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1. Inverse of a tridiagonal matrix
Let us consider the n-by-n nonsingular tridiagonal matrix T

T =




a1 b1
c1 a2 b2

c2
. . . . . .
. . . . . . bn−1

cn−1 an




.

In [4], Usmani gave an elegant and concise formula for the inverse of the
tridiagonal matrix T :

(T−1)ij =

{
(−1)i+jbi . . . bj−1θi−1φj+1/θn, if i ≤ j
(−1)i+jcj . . . ci−1θj−1φi+1/θn, if i > j ,

(1.1)

where θi’s verify the recurrence relation

θi = aiθi−1 − bi−1ci−1θi−2 , for i = 2, . . . , n ,

with initial conditions θ0 = 1 and θ1 = a1, and φi’s verify the recurrence
relation

φi = aiφi+1 − biciφi+2 , for i = n− 1, . . . , 1 ,

with initial conditions φn+1 = 1 and φn = an. Observe that θn = det T .
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In [6], W.F. Trench proposed and solved the problem of finding eigenvalues
and eigenvectors of the classes of symmetric matrices:

A = [min{i, j}]i,j=1,...,n

and

B = [min{2i− 1, 2j − 1}]i,j=1,...,n .

A. Kovačec has presented a different proof of this problem [2]. These two
matrices are in fact particular cases of a more general matrix

C = [min{ai− b, aj − b}]i,j=1,...,n ,

with a > 0 and a 6= b. It is very interesting that, under the above conditions,
C is always invertible and its inverse is a tridiagonal matrix.

Proposition 1.1. The tridiagonal matrix of order n

Tn =




1 + a
a−b −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1




is the inverse of 1
aC.

Proof : Notice that θi’s verify the recurrence relation θi = 2θi−1 − θi−2, for
i = 2, . . . , n − 1, and θn = θn−1 − θn−2, with initial conditions θ0 = 1 and

θ1 = 2a−b
a−b . Then θi = (i+1)a−b

a−b , for i = 1, . . . , n − 1, and θn = a
a−b . The

φi’s verify the recurrence relation φi = 2φi+1 − φi+2, for i = n − 1, . . . , 2,
with initial conditions φn+1 = 1 and φn = 1. Therefore, since φi = 1, for
i = n + 1, . . . , 2, and φ1 = a

a−b .
Consequently, the inverse of Tn is the symmetric matrix such that

(T−1
n )ij = (−1)i+j(−1)j−i

ai−b
a−b
a

a−b

=
ai− b

a

for i ≤ j.
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2. Eigenpairs of a particular tridiagonal matrix
According to the initial section the problem of finding the eigenvalues of C

is equivalent to describing the spectra of a tridiagonal matrix. Here we give a
general procedure to locate the eigenvalues of the matrix Tn from Proposition
1.1.

Let us consider the set of polynomials {Qk(x)} defined by the recurrence
relation given by Q0(x) = 1 and Q1(x) = (ax + 1)Q0(x) ,

Qk(x) = (ax + 2)Qk−1(x)−Qk−2(x) , for k = 2, . . . , n− 1 ,

and

Qn(x) =

(
ax +

2a− b

a− b

)
Qn−1(x)−Qn−2(x) .

Note that each polynomial Qk(x), for k = 0, . . . , n, is of degree k. The last
recurrence relation has the following matricial form:

x




Qn−1(x)
Qn−2(x)

...
Q1(x)
Q0(x)




= −1

a




2a−b
a−b −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1







Qn−1(x)
Qn−2(x)

...
Q1(x)
Q0(x)




+Qn(x)




1
0
...
0
0




.

Since Qk(x) = Uk

(
ax
2 + 2

)− Uk−1
(

ax
2 + 2

)
, for k = 0, . . . , n− 1, and

Qn(x) =

(
ax + 1 +

a

a− b

)(
Un−1

(ax

2
+ 1

)
− Un−2

(ax

2
+ 1

))
−

−
(
Un−2

(ax

2
+ 2

)
− Un−3

(ax

2
+ 1

))

= Un

(ax

2
+ 1

)
− Un−1

(ax

2
+ 1

)
−

−
(

1− a

a− b

) (
Un−1

(ax

2
+ 1

)
− Un−2

(ax

2
+ 1

))
,

where Uk(x), for k = 0, . . . , n, are the Chebyshev polynomials of second kind
of degree k, the zeros of Qn(x) are exactly the eigenvalues of −1

aC, i.e., the
(real) values which satisfy the equality

pn(x) :=
Un

(
ax
2 + 1

)− Un−1
(

ax
2 + 1

)

Un−1
(

ax
2 + 1

)− Un−2
(

ax
2 + 1

) = 1− a

a− b
. (2.1)
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In general, (2.1) means that the eigenvalues of −1
aC are the intersections

of the graph of pn(x) with the line y = 1− a
a−b .

As a first consequence consider the case when a = 1 and b = 0. The eigen-
values of −A are the solutions of the equation Un

(
x
2 + 1

)−Un−1
(

x
2 + 1

)
= 0,

which are, for k = 0, . . . , n− 1,

λk = 2 cos

(
2k + 1

2n + 1
π

)
− 2 .

The value of an eigenvector associated to λk follows immediately:
[

Qn−1(λk) · · · Q1(λk) Q0(λk)
]t

.

Hence we proved the following:

Theorem 2.1 ([2, 6]). The matrix A of order n, n ≥ 3, has the eigenpairs
(λk, vk) given by

λk =
1

2
(1− cos (rk))

−1 and vk = [sin(jrk)]
t
j=1,...,n ,

where

rk =
2k + 1

2n + 1
π ,

for k = 0, . . . , n− 1.

If a = 2 and b = 1, then the eigenvalues of −1
2B are solutions of the

equation Un (x + 1)− Un−2 (x + 1) = 0, which are, for k = 0, . . . , n− 1,

cos

(
2k + 1

2n
π

)
− 1 .

3. Location of eigenvalues
Since pn(x) defined in (2.1) is strictly increasing, even if it is impossible to

evaluate exactly the eigenvalues of C, one can locate them. For example, if
b < 0, then 1− a

a−b > 0, and each eigenvalue λk is located between the zeros

of Un

(
ax
2 + 1

)−Un−1
(

ax
2 + 1

)
and the zeros of Un−1

(
ax
2 + 1

)−Un−2
(

ax
2 + 1

)
,

i.e., lies in the intervals]
2

a

(
cos

(
2k + 1

2n + 1
π

)
− 1

)
,
2

a

(
cos

(
2k − 1

2n− 1
π

)
− 1

)[
,

for k = n − 1, . . . , 1, and λ0 is on the right side of 2
a

(
cos

( 1
2n+1 π

)− 1
)
. If

1− a
a−b < 0, i.e., b > 0, one can make an analogous consideration.
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Let us consider the matrix T6 from Proposition 1.1 with a = −b = 2, i.e.,



3
2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1




.

The eigenvalues of this matrix are located in the intervals

]−0.2514892,−0.0405070[
]−0.6453951,−0.3451392[
]−1.1205366,−0.8576851[
]−1.5680647,−1.4154150[
]−1.8854560,−1.8412535[ .

and one is greater than −0.0290581. In fact, they are approximately

λ0 = −0.0220986
λ1 = −0.2058355
λ2 = −0.5715577
λ3 = −1.0510977
λ4 = −1.5262645
λ5 = −1.8731458 .

-2 -1.5 -1 -0.5 0

The intersection of the graphs y = p6(x) and y = 1
2
.

Figure 1
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4. A matrix of maximums
In the second section we have considered the matrix [min{i, j}]i,j. What

happens if instead of the minimum we have the maximum? We note that the
inverse of C must be tridiagonal because the upper and the lower triangular
parts of C have rank 1 form.

Theorem 4.1. For a positive integer n, consider the tridiagonal matrix of
order n

M =




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1 + 1
n




. (4.1)

Then M is invertible and the inverse is

M−1 = [max{i, j}]i,j=1,...,n .

Proof : From (1.1) we have θi = −2θi−1 − θi−2, for i = 2, . . . , n − 1 and
θn =

(−1 + 1
n

)
θn−1 −θn−2, with initial conditions θ0 = 1 and θ1 = −1. Then

θi = (−1)i, for i = 0, . . . , n − 1, and θn = (−1)n−1 1
n = det M . The φi’s

verify the recurrence relation φi = −2φi+1 − φi+2, for i = n − 1, . . . , 2, with
initial conditions φn+1 = 1 and φn = −1 + 1

n , and φ1 = −φ2 − φ3. Then

φi = (−1)n−i+1(i− 1) 1
n , for i = 2, . . . , n + 1. Finally, the inverse of M is the

symmetric matrix such that

(M−1)ij = (−1)i+j (−1)i−1(−1)n−j j
n

(−1)n−1 1
n

= j for i ≤ j ,

i.e.,
M−1 = [max{i, j}]i,j=1,...,n .

Let us consider again the recurrence relation of Qk(x) already defined, with
a = 1 and b = n + 1. This recurrence relation is equivalent to

x




Q0(x)
Q1(x)

...
Qn−2(x)
Qn−1(x)




=




−1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −1 + 1
n







Q0(x)
Q1(x)

...
Qn−2(x)
Qn−1(x)




+Qn(x)




0
0
...
0
1




.
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Therefore one can located the eigenvalues of the matrix M using the argu-
ments of the last section. Note that[

Q0(λk) Q1(λk) · · · Qn−1(λk)
]t

is an eigenvector of M associated to the eigenvalue λk.
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