1� ��" �! 0; g" �A�1� ��"' �! 0u" � ZX B�1� ��"'(�)� d� � ZZ A�1� ��" (�)�! 0Sine m(�) in (5.21) is inreasing, (5.3.3) implies ��" ! � = m�1(u) fora.e. (t; x). Aordingly, f " and g" onverge strongly to the Maxwellian with



HYDRODYNAMIC AND DIFFUSIVE LIMITS 29parameter �(t; x). The limit satis�es the salar onservation law�tm(�) + divxG(�) = 0G(�) = ZZ �A�1�� � d� + ZX �B�1��'� d�Using (5.21) the latter may be expressed in the more onventional form (5.23)with F (u) = �G Æm�1�(u).5.4. Mixture model - di�usive saling. For the nonlinear model (5.22)it is not easy to obtain ompatness of u" in the di�usive saling. Instead,we onsider a linear model satisfying (5.18) and A(z) = B(z) = z:(5.24) �tg + 1"� � rxg = � 1"2 ZX d ( g � 'f) d�;�tf + 1"� � rxf = � 1"2 ZZ d ('f �  g) d�:The H-theorem now takes the form�t ZZ  g22 d� + ZX 'f 22 d� + 1" divx ZZ � g22 d� + ZX �'f 22 d�+ 1"2 ZZX�Z( g � 'f)2 d d� d� = 0;the Maxwellians are(5.25) feq(�) = �'(�); geq(�) = � (�) ;and their total mass is related to � by the relation(5.26) m(�) = ZX feq d� + ZZ geq d� = ��ZX 1'd� + ZZ 1 d��:The balane hypothesis (h4) for this model isZZ �(�) 1 (�) d� + ZX �(�) 1'(�) d� = 0:



30 M. PORTILHEIRO AND A.E. TZAVARAS5.4.1. Collision operator. The ollision operator C is linear and may beexpressed as C �gf� = �RX d ( g � 'f) d�RZ d ('f �  g) d�� = (JI�A) �gf� ;where I is the identity, J is the invertible matrixJ = � (�)d1(�) 00 '(�)d2(�)� ;with d1(�) = ZX d(�; �)'(�) d� > 0; d2(�) = ZZ d(�; �) (�) d� > 0and A is the ompat operator on E = L1(Z)� L1(X) de�ned byA �gf� = �RX d(�; �)'(�)f(�) d�RZ d(�; �) (�)g(�) d�� :Observe thatN (C) = N (JI�A) = f(g; f) 2 E : g = � ; f = �'g;R(C) = N (JI�A?)? = f(g; f) 2 E : ZZ gd� + ZX fd� = 0gand R(C) is losed. Moreover, C : N (C)? ! R(C) is invertible and itsinverse K : R(C)! E=N (C) is a bounded linear map(5.27) K �gf� = �K1(g; f)K2(g; f)�5.4.2. Di�usive limit. The balane hypothesis (h4) for this model beomesZZ �(�) 1 (�) d� + ZX �(�) 1'(�) d� = 0and (h5) follows from the above analysis of the ollision operator.We proeed to obtain the limiting equation in the di�usive saling. Themass u" satis�es �tu" + 1" divx � ZZ �g" d� + ZX �f " d�� = 0:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 31By inverting the ollision operator C we obtain from (5.24)1" �g"f "� = �K �"�tg" + � � rxg""�tf " + � � rxf "� = �"�tK �g"f "�� �xjK ��jg"�jf "�(here we are using the summation onvention). Therefore,(5.28) �t�u" � "�xi�ZZ �iK1(g"; f ")d� + ZX �iK2(g"; f ")d���= �xi�xj �ZZ �iK1(�jg"; �jf ")d� + ZX �iK2(�jg"; �jf ")d��Equation (5.28) provides an eÆient approximation of the problem in thedi�usive regime. Using (5.27) and proeeding as in Theorem 9 of setion6.3 we show that, for data satisfying uniform BV bounds, the total mass ispreompat in L1lo(R+�R d ) and along a subsequene u" ! u for a.e. (t; x).The H-estimate ensures that  (�)g"(�) � '(�)f "(�) onverges point wisefor a.e. (t; x) and a.e. (�; �) Set �" = 1jZj R  g". Then, as in the proof ofProposition 8, we haveZX jf " � 1'�"jd� ! 0; ZZ jg" � 1 �"jd� ! 0;u" � �"� ZX 1'd� + ZZ 1 d��! 0and thus (f " ! 1m 1'u;g" ! 1m 1 u; where m = ZX 1'd� + ZZ 1 d�:We an now pass to the limit as "! 0 in (5.28) and onlude that u satis�esthe equation(5.29) �tu(t; x) =Xi;j 1mDij�xi�xju(t; x)with Dij = ZZ �iK1(�j' ; �j )d� + ZX �iK2(�j' ; �j )d�Unlike in the radiative transfer example of the next setion, the di�usionmatrix Dij an not be omputed expliitly for the mixture model.



32 M. PORTILHEIRO AND A.E. TZAVARAS6. Di�usion approximation for waves in random mediaAn important lass of equations that falls under the above formalism omesfrom rather general symmetri hyperboli systems of the form(6.1) A(x)�u�t (t;x) +Xi Di �u�xi(t;x) = 0;u(0;x) = u0(x);where u is a omplex N -vetor and x 2 R3 . The matrix A(x) is assumed tobe symmetri and positive de�nite while the matries Di are symmetri andindependent of x and t. Three partiular examples of models of this type areaousti waves, eletromagneti waves and elasti waves.If we de�ne the Wigner distribution for the N -vetor solutions of this sys-tem as the N �N matrixW (t;x;k) = 1(2�)d Z eik�yu(t;x� y2 )u�(t;x+ y2 ) dy;where u� = �ut is the onjugate transpose of u. Then W (t;x;k) satis�es aertain transport equation. For the above mentioned examples this equationlooks like the equation for radiative transfer ([7℄).The general referene we are following is [22℄, from where we take thenotation used here.We want to understand this type of equation with small random perturba-tions, onsidering instead the system(6.2) A(x)fI + "1=2V �x"�g�u"�t +Xi Di�u"�xi = 0;where V (x) is a matrix valued random proess with zero mean, statistiallyhomogeneous in x. In this ase it is neessary to onsider the saled Wignerdistribution matrixW "(t;x;k) = 1(2�)d Z eik�yu"(t;x� "y2 )u�"(t;x+ "y2 ) dy:To understand the behavior ofW " we an formally expand it terms of " witha new \fast" variable � = x="W "(t;x;k) =W (0)(t;x;k) + "1=2W (1)(t;x; �;k) + "W (2)(t;x; �;k) + : : : :



HYDRODYNAMIC AND DIFFUSIVE LIMITS 33Then the statistial average of W ", hW "i should be lose to W (0) and satisfythe radiative transfer-like transport equation�W�t + k � rxW = �LWwhere �LW (x;k) = 4� Z R̂(p� k)Æ(k2 � p2)�W (x;p)�W (x;k)�dp:We an expand W (0)(t;x;k) asW (0)(t;x;k) =X�;i;j a�ij(t;x;k)B�;ij(x;k);where a�ij are salar funtions and B�;ij areN�N matries de�ned in terms ofthe eigenvetors of the dispersion matrix of the system (see [22℄ for details.)Under the appropriate di�usive saling, t! "2t, x! "x, we expet to obtainin the limit a di�usion equation for the oherene matries.6.1. Di�usive limit for aousti waves. The aousti wave equations forveloity and pressure, u and p are(6.3) ��u�t (t;x) +rp(t;x) = 0;��p�t (t;x) + divu(t;x) = 0;with t > 0, x 2 R3. In the general ase both the density �(x) and theompressibility �(x) depend on x. We will onsider only the homogeneousbakground ase, �; � = onst. The sound speed is then onstant, v = 1p�� .In the absene of polarization the radiative transport system simpli�es,and it is enough to onsider one salar equation for the amplitude.(6.4) "2�ta" + "vk̂ � rxa" = Zjk0j=jkj�(k;k0)a"(k0) d
(k̂0)� �(jkj)a"(k)gHere d
 is the unit sphere surfae element, k̂ = k=jkj and the total satteringross-setion is �(jkj) = Zjk0j=jkj �(k;k0) d
(k̂0):



34 M. PORTILHEIRO AND A.E. TZAVARASIn (6.4) and in the rest of this setion, to simplify the notation we will oftenwrite a(k) for a funtion depending on (t;x;k) if no onfusion an arise. Weare onsidering only rotationally invariant sattering so that the di�erentialsattering ross-setion �(k;k0) is a nonnegative funtion of jkj and k̂ � k̂0only. We will write �(r; �), r = jkj and � = k̂ � k̂0, to denote this funtion.This radiative transport equation for the amplitude a" is of the form of(1.4) with ollision operatorC(a)(k) = Zjk0j=jkj �(jkj; k̂ � k̂0)a(k0) d
(k̂0)� �(jkj)a(k):In this ase the kineti variable is k̂ = ! 2 SN�1 and r = jkj ats as aparameter. The averaging is done on spheresw(t;x; r) = Zjkj=r a(k) d
(k̂);so the limit is an equation for a funtion of (t;x; r). The \mass" w(t;x; r)represents the average of the amplitudes a"(t;x;k) over all (unit) diretionsof wave vetors k with jkj = r. Note that the integration is arried over theunit sphere and d
(k̂) is the surfae measure of the unit sphere.6.2. Hypotheses for the model. Now we hek that the hypotheses (h0){(h5) and assumptions (a1) and (a2) are all satis�ed for this model. Notiethat here we are onsidering a vetor valued kineti variable k.6.2.1.Hypotheses (h0){(h3). Hypothesis (h0) is obvious. To show that (h1)holds take any funtion a and integrate the ollision termZjkj=r C(a)(k)d
(k̂)= ZZjkj=jk0j=r�(jkj; k̂ � k̂0)a(k0) d
(k̂0) d
(k̂)� Zjkj=r�(jkj)a(k) d
(k̂)= Zjk0j=r a(k0)�(jk0j) d
(k̂0)� Zjkj=r �(jkj)a(k) d
(k̂) = 0:This means that w(r) = R a(k)dk is the onserved quantity in (6.4).



HYDRODYNAMIC AND DIFFUSIVE LIMITS 35The operator C is negative in L2 ([22℄)Zjkj=r C(a)(k)a(k)d
(k̂)= �12 ZZjkj=jk0j=r(a(k)� a(k0))2�(jkj; k̂ � k̂0) d
(k̂0) d
(k̂) 6 0
Solutions of C(a)(k) = 0 are of the form a(k) =Ma(jkj). These are preiselythe Maxwellians, whih an be parameterized in terms of their mass w(r).Also, C de�nes a ontration in L1: Given two funtions a and �a,Zjkj=r Zjk0j=jkj �(jkj; k̂ � k̂0)(a(k0)� �a(k0)) d
(k̂0) sgn (a(k)� �a(k))d
(k̂)6 Zjk0j=r ja(k0)� �a(k0)j Zjkj=r �(jk0j; k̂ � k̂0) d
(k̂) d
(k̂0)= Zjk0j=r ja(k0)� �a(k0)j�(jk0j) d
(k̂0);
hene (h2) follows.Finally we obtain (f1) from the following H-Theorem. For �xed r > 0multiplying (6.4) by a" and integrating over the unit sphere of wave numberdiretions with jkj = r we obtain�t Zjkj=r (a")2 d
(k̂) + v" divx Zjkj=r k̂(a")2 d
(k̂)+ 1"2 ZZjkj=jk0j=r �(r; k̂ � k̂0)�a"(k0)� a"(k)�2 d
(k̂) d
(k̂0) = 0:



36 M. PORTILHEIRO AND A.E. TZAVARASFrom here we have that for any T > 0Z T0 Z Zjkj=r ja"(t;x;k)� w"(t;x; r)j d
(k̂) dx dt6 Z T0 Z ZZjkj=jk0j=r ja"(k)� a"(k0)j d
(k̂) d
(k̂0) dx dt6 Kst "2 ka"kL2:6.2.2. Assumptions (a1), (a2), (h4) and (h5). Taking now two funtions aand �a in L1(SN�1) we haveZ Zjkj=r jC(a)� C(�a)jd
(k̂) dx 6 Kst ZZ ja � �ajd
(k̂) dx;whih implies (a1). Assumption (a2) is obvious. Sine for a Maxwellianfuntion Ma Zjkj=r k̂Ma(jkj) d
(k̂) = 0;the strutural hypothesis (h4) is automatially satis�ed. In order to alulatethe formal limit (see setion 4) we need to invert the problemhC 0(�0); �1i = vk̂ � rx�0for a Maxwellian �0. In our ase this equation is(6.5) Zjk0j=jkj�(jkj; k̂ � k̂0)�1(k0) d
(k̂0)� �(jkj)�1(k) = vk̂ � rx�0:where �0 = �0(t;x; jkj).Following [22, Setion 5.1℄ the funtion k̂�rx�0(t;x; jkj) is an eigenfuntionof the operator A de�ned byAf(k) = Zjk0j=jkj �(jkj; k̂ � k̂0)f(k0) d
(k̂0);



HYDRODYNAMIC AND DIFFUSIVE LIMITS 37orresponding to the eigenvalue�(jkj) = 2� 1Z�1 �(jkj; �)� d�:This an be seen as follows. Fix k = rk̂, a 2 R3 and let Q be a rotation suhthat Qk̂ = e1, the �rst unit vetor. Then, k̂ � a = e1 �Qa andA(k 7! k̂ � a)(k) = Zjk0j=r �(jkj; k̂ � k̂0)(k̂0 � a) d
(k̂0)= Zjk00j=r �(r;Qk̂ � k̂00)(QT k̂00 � a) d
(k̂00)= Zjk0j=r �(r; k̂0 � e1)�k̂0 �Xj (Qa)jej� d
(k̂0)= �2� Z 1�1 �(r; �)�d��k̂ � awhere we used (Qa)1 = k̂ � a, the substitution k̂00 = Qk̂0 and the formulaZ �(r; k̂0i)k̂0j d
(k̂0) = �2� Z 1�1 �(r; �)�d��Æij(whih is seen by expressing the integral in spherial oordinates).A speial solution of (6.5) is�1(t;x;k) = � v�(jkj)� �(jkj)k̂ � rx�0(t;x; jkj):The null spae of C 0(�0) = C(�) is the family of Maxwellians, thus the generalsolution of (6.5) is �1(t;x;k) = �1(t;x;k) + �(t;x; jkj):From (4.3), the total massw(t;x; r) = Zjkj=r �0(t;x; jkj)d
(k̂) = 4��0(t;x; r)



38 M. PORTILHEIRO AND A.E. TZAVARASsatis�es the paraboli equation�tw(t;x; r) = �xi�xj Zjkj=r k̂ik̂j v2�(jkj)� �(jkj)�0(t;x; jkj) d
(k̂)= 13 v2�(jkj)� �(jkj)�xw(t;x; r):6.3. Compatness. We will now omplete the rigorous validation of thedi�usive limit by establishing the ompatness assumption.Theorem 9. If the initial data satis�es(6.6) sup">0 ka"0kL1 + ka"0kL1 + kDxa"0kL1 <1;then, for r �xed, fw"(�; �; r)g is sequentially preompat in C([0; T ℄; L1lo(R3))and any limit point w solves, in the dissipative sense, the di�usion equation�tw(t;x; r) = divx[D(r)rxw(t;x; r)℄;where the di�usion oeÆient is as in [22℄D(jkj) = v23(�(jkj)� �(jkj)):The proof is based on the following lemma.Lemma 10. For initial data satisfying (6.6), the set fw"(�; �; r)g is, for eah�xed r, sequentially preompat in C([0; T ℄; L1lo(R3)).Proof : This ompatness is obtained by an argument analogous to Proposi-tion 7. However, we need to invert the ollision operator in order to obtainthe same estimate. Consider the linear integral equationg(k) =�(jkj)f(k)� Zjk0j=jkj �(jkj; k̂ � k̂0)f(k0) d
(k̂0)=(�I�A)(f)(k);where I is the identity operator and A is a ompat operator, both operatorsde�ned from X := L1(S2) to X itself. The kernel of �I�A is NM , the set ofMaxwellians, and has dimension 1. From the Fredholm theory for ompatoperators (see for example [18℄ for details) the range R(�I�A) is losed and



HYDRODYNAMIC AND DIFFUSIVE LIMITS 39has odimension one. In fat it is also true that NM is the omplementaryspae to the range and we an invert the restrition of �I�A on the quotientspaes: �I�A : X=NM ! X=NM has an inverseK : X=NM ! X=NM :The inverse is a bounded linear operator:(6.7) kKgkL1(S2) 6 kKk kgkL1(S2); for g 2 X=NM :Consider now the equation (6.4). On the one hand we have�tw" + v" divx Zjkj=r k̂a" d
(k̂) = 0;on the other hand, upon inverting (6.4), we obtain1"a" = (�I�A)�1�� "�ta" � vk̂ � rxa"�= �"�tK(a")� v�xiK(k̂ia")and therefore w" satis�es the approximation equation�t�w" � "v�xiH"i � = v2�xi�xjG"ij;(6.8) with H"i = Zjkj=r k̂iK(a") d
(k̂) and G"ij = Zjkj=r k̂jK(k̂ia")d
(k̂):The L1-ontration property and the uniform BV bounds for the data (6.6)imply estimates for the L1-moduli of ontinuity:Z Zjkj=r ja"(t;x+ h;k)� a"(t;x+ h;k)jd
(k̂)dx 6 Kstjhjand, using (6.7),Z jH"i (t;x+ h; r)�H"i (t;x; r)jdx 6 Kstjhj



40 M. PORTILHEIRO AND A.E. TZAVARASMG"ij(�;h) = Z t+�t supjyj<jhj Z jG"ij(s;x+ y; r)�G"ij(s;x; r)jdxds6 Kst Z t+�t Z Zjkj=r ja"(s;x+ h;k)� a"(s;x+ h;k)jd
(k̂)dxds6 Kst� jhjWe then dedue the ompatness of fw"g by using lemma 5 and an argumentas in the proof of Proposition 7.Proof of Theorem 9: Fix r > 0. Along a subsequene,w"(t;x; r) = Zjkj=r a"(t;x;k) d
(k̂)! w(t;x; r) for a.e. (t;x):From the H-estimateZ T0 Z Zjkj=r ja"(t;x;k)� w"(t;x; r)j d
(k̂) dx dt! 0a"(t;x;k)! 4�w(t;x; r) for a.e. (t; x) and d
-a.e. k̂:At this point we have validated (f1) and (f2) and we an onlude by invokingTheorem 6. In any ase we also give a formal diret argument. We an passto the limit in (6.8) using (6.7) and the fat that H"i is uniformly boundedin BVx to onlude that w satis�es�tw = v2�xi�xj4� Zjkj=r k̂iK(wkj)d
(k̂):Note that gj = K(kjw) if and only if (�I�A)gj = wkj, hene (6.2.2) impliesgj = w���kj and w satis�es�tw = v2�(r)� �(r)�xi�xj4�w Zjkj=r k̂ikjd
(k̂) = D(r)�xw:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 417. Compatness of mass in the di�usive salingIn this setion we establish the ompatness property (f2) in the di�usivesaling(1.4) �tf " + 1"a(�) � rxf " = 1"2C(f ");f "(0; x; �) = f "0 (x; �):Apart from (h4) and (h5), we need some extra assumptions on the linearizedollision operator (see below). (These are not too restritive and are validfor the examples of setion 5 and 6.) We also need a strengthened version of(f1),(f10) Z T0 Z Z jf " �M(u")j2d�dxdt = O("2) as "! 0;whih in appliations follows from an H-theorem.In the Taylor expansion (4.7),C(f0 + f1) = C(f0) + C 0(f0)f1 + �C 00(f0) : (f1; f1)�C 00(f0) : (f1; f1) := h 1Z0 tZ0 C 00(f0 + sf1) ds dt; (f1; f1)iwe set f0 = M" := M(u") and f1 = f "M := f " �M", and use it along with(h3) in (1.4) to obtain(7.1) 1"C 0(M")f "M = "�tf " + a(�) � rxf " � 1" �C 00(M") : (f "M ; f "M):If we follow the ompatness statements we proved in the previous setionswe see that we want to invert the operator Cu := C 0(M(u)) in order toestimate the seond term of (1.5),�tu" + 1" divx Z a(�)f " d� = 0;whih due to (h4) we an write as(7.2) �tu" + 1" divx Z a(�) (f " �M(u")) d� = 0:This motivates the following assumptions for the ollision operator. LetX = L1(X), N(u) be the null spae of Cu and R(u) its range. We will



42 M. PORTILHEIRO AND A.E. TZAVARASassume that(h6) dimN(u) = odimR(u) = 1 for every u 2 R :Note that the �rst part of (h5) already implies dimN(u) = 1. Of oursewe an de�ne the inverse of Cu on R(u) with values in the quotient spaeX=N(u) or equivalently in a omplementary spae to N(u), R�(u),Du := C�1u : R(u)! R�(u);whih is bounded due to the fat that R(u) is the range of a linear operatorwith �nite odimension, and thus losed. It is onvenient however to onsidera pseudoinverse of Cu, whih is guaranteed to exist sine this operator has�nite index: there exist operators Tu; K1;u; K2;u : X ! X, Tu bounded,K1;u and K2;u ompat, suh thatTuCu = I +K1;u and CuTu = I +K2;u;where I is the identity. We will use this in partiular in the following way.Given g 2 R�(u) and h in X suh thatCu(g) = h;obviously h 2 R(u). Sine g is in the omplementary spae R�(u) we aninvert this relation and getg = Duh = DuIh = Du(CuTu �K2;u)h= DuCuTuh�DuK2;uh= Tuh�DuK2;uh:Note that sine both h and CuTuh are in R(u), then so is K2;uh, so thatthe last expression is well de�ned. Note also that the operator DuK2;u isompat, de�ned on the whole spae X and thus(7.3) g = Suh;where Su : X ! X is a bounded operator. We further assume that thisoperator depends smoothly on the parameter u and is uniformly bounded:(h7) kSugkX 6 �1kgkX ;for some onstant �1 independent of u, and(h8) 8><>: The mapping R 3 u 7! Su 2 L(X;X)is C2 with respet to the norm topology and itsderivatives are bounded uniformly in u:



HYDRODYNAMIC AND DIFFUSIVE LIMITS 43We will denote the �rst derivative of Su by Lu and the seond by Ju.Finally, in order to ontrol the seond order term, we assume (f10) and thatthe ollision operator is twie di�erentiable and satis�es(h9) k �C 00(h) : (g; g)kX 6 �2kgk2L2(X); for every h 2 L1 \ L1(X);where �2 is a onstant independent of h.With these assumptions we an state the following ompatness result.Proposition 11.With the above assumptions on the ollision operator, (h0){(h9), assumption (f10), and for ja(�)j 6M , if the initial data satis�essup">0 kf "0kL1 + kf "0kL1 + kDxf "0kL1 <1;then the set fu"g, where u"(t; x) = R f "(t; x; �) d�, is sequentially preompatin C([0; T ℄; L1lo(Rd)) for any T > 0.Proof : 1. From (1.4) we obtained (7.1). Using (7.3) here we an write1"f "M = "Su�tf " + Sua � rxf " � Sug";where g" := 1" �C 00 : (f "M ; f "M):We want to bring the derivatives in t and x out of the operator Su, but sinenow this depends on u"(t; x) we need to aount for the derivative of theoperator. Thus we have"�1f "M ="�tSu (f ") +Xj �xjSu (ajf ")� Sug"� Lu ("u"tf ")� Lu (f "a � rxu") :Sine "u"t = � divx R a(�)f " d� we an rewrite the last identity in the form"�1f "M ="�tSu (f ") +Xj �xjSu (ajf ")� Sug"+Xj �xjLu�f " Z�0 aj(�0)f "(�0)d�0 � ajf " Z�0 f "(�0)d�0� :



44 M. PORTILHEIRO AND A.E. TZAVARASWe now multiply this by ai(�) and integrate in �, substituting in (7.2) toobtain(7.4) �tu" =� 1"Xi �xi Z ai(f " �M(u")) d�="�t divxA" � divxB" +Xi;j �xi�xj�C ij" +Dij" �;whereA" = Z a(�)Suf "d�; B" = Z a(�)Sug"d�; C ij" = Z aiSu�ajf "�d�and Dij" = Z aiLu�f " Z�0�aj(�0)� aj(�)�f "(�0)d�0� d�:2. The idea now is the same as in the proof of Lemma 10. From theontration property and the BV bounds on the initial data we get an L1-modulus of ontinuity for u" in x. To estimate the t-modulus of ontinuitywe need to estimate the x-modulus of ontinuity of the terms on the righthand side of (7.4). This now requires more tehnial omputations sine theoperators involved in these terms depend on x through u".3. Estimate for A"Z jA"(x+ h)�A"(x)j dx= Z ���Z a(�)�Su(x+h)f "(x+ h)� Su(x)f "(x)� d���� dx6 Z ���Z a(�)�Su(x+h) � Su(x)�f "(x+ h) d���� dx+ Z ���Z a(�)Su(x)�f "(x+ h)� f "(x)�d���� dx=:A1 + A2:Sine we an write(Su(x+h) � Su(x))f = 1Z0 �u"(x+ h)� u"(x)�Lv(s)f ds;



HYDRODYNAMIC AND DIFFUSIVE LIMITS 45where v(s) := su"(x+ h) + (1� s)u"(x), for the �rst of the above terms wehave A1 6M Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z Lv(s)f "(x+ h) d����� ds dx6Kst Z ��u"(x+ h)� u"(x)��dx ku"(�+ h)kL1 = O(jhj):Here we have used the a priori L1 bounds, (h8) and the x-modulus ofontinuity of u". For the seond term, A2, similarly we haveA2 = Z ����Z a(�)Su�f "(x+ h)� f "(x)� d����� dx6Kst ZZ ��f "(x+ h)� f "(x)�� d� dx = O(jhj);hene we also have(7.5) Z jA"(x+ h)�A"(x)j dx = O(jhj):4. Estimates for C ij" and Dij" . The terms C ij" an be estimated exatly inthe same way as above to obtain(7.6) Z jC ij" (x+ h)� C ij" (x)j dx = O(jhj):The same idea applies to the terms Dij" , but for these we need to observethat the bound on the integrand is obtained in a slightly di�erent way. Morespei�ally we haveZ ��Dij" (x+ h)�Dij" (x)�� dx6 Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z a(�)Jv(s)F "(x+ h) d����� ds dx+ Z ����Z a(�)Lu(x)�F "(x+ h)� F "(x)�d����� dx;where F " = f " Z �a(�0)� a(�)�f "(�0) d�0:



46 M. PORTILHEIRO AND A.E. TZAVARASSine Z jF "(t; x; �)j d� 6 Kstkf "(t; x; �)k2L1(X) 6 Kst;using again (h8) we have the same type of estimate for the �rst of the aboveintegrals:Z ��u"(x+ h)� u"(x)�� 1Z0 ����Z a(�)Jv(s)F "(x+ h) d����� ds dx 6 Kst jhj:To estimate the seond integral note thatjF "(x+ h)� F "(x)j 6Kst ��f "(x+ h)� f "(x)�� kf "kL1(X)+Kstjf "jkf "(x+ h)� f "(x)kL1(X);Hene again from (h8) we �nally get(7.7) Z ��Dij" (x+ h)�Dij" (x)��dx = O(jhj):5. Estimate for B". For the term B", as there is no information on itsmodulus of ontinuity, we proeed to show it gives rise to an error term.From (h7), (h9) and (f10) we obtain(7.8)Z t0 Z ��B"(t; x)��dxdt = Z t0 Z ��� Z Sug"d����dxdt 6 Kst Z t0 ZZ jg"jd�dxdt= Z t0 ZZ j1" �C 00 : (f "M ; f "M)jd�dxdt 6 Kst1" Z t0 ZZ jf " �M"j2d�dxdt= O("):6. Proeeding as in the proof of Proposition 7, we use (7.5), (7.8), (7.6)and (7.7) to obtainZ ��u"(t+ �; x)� u"(t; x)��dx 6 Kst�Æ + "+ "1Æ + �h� 1Æ2 + 1h2��;where the last three terms are the respetive ontributions of the last threeterms in the right hand side of (7.4). Optimizing in Æ and h we again obtain(7.9) Z ��u"(t+ �; x)� u"(t; x)��dx 6 Kst�"(1 + 1� 1=2) + � 1=2� :



HYDRODYNAMIC AND DIFFUSIVE LIMITS 477. Reall now thatZ ��u"(s; x+ h)� u"(s; x)��dx 6 Kst!(h) :For eah �xed s we hoose a subsequene fu"ng suh that u"n(s; �)! u(s; �)in L1(V ), where V is a ompat subset of Rd . By a diagonal argument wean extrat a subsequene (still denoted by fu"ng) for whih this holds forevery s 2 Q .We want to show that fu"ng is a Cauhy sequene in C([0; T ℄;L1(V )).Given Æ > 0, hoose � < Æ2 and let s1 < : : : < sl be rationals in [0; T ℄ suhthat s1, si+1� si and T � sl are all less that �=2. Then, for any t 2 [0; T ℄ wean �nd a j suh that jt� sj j < � and hene for any n and m, using (7.9) wehave ZV ��u"n(t; x)� u"m(t; x)��dx6 ZV ��u"n(t; x)� u"n(sj; x)��dx+ ZV ��u"n(sj; x)� u"m(sj; x)�� dx+ ZV ��u"m(sj; x)� u"m(t; x)��dx6 �"n + "m� 1=2 + 2Æ�+ sup16i6l ZV ��u"n(si; x)� u"m(si; x)��dx:We an now hoose n and m large enough to make this quantity less than,say, 4Æ.Remark. It is lear that even though we have ompatness in L1, it is notpossible to obtain the limiting equation with traditional tehniques withoutfurther estimates. This is ertainly a strength of using dissipative solutions.It should be pointed though that, for degenerate paraboli equations it is notlear whether the framework of dissipative solutions provides uniqueness, asis the ase with the entropy solutions of Chen-Perthame [8℄. The latterhowever require muh stronger regularity assumptions that are avoided here.For stritly paraboli equations the notions of strong and dissipative solutionsare equivalent.Referenes[1℄ C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transferequations, Comm. Pure Appl. Math. 40 (1987), no. 6, 691{721.
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